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Abstract

The goal of this paper is to prove some general vector-valued perturbed equilib-
rium principles and some existence results of vector equilibrium points for bifunctions
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1 Introduction
A scalar equilibrium problem is defined as follows :
(EP) Findz € X suchthatvy € X, f(z,y) >0,

where X is a given set and : X x X — R is a given bifunction. A poinft satisfy-

ing (EP) is called an equilibrium point. There are many examples of such equilibrium
problems (see [7] for a first survey). Let us just mention a few of them : minimization
problems (wher¢ (z,y) := h(y) — h(z) andh : X — R), variational inequalities (where
flz,y) =<Tx,y—z>T: X — X*, andX is a normed space) and fixed point prob-
lems (wheref(z,y) :=< x —Tzx,y —x >,T : H— H,andH is an Hilbert space). Let

us also mention Nash equilibria in non-cooperative games and complementary problems.
It is natural to extend the previous scalar equilibrium problem to a vector equilibrium
problem. That s :

(VEP) Findz € X suchthatvy € X, f(z,y) ¢ —K \ {0},



or, in a weaker way :
(WVEP) Findz € X suchthatvy € X, f(7,y) ¢ —int K,

wheref : X x X — Y andY is a real Banach space, partially ordered by a closed
convex pointed con&’. There are a lot of applications to vector optimization, game theory
and mathematical economics. It is why many papers are devoted to vector equilibrium
problems, see [13] and [15] (and the references therein), and for example [1, 2, 3, 14, 16].
In [5], Bianchi, Kassay and Pini provide a vector version of the Ekeland variational princi-
ple connected to equilibrium problems with the purpose to find approximate vector equilib-
rium points. They are then able to prove the non-emptiness of the solution set of (WVEP)
without any convexity requirements on the sétand on the bifunctiorf. Of course, they
need some usual assumptions as: the semi-continuity of the fungtieng and f (-, y)

forall z,y € X and, either the compactness of the domain or a coercivity condition on the
bifunction.

If we consider a bifunctiorf such thatf («, -) is bounded below and lower semi-continuous
for everyx € X, by lack of compactness, there is no reason why a vector equilibrium point
should exist. In this article, we stugyerturbed equilibrium principlesThat is : results
which assert the existence of a perturbatigms small as possible, such théat ¢ admits

a vector equilibrium point

In the scalar case, the Deville-Godefroy-Zizler variational principle [10] solves the ques-
tion for minimization problems. Let us recall this result :

Theorem (Deville-Godefroy-Zizler Variational Principle). Let X be a Banach space
and(Z, || - || ~) be a Banach space of real-valued bounded continuous functioAssarch
that :

(i) forall g € Z, ||l9llz > |9l := sup,ex |9()];

(i) Z is translation invariant, i.e. iff € Z andx € X thenr,g : X — Y given by
mg(t) = g(t —x)isin Z and||7.gllz = ||| z;

(i) Z is dilation invariant, i.e. ifg € Z anda € R theng® : X — Y given by
g*(t) == g(at)isin Z,

(iv) there exists a bump functidn X — R in Z.

If f: X — RU{+o00} is a bounded below, lower semi-continuous and proper function,
then the set of all functiong € Z such thatf + g admits a strong minimum is@; dense
subset of”.

Let us recall that @ump functioron X is a real-valued function oX with non-empty
bounded support. Corollaries of this principle are, for example, the (classical) Ekeland



variational principle [11] and the Borwein-Preiss smooth perturbed minimization prin-
ciple [9]. A vector-valued version of the Deville-Godefroy-Zizler variational principle
has been obtained in [12] for bounded below, order lower semi-continuous functions
f X — Y. And, as in the scalar case, the authors got a vector-valued version of the
Ekeland and Borwein-Preiss minimization principles.

Here we study a new vector-valued version of the Deville-Godefroy-Zizler variational
principle for bifunctionsf : X x X — Y which satisfy a new natural continuity prop-
erty and such thaf(z,-) is bounded below for al: € X. We also get in this context

the Ekeland and Borwein-Preiss perturbed equilibrium principles. On the other hand, our
techniques allow us to prove the same existence results than in [5] but under weaker as-
sumptions.

In Section 2, we recall some basic definitions and some relationships between some dif-
ferent vector-valued notions of lower semi-continuity.

Section 3 is devoted to a new notion of lower semi-continuity for bifunctions, catled
ordinate free lower semi-continui@pefinition 1). This notion looks quite natural since
whenf is defined byf(z,y) = h(y) — h(z), whereh is a function fromX to Y, the coor-
dinate free lower semi-continuity gf is equivalent to the order lower semi-continuity of

h (Proposition 3). We prove that the coordinate free lower semi-continuifyi®fveaker

than the lower (resp. upper) semi-continuityfgfc, -) (resp. f(-,y)) for all z € X (resp.

y € X) (Proposition 4 (resp. Proposition 8)). The rest of Section 3 is devoted to the study
of some connections between this notion of coordinate free lower semi-continuity and the
classical notions of semi-continuity.

In Section 4, we introduce the notionabproximatively equilibrium point in the direction

of an element oK (Definition 12). The key result for applications is Proposition 13 which
asserts the existence and localization of such a point if we work with a diagonal null and
lower transitive bifunctiory such thatf(z, -) is bounded below for alt € X.

Some applications are given in Section 5. We first establish a Deville-Godefroy-Zizler
perturbed equilibrium principle (Theorem 14), and we get, as corollaries, the Ekeland and
Borwein-Preiss perturbed equilibrium principles (Corollaries 16 and 18). We also prove
some existence results (Theorems 19, 20 and 21 ) for equilibrium problems under weaker
assumptions than the usual ones.

2 Preliminaries and notation

Throughout this papery’ andY are two real Banach spaces axids partially ordered by
a closed convex pointed coé. No assumption is required on the interior/gf(except
of course when we deal with the problem (WVEP)).

For any elements, v € Y, we will write v < v whenevew — u € K. The sefu,v] :=
{weY :u < w < v} is called theorder intervalbetweenu andv. We say that a
sequencéu,) C Y is non-increasingvhenever, for alk, u, .1 < u,. The ball of center



xo and radius- in X will be denoted byBx (x¢,r). Let S be a non-empty subset of, we
denote respectively byt S andAff S, the interior and the affine hull of.

Let f be a function fromX to Y, itis said to bebounded belowresp.abovg if there exists
someb in Y such that < f(x) (resp.f(z) < b) for all z € X, andorder-boundedf it is

both bounded below and above. The following two notions of lower semi-continuity were
introduced in [8] and [19] :

e fis said to bdower semi-continuou@sc) atz, € X iff, for each neighborhood’
of f(zo) in Y, there exists a neighborhoaddof z, in X such thatf(U) C V + K.

e fis said to bequasi lower semi-continoyg-Isc) atz, € X iff, for eachb € Y such
thatb % f(zo), there exists a neighborhoddof x, such that 2 f(x) for eachz
inU.

A function f is (resp.quasi) upper semi-continuoysisc for short (resp. g-usc), #f is

Isc (resp. g-Isc). A functiorf is Isc (resp. g-Isc) iff is Isc (resp. g-Isc) at each point &f.

Let us give some well-known facts concerning these notions (see, for example, [8], [12]
and [19]).

e A function f is Isc atx iff, for each sequenceér,) C X converging taz,, there
exists a sequendg,,) C Y converging td) such thatf(x) < f(x,) + g, for all n.

e Afunction f is g-Isc iff for eachh in Y, the sef{z € X : f(z) < b} is closed inX.
e Alsc function atx, is g-Isc atz.

A new notion of lower semi-continuity, weaker than the two others, was intoduced in [12].
It is calledorder lower semi-continuitpecause it links, in a good way, the norm topology
and the partial order df :

e f is said to beorder lower semi-continuou®-Isc) atz, € X iff, for each sequence
(x,) C X converging tor, for which there exists a sequengg,) C Y converging
to 0 such that the sequen¢é(zx,,) + ¢,,) is non-increasing, there exists a sequence
(gn) C Y converging td) such thatf(zo) < f(x,) + g, for all n.

These three notions of lower semi-continuity coincide for scalar-valued functions but it is
not the case in the vector-valued case. Here is a summary of the different relationships for
a vector-valued functiorf : X — Y, withdimY > 1 (cfr. [12]) :

Isc
o\
(1)
g-lsc ————— o-Isc

(2)
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(1) (Y, K) has the Monotone Bounds Property dimY < oo andf is bounded below.
(2) fis bounded below and order intervals are compact.

(3) f is order bounded and order intervals are compact.

A lot of examples are given in [12] in order to show that these conditions are also necessary.

3 Lower semi-continuity for bifunctions

In this section, we introduce a new notion of lower semi-continuity for bifunctions and we
compare it with the classical ones.

Definition 1. A bifunctionf : X x X — Y is said to becoordinate free lower semi-
continuous(cf-Isc) atz, € X iff, for each sequencer,),>1 C X converging tax, for
which there exists a sequengs,),>1 C R converging td) such that :

Vn>1,VI>1, f(zp,xnu) € —K+ By(0,p,),
there exists a sequen¢e, ),~1 C R converging td) such that :
Vn>1, f(x,,x9) € —K + By (0,w,).

The bifunctionf is said to bewveakly cf-Iscif this condition is satisfied for each sequence
(zn)n>1 C X weakly converging ta,.

The following useful lemma relaxes this definition by allowing to work up to a subse-
quence :

Lemma 2. Let f be a bifunction fromX x X to Y. Then,f is cf-Isc atx, iff from any
sequencéz,,),>; converging tar, € X and for which there exists a sequengg),>1 C
R¢ converging td) such that :vn > 1, VI > 1, f(zn, Tn) € —K + By(0, p,,), One can
extract a subsequence,,, ),>1 such that vk > 1, f(x,,,z0) € —K + By (0,wy), where
(wr)k>1 C RY is a sequence converging @o

PROOFE The “only if” part is obvious. For the “if” part, let us suppose by contradiction
that f is not cf-Isc atry. Therefore, there exist somec R, a sequencéz,,),>; con-
verging toz, and a sequence,),>; C RJ converging to) such that :vn > 1, VI >
1, f(xn,Tny) € =K+ By (0, p,), andvn > 1, f(z,,x¢) ¢ —K + By (0, ). By hypoth-
esis, one can extract a subsequefGe),>1 C (z,,),>1 for which there exists a sequence
(wr)k>1 C RY converging td) such that ¥k > 1, f(z,,,70) € —K + By(0,w;,). Thus,
f(zn,, o) € —K + By(0,¢) wheneverk is large enough. This contradiction ends the
proof. ]



Let us note that a similar result is true for the notion of order lower semi-continuity of a
functionf : X — Y (cfr. Lemma 4 of [12]).

In some sense, the next results justify the fact that the previous notion is a good extension
of the notion of lower semi-continuity for bifunctions. The first one characterizes the
coordinate free lower semi-continuity of a bifunction by means of the order lower semi-
continuity of the function of one variable which defines the bifunction.

Proposition 3. If the bifunctionf : X x X — Y is defined byf(z,y) := h(y) — h(z),
whereh is a function fromX to Y, thenf is cf-Isc atx iff & is o-Isc atz.

PROOF Let us suppose that the bifunctigh: X x X — Y, defined byf(z,y) :=
h(y) — h(x), is cf-Isc atxy. Let us consider a sequengs,),,~; in X converging tar, and

a sequencés,,),>1 in Y converging to0 such that(i(z,) + €,),>1 iS @ non-increasing
sequence. Let us consider a subsequéngg;>1 C (£,).>1 Such that the sequence
(len, ||y )x>1 is non-increasing. So, we have :

vk > 17 vi > 17 f(xnwxnkH) - h<xnk+l) - h(‘rnk> < Enp — Enpgy

and then
f(xnka xnkJrl) € -—K+ BY(O’ pnk)

wherep,, = 2||en, |lv P~ 0. Sincef is cf-Isc atx, there exists a sequenge;);>1 C

Ry converging ta) such that vk > 1, f(z,,,20) € —K + By(0,w;,). That means that
h(zo) < h(zy,) + gr With gx — 0inY and, by Lemma 4 of [12}; is o-Isc atz,.

Let us consider now a functiolafrom X to Y, o-Isc atzy € X, and let us suppose that
(z,)n>1 iS @ sequence i converging tar, and(p,),>1 iS a sequence iR converging
toO0suchthat vn > 1, Vi > 1, f(zn, vni1) = h(Tntr) — h(z,) € —K + By (0, p,,). Let
us consider a subsequengg, )x>1 C (pn)n>1 SUCh thatzgji pn, converges. We have :
Vk > 1, Vi >1,3e,; € By(0,pp,) : h(n,,,) < h(zn,) + ery. In particularvk > 1 :

“+o0 —+o00
h(Tn,,,) + Z gi1 < h(zy,) + Zem
k

i=k+1 i=

and (h(zn,) + > 15 €i1),~, IS non-increasing, witl S eiilly — 0wheneverk —
+00. Sinceh is o-Isc atry, there exists a sequeng@g,),>1 converging td in Y such that :
Vk > 1, h(zo) < h(zy,) + gk, thatisf(z,, ,zo) < gr. This proves, by Lemma 2, thdt
is cf-Isc atxy. O

In the framework of applications to equilibrium problems, the classical hypothesis on the
bifunction f are some semi-continuity conditions on the functigiis, -) and f (-, y) for

all z andy in X. We prove now that these conditions are stronger than the coordinate free
lower semi-continuity.



Proposition 4. Let f be a bifunction fromX x X to Y. If f(z,-) isIsc atz, forall z € X
thenf is cf-Isc atx.

PROOF Let(z,),>; be a sequence convergingig € X and(p,),>1 be a sequence in
Ry converging td) such that vn > 1, VI > 1, Je,; € By (0,p,) : f(Tn, Tnsr) < €y
Letny > 1 be fixed. Sincef(z,,,-) is Isc, there exists a sequengg),>; converging to
0inY such thatf(z,,, z0) < f(@ny, Tne+1) + g; for all i > 1. SinceK is closed, we thus
havef(x,,,z¢) € —K + By(0, p,,). This proves thaf is cf-Isc atz, and ends the proof.
]

When the interior of the ordering cone is non-empty we can improve the previous result
by askingf(z,.) g-Isc, instead of Isc.

Proposition 5. Let f be a bifunction fromX x X to Y where the partial order orY” is
given by a cond< with non empty interior. Iff (x, -) is g-Isc atx, for all x € X thenf is
cf-Isc atzy.

PROOF Ifint K # &, then there exists € K\ {0} suchthat, foraly € Y, +y < |ly||ve
(see [12]). Letx,),>1 be a sequence convergingitgc X and(p,),>1 be a sequence in
Ry converging td) such that vn > 1, VI > 1, Je,; € By (0,p,) : f(Tn, Tnst) < Eny-
Letny > 1 be fixed. Forall > 1, we have :f(z,,, Tngt1) < €ngs < |[Engallve < puge-
Since f(x,,..) is g-Isc atry, we havef(z,,,zo) < pn,e. Since|p,e|ly — 0, this proves
that f is cf-Isc atz. O

In the finite dimensional setting, we can remove the assumption on the interior of the
ordering cone but we have to work with a bifunction which is bounded below.

Proposition 6. Let f be a bifunction fromX x X to Y whereY  is finite dimensional. If
is bounded below and(z, -) is g-Isc atz, for all z € X thenf is cf-Isc atz,.

PROOF We have only to consider the case wheite/l’ = @. Without loss of generality,
we can assume that, forally € X : 0 < f(z,y), thatisf(X x X) C K C Aff K.
Since, in the finite dimensional case, the interioofor the topology relative to\ff K
is non empty [18], we have: for allr,,),>1 C X converging tar, and all(p,),>1 C Ry
converging td such that/n > 1, Vi > 1, 3¢,,; € At KNBy (0, p,) : f(@n, Tntt) < Enus
there existqw,),>1 C R{ converging to0 such that :vn > 1, f(z,,70) € —K +
By (0,w,). We have to remove the restrictien, € Aff K. Suppose that¥n > 1, VI >
1, 3eny € By (0,pn) ¢ f(xn, zny) < eny. Letus prove that, ; € Aff K. Foralln > 1,
let us writee,,; = a,; + t,; With a,,; € Aff K andt,; € T, whereT is a topological
complement ofAff K in Y. We thus have :

tml = f($n> In—i—l) — Qnp + kn,l

for somek,; € K. The fact that the right-hand side is an elemenAGf K andAff K N
T = {0} imply ¢, ; = 0, which ends the proof. Il
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Another classical hypothesis on bifunctions is the following :

Definition 7. A bifunctionf : X x X — Y is said to bediagonal null iff for everyz € X,
f(z,z) =0.

Proposition 8. Let f be a bifunction fromX x X to Y. If f is diagonal null andf (- , x¢)
is usc atry € X thenf is cf-Isc atxy.

PROOF Let (z,),>1 be a sequence convergingtg. Sincef(- ,z() is usc andf is
diagonal null, there exists a sequengg),,~1 converging td in Y such thatf(x,,, zo) <
f (o, z0) + gn = gn. This implies thatf is cf-Isc atz,. O

Remark 9. Let us remark that the coordinate free lower semi-continuity of the bifunction
ffromX x X toY is a strictly weaker assumption than the lower (resp. upper) semi-
continuity of the functiong(x,-) (resp. f(-,y)) for all x € X (resp. for ally € X).

This is very easy to show in the vector-valued case. Indeed, by Proposition 3, it suffices to
considerf defined byf(x,y) = h(y) — h(z) whereh is o-Isc but not g-Isc at some point.

It will be useful for our purpose to know that coordinate free lower semi-continuity is
preserved under continuous perturbations.

Proposition 10. Let f and g be two bifunctions fronk’ x X to Y. If f is cf-Isc andy is
continuous and diagonal null theh+ ¢ is cf-Isc.

PROOF Letzy, € X, (z,),>1 be a sequence iX converging toz, and (p,).>1 be
a sequence ifR] converging to0 such thatvn > 1, VI > 1, Je,; € By(0,p,) :
(f + 9)(zn, xnt) < eny. Sinceg is continuous and diagonal null, there exi&is),>1
a sequence ifR} converging to0 such thatyn > 1, Vi > 1, Jg,; € By(0,4,) :
9(Zn, 1) = (20, 20) + Gng = Gny. SO, f(2n, Tnt) < €ny — gng @nd, sincef is cf-
Isc, there exists a sequenge,) converging to0 in Y such thatf(z,, z¢) < v,. Now,
sinceg(x,, xo) = u, With ||u,|y — 0, we have(f + g)(z,, z0) < v, + u, wWhich proves
that f + g is cf-Isc atz. H

4  Approximatively equilibrium points

The following notion ofs-equilibrium pointhas been recently introduced in [4] and [5] :
the pointz, € X is said to be are-vector equilibrium point off in the direction of
ee K\ {0}if

Vye X, y#xo, flzo,y)+elzo—ylle ¢ —K.

Bianchi, Kassay and Pini [4, 5] prove the existence of such points under the following
assumptions orf : diagonal nullness, lower boundednesgaff (x,-)) for all z € X and
lower transitivity.



Definition 11. A bifunctionf : X x X — Y is said to belower transitiveiff for every
v, y,2 € X, f(z,2) < f(z,y) + fy, 2).

Using this, they get existence results for the problem (WVEP) (see Section 5.2).

Let us introduce here the notion approximatively equilibrium point in the direction of
an element of{ \ {0}.

Definition 12. Let f be a bifunction fromX x X to Y. A pointxy € X is called an
e-approximatively equilibrium point off in the direction ofe € K \ {0} iff

(1) JpeRE, Vo e X, VE € By(0,p): f(wg,z) +ee+& ¢ —K.

The following Proposition will be the key tool for applications (main Theorems 14 and 19).
It gives existenceand localization of approximatively equilibrium points for a diagonal
null and lower transitive bifunctiorf such thatf(x, -) is bounded below for al: € X.

The proof of this Proposition follows the ideas of [12].

Proposition 13 (Existence and localization of approximatively equilibrium points).
Let f be a bifunction fromX x X toY. If f is diagonal null, lower transitive and(x, -)
is bounded below for alt € X, then for every € R and every € K\ {0}, there exists
xo € X ane-approximatively equilibrium point of in the direction of. Moreover, given
7 € X andé € R], one can suppose thatf(z, zo) € By (0,6) — K .

PROOF Lete € Rf,e € K\ {0}, 7o := 7 andd € R] be fixed. Ifz, satisfies (1) then

the proof is finished sincg(xq, zo) = 0. If o does not satisfy (1), let; := g and get

the existence of; € X and¢{; € By (0, p1) such thatf(zg, x1) + ce + & € —K. If 3
satisfies (1), the proof is finished. If not, we repeat the same construction. Let us define
Pn = 2% for all n € Ny. Using the hypothesis of lower transitivity of the bifunctignat

the stepn > 1, we haver,, € X such that

f(l’o,[fn) + nee + Z& € —K, with & € By(O,pZ) fori € {1, s ,’I’L}.

i=1

Let us suppose that, for all € Ny, z,, does not satisfy (1). By hypothesis, there exists
by € Y such thab, < f(xg,z) forall x € X, and then:

Vn € No, bo+nee+ @, € —K with @, :== > & € By(0,9).
=1

Thus,e € N,cx, (By (0, £) — K), wherer := 2%l SinceK is closed, this intersection
is equal to— K and, sincek is pointed, this implies that = 0, a contradiction. [



5 Applications

5.1 Perturbed equilibrium principles

For our first application, let us come back to the vector equilibrium problem (VEP). Using
Proposition 13 and the ideas of [12], we prove the following main result :

Theorem 14 (Deville-Godefroy-Zizler perturbed equilibrium principle). Let(Z, |-]z)
be a Banach space of norm bounded, bounded below, continuous bifunctions from
to Y such that:

() forall g € Z, |lgllz = ll9llo := sup, yex [l9(z, y) v
(i) Z is translation invariant, i.e. iy € Z andz,y € X thenr,g : X x X — Y given
by 7ig(t) := g(x — t,y — t)isin Z and||ngl|lz = [|g/ 2.
(i) Z is dilation invariant, i.e. if¢ € Z anda € R theng® : X x X — Y given by
9%(z,y) := g(ax,ay)isin Z,

(iv) there exists a continuous and norm bounded bump funétion’ — R and an
element € K \ {0} such thath(0) > 0 andb : X x X — Y given byb(z,y) :=
(b(y) — b(x))e belongs taZ.

Letf : X x X — Y be acf-Isc, diagonal null and lower transitive bifunction such that
f(z,-) is bounded below for alt € X. Then the set of aj € Z such thatf + g admits
an equilibrium point is dense .

PROOF Lete € R} be fixed. We want to prove the following :
dgez e X: |gllz<e VyeX\{z}: (f+9)7y) ¢ —K.

Without loss of generality, we can suppose th@) = 1 and|le||y = 1. Moreover, there
exists some > 0 such thab(z) = 0 whenevel|z| > r.

(i) Letusdefing, : X — Rbyb;(z) := b(2rz), whose support is now i (0, 3). By
Proposition 13, there exist € X ane; := )-approximatively equilibrium point
of f in the direction of, that is:

(2) 3,01 € R(T? vy € X7 vg € BY(prl) : f(x17y> +81€+€ ¢ -K.

Let us defingy; : X x X — Y by gi(z,y) := —(bl(y —x1) — by(z — :1:1))516. We have
91 € Z, ||g1llz < § andgy(z1,y) = (1 —bi(y — xl))sle forall y € X. If we set

Ay={ye X:36€By(0,pm), (f+g)(21,y) +&€—-K},

then, sincef + g, is diagonal null,x; € A; and, by (2), sincey(z1,y) = eieif y ¢
Bx(z1,3), & C Bx(z1,3). If A = {z1} thenz, is an equilibrium point off + ¢;. Let
us suppose that; # {z,}.

__&
4[brel z
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(i) Let us defineb, : X — R by by(x) := by(2x), whose support lies iBx (0, 3z ).
Sincef + g, satisfies the hypothesis of Proposition 13, we get{for x; andé := 2)
the existence of, € X aney := (min{22; L} /2||bre]| ) -approximatively equilibrium
point of f + ¢; in the direction ok, that is:

(3) HPQ € Rg7 vy € X> v€ S BY(07p2) : (f +gl)($2,y) +526+£ ¢ _K’

located as follows:

(4) Su; € By (0.51)

(f +91)(w1,22) +v2 € —K.

Without loss of generality, we can assume that< 2. Let us defingy, : X x X — Y
by g2(x,y) := —(ba2(y — x2) — ba(x — 32))eze. We haveg, € Z, ||g2]|z < min{%; 2
andgs(z2,y) = (1 — ba(y — 2))eqe forally € X. If we set

AQ = {y GX: E]f € BY(O»pQ)v (f+g1+92)($2,y)+§ € _K}’

then, sincef + ¢; + ¢» is diagonal null,z, € A, and, by (3), sinces(xs,y) = e if
y ¢ BX(xQ,QZ) Ay C Bx(m2,212) If A, = {z5} thenz, is an equilibrium point of
f + g1 + go. Let us suppose that, # {z,}.

(i) Let us suppose we have carried out the construction until stepl and let us
perform the stem. Let us writeg,, , := Zz;ll gr andb,, : X — R the bump function
defined byb, (z) := b (2"z), so thatsuppb, C Bx(0,5). Sincef + g,_, satisfies
the hypothesis of Proposition 13, we get (for.= z,_, ando := #2-*) the existence
of z, € X ane, := (min{S5; 222} /2||b.¢||z)-approximatively equilibrium point of
f +9,_, inthe direction of, that is:

(5) Ipn €Ry, Vy € X, V€ € By(0,p0) 1 (f+Gp_1)(@n,y) +ene+& ¢ —K,
located as follows:

(6) Ju, € By (0, %) (4T ) (T, ) + vn € —K.

Without loss of generality, we can assume that 2=, Let us defing,, : X x X — Y

by g, (z,y) := —(bn(y—xn) —bn(x—xn))gne. We havey, € Z, ||gullz < min{g; 22}
andg,,(z,,y) = (1 — b,(y — z,,))ene forally € X. If we set

Api={ye X: 3 e By(0,pn), (f+7,)(xn,y) +§€ K},

then, sincef + g,, is diagonal null,z,, € A, and, by (5), since,,(x,,y) = e.eif y ¢
Bx(2n, 57), An C Bx(@n, ). If A, = {,} thenz,, is an equilibrium point off + g,,.
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(iv) Letus suppose that, for all, A,, # {z,}. Since||v,|ly < p., we have, by (6), that

Tni1 € A, C Bx(x,, 2%) and then(z,,) is a Cauchy sequence . So, there exists some

T € X such thatz,, T 7. Also, ||gn||z < 5= for all n implies that there existg € Z
X

such thatg,, TP S0,9 = g, + h, with ||g||z < e andh, := ., ¢;- Letus also
‘Wz
remark that:

() Vk, Va,y,z € X, ge(@,2) = ge(@,y) + 9u(y, 2),

and then

(8) Vi, ho(z,y) + has1(Y: 2) = g1 (2,9) + hpsa (2, 2).

(v) We want to show that is an equilibrium point off + ¢. In view of (6), we have:
9) v, (f + 9)(@n: Tpt1) < —Vns1 + ha(Tn, Tnt),

With || — vp1 + b (2n, i) |y ——7= 0. Moreover, using the fact that+ ¢ is lower
transitive and by (9) and (8), we have for 1:

(f + 9)(@n, o) < (f +9) (@, Tng1) + (f + 9)(Tns1, Tnga)
< —Unt1 + I (T, Tos1) + (f + 9)(@nt1, Tosa) + (F + 9) (@nr2s Totr)
2
< - Z Vnti + Pn( %0, Tpg1) + Pyt (Tna1, Tag2) + (f + 9)(Tng2, Togr)
=1
2
S - Z Un+i + 9n+1($n7 $n+1> + thrl(xn? $n+2> + (f + g) (xn+2; xn+l)
=1
3
S - Z Un+i + 9n+1(l’n, $n+1> + thrl(xny $n+2> + hn+2(xn+27 $n+3>
=1
+ (f + g) (xn+37 xn—i—l)
3 2
S - Z Un+i + Z gn—&-i(xna xn—i—i) + hn+2(xna xn—&—S) + (f + g)(xn-l-?n xn—&—l)

=1 i=1

Sincef + g is diagonal null{ f + g) (241, Tny) = 0 @and then :

n—+l n+l—1
(f + 9)(@n, Tnt) < — Z v; + Z 9i(@ns Ti) + P11 (T Tt -
i=n-+1 i=n-+1

TV
=cn,

We have|e, ||y < p,. This follows from the following estimates (already obtained
in[12]) :

12



o 00 gilen, 2)lly < 5
o hngic1 (@, Tns)ly < Nnsicilloo < Nhngi—illz < 325000 gillz < 22

Sincef is cf-Isc andyg is continuous and diagonal null, by Proposition 104 g is cf-Isc
and then:

(10) vn, (f“‘g)(xnaf) < w, with Hwn”Y — 0.

Let nowy € X be such thatf + ¢)(Z,7) € —K. We have to prove that = z. Since
f + g is lower transitive, we deduce from (10) :

(11) Vi, (f +9)(@n, ) < wn.

Letny € Ny be fixed. Proceeding as before, we have foralt n :

n+1 n
(f + 9)(@ne,7) < — Z vi + Z 9i(Tngs Ti) + hn(Tngs Tng1) + (f + 9) (@041, 7),
i=no+1 i=np+1
and using (11) :
n+1 n
(f+ 9@ D) <= D> vit Y Gil@ng, 1) + hu(Tng, Tns1) + Wnpr.
1=ng+1 i=ng+1
Then, foralln > ng :
n+1 n
(f +§no)(xﬂ07y) < - Z v; + Z 9i(Tng, Ti) + M (Tng, Trg1) + Wnia
i=ng+1 i=ng+1
- hno (l'novy)'
Since we have (using (7)) :
n n 400
D 9@y %) = hg(Tng, ) = D GiTngy ) = D Gi(ng, )
i=ng+1 1=ng+1 1=ng+1
n “+o00
== Z gz<§; xz) - Z gi('rnoay>
1=ng+1 i=n+1
- Z gZ<ya xz) - hn(xnoay)l
i=ng+1

13



previous inequality implies that for all > ng :

n+1 n
(f + ?no)(fnm@) S - Z v; + Z 91@7 xz) - hn<xnoay) + hn(xnoy xno-l—l) + Wn+1
i=ng+1 1=no+1
n+1 n
< - Z v + Z 9i(U, i) = hn (Y, Tni1) + Wnpa
i=ng+1 i=ng+1

Since||h, (7, Zn+1) + Watlly < hnllz + [[wasa|ly < %2 for n large enough, we have

n+1 n
(12) H - Z vi + Z 9:(¥s i) — b (¥, Tpg1) + wn-ﬁ-l‘ y < Pro
i=no+1 i=ng+1

for n is large enough. Thereforg,c A,, C Bx(xy,, 2%0). Sinceny is arbitrary,y = 7.

O

Remark 15. 1. Itis possible tdocalizethe equilibrium points of the bifunctioh+ ¢
in Theorem 14. More precisely, under the assumption of Theorem 14, we have:
for all e € R7, there exists; € RJ such that ifz; is ane,—approximatively equi-
librium point of f in the direction ofe, then there exisy € Z andz € X such that
lgllz < e, ||z — x1|| < e andz is an equilibrium point off + g¢.
In order to prove this, it suffices, at the beginning of the proof, to define the first
bump functiorb; asb; (z) := b(%x).

2. Since(f+g¢)(Z,7) = 0, we have proved thatis an efficient solution of the function
(f+9)(T,-) : X — Y. Using the ideas of [12], we can prove moreover that it is
strongefficient:

[(f 4+ 9) (@, um) < wy With wy, > 0] = [uy —T].

3. In the proof, at every step, the functign: X x X — Y is of the formg,(x,y) :=
(91(y) — gr(z))exe, whereg, : X — R is a continuous bump function. So fifis
defined byf(z,y) := h(y) — h(x), withh : X — Y o-Isc and bounded below, then
we prove the existence of a continuous perturbagioms small as desired, such that
h + g admits a (strong) efficient solution ox :

TeX, {T}={reX: h+gx)<h+3@)}.

In other words, we recover the Deville-Godefroy-Zizler variational principle ob-
tained in [12].
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Let us present now some examples of Banach spatels || ;) of norm bounded, bounded
below, continuous bifunctions frotl¥ x X to Y satisfying the conditions (i)-(iv) of The-

orem 14. An easy way to construct such a Banach space of perturbations is to proceed as
follows : let us considefZ, ||-|| ;) a Banach space eéal-valued continuous and bounded
functions defined oX’ which satisfies the corresponding conditions (i)-(iv) of the original
Deville-Godefroy-Zizler variational principle (see Section 1). It suffices then to fake

the space of all bifunctiong: X x X — Y defined byg(z,vy) := (¢(y) — g(x))e, where

§ € Z, endowed with the following norm :

l9llz = llgll z + [lglloc -

Examples of such Banach spacésre given in [10] and [17].

The following example will give, as a corollary of Theorem 14, a variant of Ekeland princi-
ple for equilibrium problems. Le¥ = L be the space of all bounded real-valued Lipschitz
continuous functiong on X with |||z := [|g/|c + |||lLip Where

|9(x) — g(y)]
|z =yl
It is straightforward to prove thdt is a Banach space which satisfies hypotheses (i)—(iii).

Concerning hypothesis (iv), one can apply the construction exposed in [10, 17] to produce
a bounded Lipschitzian bump function.

lgllLip == sup{ cx,y € X, x#y}

Corollary 16 (Ekeland equilibrium principle). Let f : X x X — Y satisfying the
following assumptions :

(1) f is diagonal null;

(2) f(z,.)is bounded below for alt € X;
(3) fislower transitive;

(4) fis cf-Isc.

Then, for every € RS ande € K \ {0}, there existg; € R] such that ifz, is an
e1—approximatively equilibrium point of in the direction ofe, then there exists € X
such that :

@ Yye X, f(z,y)+eed¢ —K,
(b) T — a1 <e,
(c) T is an equilibrium pointoff +¢| - — - |le,i.e.:

vy e X\{z}, f(@.y)+elz—ylle¢ -K.
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PROOE Lete € RS ande € K \ {0} be fixed. We can suppose that|ly = 1. By
Theorem 14 and Remark 15 (1), there exjsts L andz € X such thatup{|g(z)—g(y)| :

r,y€e X, x#£y} Sa,sup{W:x,yeX, x;éy} <eg, ||z — x| <eandzis an

equilibrium point off + g, whereg : X x X — Y is defined byy(z,vy) := (4(y) —g(z))e:

vy e X\ {7}, f(7y)+ (9(y) — 9(T))e ¢ —K .

Since, for ally € X, g(y) — (7)) < eandg(y) — §(7) < ¢||z — y||, by transitivity of the
order we thus have :
Vy e X\ {z}, f(T,y)+eced K,

and
Vy e X\ {7}, f(@.y)+elT—ylle¢g -K.

Remark 17. Let us recall the vector Ekeland principle obtained in [5] :

Theorem ([5]). Let (X, d) be a complete metric space. Assume that the funcfion
X x X — Y satisfies the following assumptions:

(1) fisdiagonal null;

(2) e*(f(z,-)) is bounded below for al: € X (wheree* is in the dual cone of< and
e*(e) = 1 for afixed point € K \ {0});

(3') fislower transitive;

4) f(z,-)isqg-Iscforallz € X.

Lete € RS and) € R] be given and let, € X be such that :
@) VyeX, f(zo,y)+ced¢ —K.

Then, there exist8 € X such that :

(07) d(z,z0) < A,

©) vy e X\{z}, f(z,y)+ 5d(T,y)e ¢ —K,

d) f(x, z) € K.

In that paper [5], the authors mentioned thaf ifs lower transitive and if there exists
y € X such that the functior*(f(-,9)) is upper bounded, then there exists € X
satisfying (a’). Let us compare their Theorem with Corollary 16 :
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e Condition (2°) is weaker than (2), see [5].

e If int K # @ (resp. ifdim Y is finite andf is bounded below) then, by Proposition 5
(resp. Proposition 6), assumption (4) is weaker than (4).

e Of course, ar-approximatively equilibrium point; of f in the direction ofe satisfies
(&). And Proposition 13 shows the existence of such-approximatively equilibrium
point under assumptions (2) and (3).

e In Corollary 16, starting with am-approximatively equilibrium point:;, we find a
point satisfying (a) (see (a’)) and we get (b) (similar to (b’) withinstead ofz,) and
(c) (similar to (c’)). We don't getf (7, z1) € K.

Let us recall that a bornology ol , denoted byg3, is any family of bounded sets whose
union is all X, which is closed under reflection through the origin (thatis 5 implies

—S € (), under multiplication by positive scalars and is directed upwards (that is the
union of any two members of is contained in some member 6). There are many
possibilities. Let us describe the smallest and the largest onesGéataauxbornology

B = G consisting of all finite symmetric sets and th&chetbornology = F' consisting

of all bounded symmetric sets. A functigh: X — Y is said to be3-differentiableat =
andT € L(X,Y) is called itsg-derivativeat z, if for eachS € 3,

i @) — f(@)
> t

t—0

=T(z) uniformlyfory € S.

We denote thes-derivative of f atz by 0sf(x). Itis clear that we find again the well-
known GAteaux (resp. Echet) derivative withs = G (resp.8 = F). We can take fo&Z
the Banach spacB; of all real-valued functions defined on that are bounded, Lipschitz
continuous and-differentiable equipped with the norm

111D = llgllee + 110910

(cfr. [17] for a proof that this space is complete and verifies hypotheses (i)—(iv) of the scalar
version of the Deville-Godefroy-Zizler variational principle.) This gives the following
variant of Borwein-Preiss smooth principle for equilibrium problem :

Corollary 18 (Borwein-Preiss smooth equilibrium principle). Let X be a Banach space
that admits a Lipschitz continuous bump function whicli-differentiable. Then, for
every cf-Isc, diagonal null and lower transitive bifunctigh: X x X — Y such that
f(z,-) is bounded below for alt € X, and for everye € R/, there exists a bifunction
g : X x X — Y which is Lipschitz continuous angtdifferentiable such thatg||.. < e,
|0s9|lc < e and f + g admits an equilibrium point.
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5.2 Existence results for vector equilibria

Here we are interested in the existence of exact solutions of vector equilibrium problems.
First, in the compact case, using Proposition 13 (which is clearly true for bifunctions
defined onC' x C whereC'is a subset oX'), and then using the existence of approximate
solutions, we prove the same existence results for the problem (WVEP) than in [5] but
under weaker assumptions.

Theorem 19. LetC be a compact subset &f. If the bifunctionf : C' x C' — Y satisfies :
() fisdiagonal null;

(i) f(x,-)is bounded below for alt € C;

(i) f is lower transitive;

(iv) fis cf-Isc;

then, the solution set for the problem (WVEP) faon C' x C'is non-empty.

In [5, Theorem 3], assumption (iv) is replaced (in a stronger way, cfr. Section 3) by asking
f(z,-) g-Isc for allz and f (-, y) usc for ally.

PROOF OFTHEOREM19. Lete € K'\ {0}. By Proposition 13, we construct a sequence
(zn)n>1 C C suchthatforalh > 1:

1
and such that for alt > 2:

(14) f(.fll'nfl, iL'n) < —-K + BY(O, F)

Sincef is lower transitive we havé(z,,, z,,+;) < Zf‘;ﬁ_l f(x;,x;4q) foralln > 2 and all

[ > 1, and thenf(z,, z,.;) € —K + By (0, 2,%1). Up to a subsequence, we can assume
(sinceC' is compact) that,, — = € C. Sincef is cf-Isc, there exists a sequencg — 0
such that :

(15) f(zn,T) € =K + By (0,w,).
By contradiction, let us suppose that :
(16) Jyel, f(7,7) € —int K.

By lower transitivity of f and (15), we have :
f(@n, ) < f(20,7) + f(Z,7)
S -K + BY(f(f7y)7wn)'
On the other hand, by (16), for big enough: By (f(z,y),w,) + ~¢ C —int K. So,
flx,,g)+ %e € —int K for n big enough. This contradicts (13) and completes the proof.
O
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Now, by following the proof of [5, Theorem 4] and using Theorem 19, we recover an
existence result in the non-compact case for cf-Isc bifunctions.

Theorem 20. Let X be a reflexive Banach space. If the bifunctipn X x X — Y
satisfies :

(i) fisdiagonal null;

(i) f(x,-)is bounded below for alt € X;
(i) f is lower transitive;

(iv) fiscf-Isc;

(v) forallz € X, the level sel(z) :== {y € X : f(z,y) € —K} is weakly closed;
(vi) (coercivity condition) there exists a compact&et. X such that :

drge X, Ve e X\C, Iy X, |ly—ml <llz -0l : flo,y) € —K.

then, the solution set for the problem (WVEP) is non-empty.

In [6], Bianchi and Pini introduced coercivity conditions (as condition (vi) above) as weak
as possible, exploiting the generalized monotonicity of the funcfidefining the scalar
equilibrium problem. By using other coercivity conditions, we get finally existence results
in the non-compact case, without any assumptions on the level.&etghypothesis (v)

in Theorem 20 is satisfied under some convexity assumptiong éor examplef(x, -)
quasi-convex for all: € X, see [3]). The coercivity condition in the following result is
stronger than the previous one, but natural in our context. It allows to bound sequences of

approximatively equilibrium points.

Theorem 21. Let X be a reflexive Banach space. If the bifunctipn X x X — Y
satisfies :

(i) fisdiagonal null;

(i) f(z,-)is bounded below for alt € X;
(i) f is lower transitive;

(iv) fis weakly cf-Isc;

(v) (coercivity condition) for each sequenge,),.~; in X such that|z, || — +oo, there
existd € Ry and a subsequende,,, )x>1 C (2,),>1 Such that:

VE>1,31>1: f(xn,,Tn,,) & =K+ By(0,0).

then, the solution set for the problem (WVEP) is non-empty.
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PROOF As in the proof of Theorem 19, let us consider a sequéngg,~; C X sa-
tisfying relations (13) and (14). The coercivity condition implies that this sequence is
bounded. Indeed, if not, there existe R} and a subsequenge,, )i>1 C (@,)n>1
suchthat :vk > 1, 3l > 1: f(z,,,Tn,,,) € —K + By(0,9). Fork > 1 such that
571 < 0, there existg > 1 such thatf(z,,, zn,.,) ¢ =K + By (0, 5m=r) and this is a
contradiction. So, up to a subsequence, we can assumerfhat,; weakly converges to

T € X. Sincef is weakly cf-Isc, relation (15) is satisfied and we then conclude as in the
proof of Theorem 19. ]

Remark 22. Let us note that the following (strong) coercivity condition implies hypo-
thesis (v) in Theorem 21 :

Ve e X, Vke K\{0}, Ja e R}, Vy e X, |yl > a: f(z,y) > k.

The same result can also be obtained if hypothesis (v) is replaced by the following one :
there exist a bounded sétc X andk, € K \ {0} such that :

Vee X\C, Jye X: f(x,y) € —ko — K.

If the subseC is assumed to be compact, we get the result by asking the bifurfoticisc
instead of weakly cf-Isc. Let us note thatfifr, -) is g-Isc and convex for alt € X, then
f(z,-) is weakly g-Isc for al: € X and thenf is weakly cf-Isc.
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