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Abstract
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1 Introduction

A scalar equilibrium problem is defined as follows :

(EP) Findx ∈ X such that∀y ∈ X, f(x, y) ≥ 0,

whereX is a given set andf : X × X → R is a given bifunction. A pointx satisfy-
ing (EP) is called an equilibrium point. There are many examples of such equilibrium
problems (see [7] for a first survey). Let us just mention a few of them : minimization
problems (wheref(x, y) := h(y)− h(x) andh : X → R), variational inequalities (where
f(x, y) :=< Tx, y − x >, T : X → X∗, andX is a normed space) and fixed point prob-
lems (wheref(x, y) :=< x− Tx, y − x >, T : H → H, andH is an Hilbert space). Let
us also mention Nash equilibria in non-cooperative games and complementary problems.
It is natural to extend the previous scalar equilibrium problem to a vector equilibrium
problem. That is :

(VEP) Findx ∈ X such that∀y ∈ X, f(x, y) /∈ −K \ {0},
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or, in a weaker way :

(WVEP) Findx ∈ X such that∀y ∈ X, f(x, y) /∈ − int K,

wheref : X × X → Y andY is a real Banach space, partially ordered by a closed
convex pointed coneK. There are a lot of applications to vector optimization, game theory
and mathematical economics. It is why many papers are devoted to vector equilibrium
problems, see [13] and [15] (and the references therein), and for example [1, 2, 3, 14, 16].
In [5], Bianchi, Kassay and Pini provide a vector version of the Ekeland variational princi-
ple connected to equilibrium problems with the purpose to find approximate vector equilib-
rium points. They are then able to prove the non-emptiness of the solution set of (WVEP)
without any convexity requirements on the setX and on the bifunctionf . Of course, they
need some usual assumptions as: the semi-continuity of the functionsf(x, ·) andf(·, y)
for all x, y ∈ X and, either the compactness of the domain or a coercivity condition on the
bifunction.
If we consider a bifunctionf such thatf(x, ·) is bounded below and lower semi-continuous
for everyx ∈ X, by lack of compactness, there is no reason why a vector equilibrium point
should exist. In this article, we studyperturbed equilibrium principles. That is : results
which assert the existence of a perturbationg, as small as possible, such thatf + g admits
a vector equilibrium point.
In the scalar case, the Deville-Godefroy-Zizler variational principle [10] solves the ques-
tion for minimization problems. Let us recall this result :

Theorem (Deville-Godefroy-Zizler Variational Principle). Let X be a Banach space
and(Z, ‖ · ‖Z) be a Banach space of real-valued bounded continuous functions onX such
that :

(i) for all g ∈ Z, ‖g‖Z ≥ ‖g‖∞ := supx∈X |g(x)|;

(ii) Z is translation invariant, i.e. ifg ∈ Z and x ∈ X thenτxg : X → Y given by
τxg(t) := g(t− x) is in Z and‖τxg‖Z = ‖g‖Z ;

(iii) Z is dilation invariant, i.e. if g ∈ Z and α ∈ R then gα : X → Y given by
gα(t) := g(αt) is in Z;

(iv) there exists a bump functionb : X → R in Z.

If f : X → R ∪ {+∞} is a bounded below, lower semi-continuous and proper function,
then the set of all functionsg ∈ Z such thatf + g admits a strong minimum is aGδ dense
subset ofZ.

Let us recall that abump functionon X is a real-valued function onX with non-empty
bounded support. Corollaries of this principle are, for example, the (classical) Ekeland
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variational principle [11] and the Borwein-Preiss smooth perturbed minimization prin-
ciple [9]. A vector-valued version of the Deville-Godefroy-Zizler variational principle
has been obtained in [12] for bounded below, order lower semi-continuous functions
f : X → Y . And, as in the scalar case, the authors got a vector-valued version of the
Ekeland and Borwein-Preiss minimization principles.
Here we study a new vector-valued version of the Deville-Godefroy-Zizler variational
principle for bifunctionsf : X × X → Y which satisfy a new natural continuity prop-
erty and such thatf(x, ·) is bounded below for allx ∈ X. We also get in this context
the Ekeland and Borwein-Preiss perturbed equilibrium principles. On the other hand, our
techniques allow us to prove the same existence results than in [5] but under weaker as-
sumptions.
In Section 2, we recall some basic definitions and some relationships between some dif-
ferent vector-valued notions of lower semi-continuity.
Section 3 is devoted to a new notion of lower semi-continuity for bifunctions, calledco-
ordinate free lower semi-continuity(Definition 1). This notion looks quite natural since
whenf is defined byf(x, y) = h(y)− h(x), whereh is a function fromX to Y , the coor-
dinate free lower semi-continuity off is equivalent to the order lower semi-continuity of
h (Proposition 3). We prove that the coordinate free lower semi-continuity off is weaker
than the lower (resp. upper) semi-continuity off(x, ·) (resp.f(·, y)) for all x ∈ X (resp.
y ∈ X) (Proposition 4 (resp. Proposition 8)). The rest of Section 3 is devoted to the study
of some connections between this notion of coordinate free lower semi-continuity and the
classical notions of semi-continuity.
In Section 4, we introduce the notion ofapproximatively equilibrium point in the direction
of an element ofK (Definition 12). The key result for applications is Proposition 13 which
asserts the existence and localization of such a point if we work with a diagonal null and
lower transitive bifunctionf such thatf(x, ·) is bounded below for allx ∈ X.
Some applications are given in Section 5. We first establish a Deville-Godefroy-Zizler
perturbed equilibrium principle (Theorem 14), and we get, as corollaries, the Ekeland and
Borwein-Preiss perturbed equilibrium principles (Corollaries 16 and 18). We also prove
some existence results (Theorems 19, 20 and 21 ) for equilibrium problems under weaker
assumptions than the usual ones.

2 Preliminaries and notation

Throughout this paper,X andY are two real Banach spaces andY is partially ordered by
a closed convex pointed coneK. No assumption is required on the interior ofK (except
of course when we deal with the problem (WVEP)).
For any elementsu, v ∈ Y , we will write u ≤ v wheneverv − u ∈ K. The set[u, v] :=
{w ∈ Y : u ≤ w ≤ v} is called theorder intervalbetweenu andv. We say that a
sequence(un) ⊂ Y is non-increasingwhenever, for alln, un+1 ≤ un. The ball of center
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x0 and radiusr in X will be denoted byBX(x0, r). Let S be a non-empty subset ofY , we
denote respectively byint S andAff S, the interior and the affine hull ofS.
Let f be a function fromX to Y , it is said to bebounded below(resp.above) if there exists
someb in Y such thatb ≤ f(x) (resp.f(x) ≤ b) for all x ∈ X, andorder-boundedif it is
both bounded below and above. The following two notions of lower semi-continuity were
introduced in [8] and [19] :

• f is said to belower semi-continuous(lsc) atx0 ∈ X iff, for each neighborhoodV
of f(x0) in Y , there exists a neighborhoodU of x0 in X such thatf(U) ⊂ V + K.

• f is said to bequasi lower semi-continous(q-lsc) atx0 ∈ X iff, for eachb ∈ Y such
thatb � f(x0), there exists a neighborhoodU of x0 such thatb � f(x) for eachx
in U .

A function f is (resp.quasi-) upper semi-continuous, usc for short (resp. q-usc), if−f is
lsc (resp. q-lsc). A functionf is lsc (resp. q-lsc) iff is lsc (resp. q-lsc) at each point ofX.
Let us give some well-known facts concerning these notions (see, for example, [8], [12]
and [19]).

• A function f is lsc atx0 iff, for each sequence(xn) ⊂ X converging tox0, there
exists a sequence(gn) ⊂ Y converging to0 such thatf(x0) ≤ f(xn) + gn for all n.

• A functionf is q-lsc iff for eachb in Y , the set{x ∈ X : f(x) ≤ b} is closed inX.

• A lsc function atx0 is q-lsc atx0.

A new notion of lower semi-continuity, weaker than the two others, was intoduced in [12].
It is calledorder lower semi-continuitybecause it links, in a good way, the norm topology
and the partial order ofY :

• f is said to beorder lower semi-continuous(o-lsc) atx0 ∈ X iff, for each sequence
(xn) ⊂ X converging tox0 for which there exists a sequence(εn) ⊂ Y converging
to 0 such that the sequence(f(xn) + εn) is non-increasing, there exists a sequence
(gn) ⊂ Y converging to0 such thatf(x0) ≤ f(xn) + gn for all n.

These three notions of lower semi-continuity coincide for scalar-valued functions but it is
not the case in the vector-valued case. Here is a summary of the different relationships for
a vector-valued functionf : X → Y , with dim Y > 1 (cfr. [12]) :

lsc

⇐=
==

==
⇐=====

=====⇒
(3)

q-lsc
(1)

=========⇒⇐=========
(2)

o-lsc
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(1) (Y,K) has the Monotone Bounds Property ordim Y < ∞ andf is bounded below.

(2) f is bounded below and order intervals are compact.

(3) f is order bounded and order intervals are compact.

A lot of examples are given in [12] in order to show that these conditions are also necessary.

3 Lower semi-continuity for bifunctions

In this section, we introduce a new notion of lower semi-continuity for bifunctions and we
compare it with the classical ones.

Definition 1. A bifunctionf : X × X → Y is said to becoordinate free lower semi-
continuous(cf-lsc) atx0 ∈ X iff, for each sequence(xn)n≥1 ⊂ X converging tox0 for
which there exists a sequence(ρn)n≥1 ⊂ R+

0 converging to0 such that :

∀n ≥ 1, ∀l ≥ 1, f(xn, xn+l) ∈ −K + BY (0, ρn),

there exists a sequence(ωn)n≥1 ⊂ R+
0 converging to0 such that :

∀n ≥ 1, f(xn, x0) ∈ −K + BY (0, ωn).

The bifunctionf is said to beweakly cf-lsc if this condition is satisfied for each sequence
(xn)n≥1 ⊂ X weakly converging tox0.

The following useful lemma relaxes this definition by allowing to work up to a subse-
quence :

Lemma 2. Let f be a bifunction fromX × X to Y . Then,f is cf-lsc atx0 iff from any
sequence(xn)n≥1 converging tox0 ∈ X and for which there exists a sequence(ρn)n≥1 ⊂
R+

0 converging to0 such that :∀n ≥ 1, ∀l ≥ 1, f(xn, xn+l) ∈ −K + BY (0, ρn), one can
extract a subsequence(xnk

)k≥1 such that :∀k ≥ 1, f(xnk
, x0) ∈ −K +BY (0, ωk), where

(ωk)k≥1 ⊂ R+
0 is a sequence converging to0.

PROOF. The “only if” part is obvious. For the “if” part, let us suppose by contradiction
that f is not cf-lsc atx0. Therefore, there exist someε ∈ R+

0 , a sequence(xn)n≥1 con-
verging tox0 and a sequence(ρn)n≥1 ⊂ R+

0 converging to0 such that :∀n ≥ 1, ∀l ≥
1, f(xn, xn+l) ∈ −K +BY (0, ρn), and∀n ≥ 1, f(xn, x0) /∈ −K +BY (0, ε). By hypoth-
esis, one can extract a subsequence(xnk

)k≥1 ⊂ (xn)n≥1 for which there exists a sequence
(ωk)k≥1 ⊂ R+

0 converging to0 such that :∀k ≥ 1, f(xnk
, x0) ∈ −K + BY (0, ωk). Thus,

f(xnk
, x0) ∈ −K + BY (0, ε) wheneverk is large enough. This contradiction ends the

proof.
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Let us note that a similar result is true for the notion of order lower semi-continuity of a
functionf : X → Y (cfr. Lemma 4 of [12]).

In some sense, the next results justify the fact that the previous notion is a good extension
of the notion of lower semi-continuity for bifunctions. The first one characterizes the
coordinate free lower semi-continuity of a bifunction by means of the order lower semi-
continuity of the function of one variable which defines the bifunction.

Proposition 3. If the bifunctionf : X × X → Y is defined byf(x, y) := h(y) − h(x),
whereh is a function fromX to Y , thenf is cf-lsc atx0 iff h is o-lsc atx0.

PROOF. Let us suppose that the bifunctionf : X × X → Y , defined byf(x, y) :=
h(y)−h(x), is cf-lsc atx0. Let us consider a sequence(xn)n≥1 in X converging tox0 and
a sequence(εn)n≥1 in Y converging to0 such that(h(xn) + εn)n≥1 is a non-increasing
sequence. Let us consider a subsequence(εnk

)k≥1 ⊂ (εn)n≥1 such that the sequence
(‖εnk

‖Y )k≥1 is non-increasing. So, we have :

∀k ≥ 1, ∀l ≥ 1, f(xnk
, xnk+l

) = h(xnk+l
)− h(xnk

) ≤ εnk
− εnk+l

and then
f(xnk

, xnk+l
) ∈ −K + BY (0, ρnk

)

whereρnk
:= 2‖εnk

‖Y −−−−→
k→+∞

0. Sincef is cf-lsc atx0, there exists a sequence(ωk)k≥1 ⊂
R+

0 converging to0 such that :∀k ≥ 1, f(xnk
, x0) ∈ −K + BY (0, ωk). That means that

h(x0) ≤ h(xnk
) + gk with gk → 0 in Y and, by Lemma 4 of [12],h is o-lsc atx0.

Let us consider now a functionh from X to Y , o-lsc atx0 ∈ X, and let us suppose that
(xn)n≥1 is a sequence inX converging tox0 and(ρn)n≥1 is a sequence inR+

0 converging
to 0 such that :∀n ≥ 1, ∀l ≥ 1, f(xn, xn+l) = h(xn+l)− h(xn) ∈ −K + BY (0, ρn). Let
us consider a subsequence(ρnk

)k≥1 ⊂ (ρn)n≥1 such that
∑+∞

k=1 ρnk
converges. We have :

∀k ≥ 1, ∀l ≥ 1,∃εk,l ∈ BY (0, ρnk
) : h(xnk+l

) ≤ h(xnk
) + εk,l. In particular,∀k ≥ 1 :

h(xnk+1
) +

+∞∑
i=k+1

εi,1 ≤ h(xnk
) +

+∞∑
i=k

εi,1

and
(
h(xnk

) +
∑+∞

i=k εi,1

)
k≥1

is non-increasing, with‖
∑+∞

i=k εi,1‖Y → 0 wheneverk →
+∞. Sinceh is o-lsc atx0, there exists a sequence(gk)k≥1 converging to0 in Y such that :
∀k ≥ 1, h(x0) ≤ h(xnk

) + gk, that isf(xnk
, x0) ≤ gk. This proves, by Lemma 2, thatf

is cf-lsc atx0.

In the framework of applications to equilibrium problems, the classical hypothesis on the
bifunctionf are some semi-continuity conditions on the functionsf(x, ·) andf(·, y) for
all x andy in X. We prove now that these conditions are stronger than the coordinate free
lower semi-continuity.
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Proposition 4. Letf be a bifunction fromX×X to Y . If f(x, ·) is lsc atx0 for all x ∈ X
thenf is cf-lsc atx0.

PROOF. Let (xn)n≥1 be a sequence converging tox0 ∈ X and(ρn)n≥1 be a sequence in
R+

0 converging to0 such that :∀n ≥ 1, ∀l ≥ 1, ∃εn,l ∈ BY (0, ρn) : f(xn, xn+l) ≤ εn,l.
Let n0 ≥ 1 be fixed. Sincef(xn0 , ·) is lsc, there exists a sequence(gn)n≥1 converging to
0 in Y such thatf(xn0 , x0) ≤ f(xn0 , xn0+l) + gl for all l ≥ 1. SinceK is closed, we thus
havef(xn0 , x0) ∈ −K + BY (0, ρn0). This proves thatf is cf-lsc atx0 and ends the proof.

When the interior of the ordering cone is non-empty we can improve the previous result
by askingf(x, .) q-lsc, instead of lsc.

Proposition 5. Let f be a bifunction fromX × X to Y where the partial order onY is
given by a coneK with non empty interior. Iff(x, ·) is q-lsc atx0 for all x ∈ X thenf is
cf-lsc atx0.

PROOF. If int K 6= ∅, then there existse ∈ K\{0} such that, for ally ∈ Y ,±y ≤ ‖y‖Y e
(see [12]). Let(xn)n≥1 be a sequence converging tox0 ∈ X and(ρn)n≥1 be a sequence in
R+

0 converging to0 such that :∀n ≥ 1, ∀l ≥ 1, ∃εn,l ∈ BY (0, ρn) : f(xn, xn+l) ≤ εn,l.
Let n0 ≥ 1 be fixed. For alll ≥ 1, we have :f(xn0 , xn0+l) ≤ εn0,l ≤ ‖εn0,l‖Y e ≤ ρn0e.
Sincef(xn0,·) is q-lsc atx0, we havef(xn0 , x0) ≤ ρn0e. Since‖ρne‖Y → 0, this proves
thatf is cf-lsc atx0.

In the finite dimensional setting, we can remove the assumption on the interior of the
ordering cone but we have to work with a bifunction which is bounded below.

Proposition 6. Letf be a bifunction fromX ×X to Y whereY is finite dimensional. Iff
is bounded below andf(x, ·) is q-lsc atx0 for all x ∈ X thenf is cf-lsc atx0.

PROOF. We have only to consider the case whereint K = ∅. Without loss of generality,
we can assume that, for allx, y ∈ X : 0 ≤ f(x, y), that isf(X × X) ⊂ K ⊂ Aff K.
Since, in the finite dimensional case, the interior ofK for the topology relative toAff K
is non empty [18], we have: for all(xn)n≥1 ⊂ X converging tox0 and all(ρn)n≥1 ⊂ R+

0

converging to0 such that∀n ≥ 1, ∀l ≥ 1, ∃εn,l ∈ Aff K∩BY (0, ρn) : f(xn, xn+l) ≤ εn,l,
there exists(ωn)n≥1 ⊂ R+

0 converging to0 such that :∀n ≥ 1, f(xn, x0) ∈ −K +
BY (0, ωn). We have to remove the restrictionεn,l ∈ Aff K. Suppose that :∀n ≥ 1, ∀l ≥
1, ∃εn,l ∈ BY (0, ρn) : f(xn, xn+l) ≤ εn,l. Let us prove thatεn,l ∈ Aff K. For alln ≥ 1,
let us writeεn,l := an,l + tn,l with an,l ∈ Aff K andtn,l ∈ T , whereT is a topological
complement ofAff K in Y . We thus have :

tn,l = f(xn, xn+l)− an,l + kn,l

for somekn,l ∈ K. The fact that the right-hand side is an element ofAff K andAff K ∩
T = {0} imply tn,l = 0, which ends the proof.
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Another classical hypothesis on bifunctions is the following :

Definition 7. A bifunctionf : X×X → Y is said to bediagonal null iff for everyx ∈ X,
f(x, x) = 0.

Proposition 8. Letf be a bifunction fromX ×X to Y . If f is diagonal null andf(· , x0)
is usc atx0 ∈ X thenf is cf-lsc atx0.

PROOF. Let (xn)n≥1 be a sequence converging tox0. Sincef(· , x0) is usc andf is
diagonal null, there exists a sequence(gn)n≥1 converging to0 in Y such thatf(xn, x0) ≤
f(x0, x0) + gn = gn. This implies thatf is cf-lsc atx0.

Remark 9. Let us remark that the coordinate free lower semi-continuity of the bifunction
f from X × X to Y is a strictly weaker assumption than the lower (resp. upper) semi-
continuity of the functionsf(x, ·) (resp. f(·, y)) for all x ∈ X (resp. for all y ∈ X).
This is very easy to show in the vector-valued case. Indeed, by Proposition 3, it suffices to
considerf defined byf(x, y) = h(y)− h(x) whereh is o-lsc but not q-lsc at some point.

It will be useful for our purpose to know that coordinate free lower semi-continuity is
preserved under continuous perturbations.

Proposition 10. Let f andg be two bifunctions fromX ×X to Y . If f is cf-lsc andg is
continuous and diagonal null thenf + g is cf-lsc.

PROOF. Let x0 ∈ X, (xn)n≥1 be a sequence inX converging tox0 and (ρn)n≥1 be
a sequence inR+

0 converging to0 such that∀n ≥ 1, ∀l ≥ 1, ∃εn,l ∈ BY (0, ρn) :
(f + g)(xn, xn+l) ≤ εn,l. Sinceg is continuous and diagonal null, there exists(δn)n≥1

a sequence inR+
0 converging to0 such that∀n ≥ 1, ∀l ≥ 1, ∃gn,l ∈ BY (0, δn) :

g(xn, xn+l) = g(x0, x0) + gn,l = gn,l. So,f(xn, xn+l) ≤ εn,l − gn,l and, sincef is cf-
lsc, there exists a sequence(vn) converging to0 in Y such thatf(xn, x0) ≤ vn. Now,
sinceg(xn, x0) = un with ‖un‖Y → 0, we have(f + g)(xn, x0) ≤ vn + un which proves
thatf + g is cf-lsc atx0.

4 Approximatively equilibrium points

The following notion ofε-equilibrium pointhas been recently introduced in [4] and [5] :
the pointx0 ∈ X is said to be anε-vector equilibrium point off in the direction of
e ∈ K \ {0} if

∀y ∈ X, y 6= x0, f(x0, y) + ε‖x0 − y‖e /∈ −K.

Bianchi, Kassay and Pini [4, 5] prove the existence of such points under the following
assumptions onf : diagonal nullness, lower boundedness ofe∗(f(x, ·)) for all x ∈ X and
lower transitivity.
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Definition 11. A bifunctionf : X × X → Y is said to belower transitiveiff for every
x, y, z ∈ X, f(z, x) ≤ f(z, y) + f(y, x).

Using this, they get existence results for the problem (WVEP) (see Section 5.2).

Let us introduce here the notion ofapproximatively equilibrium point in the direction of
an element ofK \ {0}.

Definition 12. Let f be a bifunction fromX × X to Y . A point x0 ∈ X is called an
ε-approximatively equilibrium point off in the direction ofe ∈ K \ {0} iff

∃ρ ∈ R+
0 , ∀x ∈ X, ∀ξ ∈ BY (0, ρ) : f(x0, x) + εe + ξ /∈ −K.(1)

The following Proposition will be the key tool for applications (main Theorems 14 and 19).
It gives existenceand localizationof approximatively equilibrium points for a diagonal
null and lower transitive bifunctionf such thatf(x, ·) is bounded below for allx ∈ X.
The proof of this Proposition follows the ideas of [12].

Proposition 13 (Existence and localization of approximatively equilibrium points).
Letf be a bifunction fromX ×X to Y . If f is diagonal null, lower transitive andf(x, ·)
is bounded below for allx ∈ X, then for everyε ∈ R+

0 and everye ∈ K \{0}, there exists
x0 ∈ X anε-approximatively equilibrium point off in the direction ofe. Moreover, given
x̃ ∈ X andδ ∈ R+

0 , one can suppose that :f(x̃, x0) ∈ BY (0, δ)−K .

PROOF. Let ε ∈ R+
0 , e ∈ K \ {0}, x0 := x̃ andδ ∈ R+

0 be fixed. Ifx0 satisfies (1) then
the proof is finished sincef(x0, x0) = 0. If x0 does not satisfy (1), letρ1 := δ

2
and get

the existence ofx1 ∈ X andξ1 ∈ BY (0, ρ1) such thatf(x0, x1) + εe + ξ1 ∈ −K. If x1

satisfies (1), the proof is finished. If not, we repeat the same construction. Let us define
ρn := δ

2n for all n ∈ N0. Using the hypothesis of lower transitivity of the bifunctionf , at
the stepn ≥ 1, we havexn ∈ X such that

f(x0, xn) + nεe +
n∑

i=1

ξi ∈ −K, with ξi ∈ BY (0, ρi) for i ∈ {1, · · · , n}.

Let us suppose that, for alln ∈ N0, xn does not satisfy (1). By hypothesis, there exists
b0 ∈ Y such thatb0 ≤ f(x0, x) for all x ∈ X, and then:

∀n ∈ N0, b0 + nεe + ϕn ∈ −K with ϕn :=
n∑

i=1

ξi ∈ BY (0, δ).

Thus,e ∈
⋂

n∈N0

(
BY (0, r

n
)−K

)
, wherer := δ+‖b0‖

ε
. SinceK is closed, this intersection

is equal to−K and, sinceK is pointed, this implies thate = 0, a contradiction.
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5 Applications

5.1 Perturbed equilibrium principles

For our first application, let us come back to the vector equilibrium problem (VEP). Using
Proposition 13 and the ideas of [12], we prove the following main result :

Theorem 14 (Deville-Godefroy-Zizler perturbed equilibrium principle). Let(Z, ‖·‖Z)
be a Banach space of norm bounded, bounded below, continuous bifunctions fromX ×X
to Y such that:

(i) for all g ∈ Z, ‖g‖Z ≥ ‖g‖∞ := supx,y∈X ‖g(x, y)‖Y ,

(ii) Z is translation invariant, i.e. ifg ∈ Z andx, y ∈ X thenτtg : X ×X → Y given
by τtg(t) := g(x− t, y − t) is in Z and‖τtg‖Z = ‖g‖Z ,

(iii) Z is dilation invariant, i.e. ifg ∈ Z andα ∈ R thengα : X × X → Y given by
gα(x, y) := g(αx, αy) is in Z,

(iv) there exists a continuous and norm bounded bump functionb : X → R and an
elemente ∈ K \ {0} such thatb(0) > 0 and b̂ : X × X → Y given bŷb(x, y) :=
(b(y)− b(x))e belongs toZ.

Let f : X ×X → Y be a cf-lsc , diagonal null and lower transitive bifunction such that
f(x, ·) is bounded below for allx ∈ X. Then the set of allg ∈ Z such thatf + g admits
an equilibrium point is dense inZ.

PROOF. Let ε ∈ R+
0 be fixed. We want to prove the following :

∃g ∈ Z, ∃x ∈ X : ‖g‖Z ≤ ε, ∀y ∈ X \ {x} : (f + g)(x, y) /∈ −K.

Without loss of generality, we can suppose thatb(0) = 1 and‖e‖Y = 1. Moreover, there
exists somer > 0 such thatb(x) = 0 whenever‖x‖ ≥ r.

(i) Let us defineb1 : X → R by b1(x) := b(2rx), whose support is now inBX(0, 1
2
). By

Proposition 13, there existx1 ∈ X anε1 :=
(

ε
4‖b1e‖Z

)
-approximatively equilibrium point

of f in the direction ofe, that is:

∃ρ1 ∈ R+
0 , ∀y ∈ X, ∀ξ ∈ BY (0, ρ1) : f(x1, y) + ε1e + ξ /∈ −K.(2)

Let us defineg1 : X ×X → Y by g1(x, y) := −
(
b1(y − x1) − b1(x − x1)

)
ε1e. We have

g1 ∈ Z, ‖g1‖Z ≤ ε
2

andg1(x1, y) =
(
1− b1(y − x1)

)
ε1e for all y ∈ X. If we set

A1 := {y ∈ X : ∃ξ ∈ BY (0, ρ1), (f + g1)(x1, y) + ξ ∈ −K} ,

then, sincef + g1 is diagonal null,x1 ∈ A1 and, by (2), sinceg1(x1, y) = ε1e if y /∈
BX(x1,

1
2
), A1 ⊂ BX(x1,

1
2
). If A1 = {x1} thenx1 is an equilibrium point off + g1. Let

us suppose thatA1 6= {x1}.

10



(ii) Let us defineb2 : X → R by b2(x) := b1(2x), whose support lies inBX(0, 1
22 ).

Sincef + g1 satisfies the hypothesis of Proposition 13, we get (forx̃ := x1 andδ := ρ1

4
)

the existence ofx2 ∈ X an ε2 :=
(
min{ ε

22 ;
ρ1

4
}/2‖b1e‖Z

)
-approximatively equilibrium

point off + g1 in the direction ofe, that is:

∃ρ2 ∈ R+
0 , ∀y ∈ X, ∀ξ ∈ BY (0, ρ2) : (f + g1)(x2, y) + ε2e + ξ /∈ −K,(3)

located as follows:

∃v2 ∈ BY (0,
ρ1

4
) : (f + g1)(x1, x2) + v2 ∈ −K.(4)

Without loss of generality, we can assume thatρ2 ≤ ρ1

4
. Let us defineg2 : X × X → Y

by g2(x, y) := −
(
b2(y − x2) − b2(x − x2)

)
ε2e. We haveg2 ∈ Z, ‖g2‖Z ≤ min{ ε

22 ;
ρ1

4
}

andg2(x2, y) =
(
1− b2(y − x2)

)
ε2e for all y ∈ X. If we set

A2 := {y ∈ X : ∃ξ ∈ BY (0, ρ2), (f + g1 + g2)(x2, y) + ξ ∈ −K} ,

then, sincef + g1 + g2 is diagonal null,x2 ∈ A2 and, by (3), sinceg2(x2, y) = ε2e if
y /∈ BX(x2,

1
22 ), A2 ⊂ BX(x2,

1
22 ). If A2 = {x2} thenx2 is an equilibrium point of

f + g1 + g2. Let us suppose thatA2 6= {x2}.

(iii) Let us suppose we have carried out the construction until stepn − 1 and let us
perform the stepn. Let us writegn−1 :=

∑n−1
k=1 gk andbn : X → R the bump function

defined bybn(x) := b1(2
nx), so thatsupp bn ⊂ BX(0, 1

2n ). Sincef + gn−1 satisfies
the hypothesis of Proposition 13, we get (forx̃ := xn−1 and δ := ρn−1

4
) the existence

of xn ∈ X an εn :=
(
min{ ε

2n ; ρn−1

4
}/2‖bne‖Z

)
-approximatively equilibrium point of

f + gn−1 in the direction ofe, that is:

∃ρn ∈ R+
0 , ∀y ∈ X, ∀ξ ∈ BY (0, ρn) : (f + gn−1)(xn, y) + εne + ξ /∈ −K,(5)

located as follows:

∃vn ∈ BY (0,
ρn−1

4
) : (f + gn−1)(xn−1, xn) + vn ∈ −K.(6)

Without loss of generality, we can assume thatρn ≤ ρn−1

4
. Let us definegn : X ×X → Y

by gn(x, y) := −
(
bn(y−xn)− bn(x−xn)

)
εne. We havegn ∈ Z, ‖gn‖Z ≤ min{ ε

2n ; ρn−1

4
}

andgn(xn, y) =
(
1− bn(y − xn)

)
εne for all y ∈ X. If we set

An := {y ∈ X : ∃ξ ∈ BY (0, ρn), (f + gn)(xn, y) + ξ ∈ −K} ,

then, sincef + gn is diagonal null,xn ∈ An and, by (5), sincegn(xn, y) = εne if y /∈
BX(xn,

1
2n ), An ⊂ BX(xn,

1
2n ). If An = {xn} thenxn is an equilibrium point off + gn.

11



(iv) Let us suppose that, for alln, An 6= {xn}. Since‖vn‖Y < ρn, we have, by (6), that
xn+1 ∈ An ⊂ BX(xn,

1
2n ) and then(xn) is a Cauchy sequence inX. So, there exists some

x ∈ X such thatxn −−−→‖·‖X

x. Also, ‖gn‖Z ≤ ε
2n for all n implies that there existsg ∈ Z

such thatgn −−→‖·‖Z

g. So,g = gn + hn with ‖g‖Z ≤ ε andhn :=
∑

i>n gi. Let us also

remark that:

∀k, ∀x, y, z ∈ X, gk(x, z) = gk(x, y) + gk(y, z),(7)

and then

∀n, hn(x, y) + hn+1(y, z) = gn+1(x, y) + hn+1(x, z).(8)

(v) We want to show thatx is an equilibrium point off + g. In view of (6), we have:

∀n, (f + g)(xn, xn+1) ≤ −vn+1 + hn(xn, xn+1),(9)

with ‖ − vn+1 + hn(xn, xn+1)‖Y −−−−→
n→+∞ 0. Moreover, using the fact thatf + g is lower

transitive and by (9) and (8), we have forl > 1:

(f + g)(xn, xn+l) ≤ (f + g)(xn, xn+1) + (f + g)(xn+1, xn+l)

≤ −vn+1 + hn(xn, xn+1) + (f + g)(xn+1, xn+2) + (f + g)(xn+2, xn+l)

≤ −
2∑

i=1

vn+i + hn(xn, xn+1) + hn+1(xn+1, xn+2) + (f + g)(xn+2, xn+l)

≤ −
2∑

i=1

vn+i + gn+1(xn, xn+1) + hn+1(xn, xn+2) + (f + g)(xn+2, xn+l)

≤ −
3∑

i=1

vn+i + gn+1(xn, xn+1) + hn+1(xn, xn+2) + hn+2(xn+2, xn+3)

+ (f + g)(xn+3, xn+l)

≤ −
3∑

i=1

vn+i +
2∑

i=1

gn+i(xn, xn+i) + hn+2(xn, xn+3) + (f + g)(xn+3, xn+l)

≤ · · ·

Sincef + g is diagonal null,(f + g)(xn+l, xn+l) = 0 and then :

(f + g)(xn, xn+l) ≤ −
n+l∑

i=n+1

vi +
n+l−1∑
i=n+1

gi(xn, xi) + hn+l−1(xn, xn+l)︸ ︷︷ ︸
:=εn,l

.

We have‖εn,l‖Y ≤ ρn. This follows from the following estimates (already obtained
in [12]) :

12



•
∥∥∥∑n+l

i=n+1 vi

∥∥∥
Y
≤ ρn

3
;

• ‖
∑n+l−1

i=n+1 gi(xn, xi)‖Y ≤ ρn

3
;

• ‖hn+l−1(xn, xn+l)‖Y ≤ ‖hn+l−1‖∞ ≤ ‖hn+l−1‖Z ≤
∑+∞

i=n+l ‖gi‖Z < ρn

3
.

Sincef is cf-lsc andg is continuous and diagonal null, by Proposition 10,f + g is cf-lsc
and then:

∀n, (f + g)(xn, x) ≤ wn with ‖wn‖Y → 0.(10)

Let nowy ∈ X be such that(f + g)(x, y) ∈ −K. We have to prove thaty = x. Since
f + g is lower transitive, we deduce from (10) :

∀n, (f + g)(xn, y) ≤ wn.(11)

Let n0 ∈ N0 be fixed. Proceeding as before, we have for alln ≥ n0 :

(f + g)(xn0 , y) ≤ −
n+1∑

i=n0+1

vi +
n∑

i=n0+1

gi(xn0 , xi) + hn(xn0 , xn+1) + (f + g)(xn+1, y),

and using (11) :

(f + g)(xn0 , y) ≤ −
n+1∑

i=n0+1

vi +
n∑

i=n0+1

gi(xn0 , xi) + hn(xn0 , xn+1) + wn+1.

Then, for alln ≥ n0 :

(f + gn0
)(xn0 , y) ≤ −

n+1∑
i=n0+1

vi +
n∑

i=n0+1

gi(xn0 , xi) + hn(xn0 , xn+1) + wn+1

− hn0(xn0 , y).

Since we have (using (7)) :

n∑
i=n0+1

gi(xn0 , xi)− hn0(xn0 , y) =
n∑

i=n0+1

gi(xn0 , xi)−
+∞∑

i=n0+1

gi(xn0 , y)

=
n∑

i=n0+1

gi(y, xi)−
+∞∑

i=n+1

gi(xn0 , y)

=
n∑

i=n0+1

gi(y, xi)− hn(xn0 , y),

13



previous inequality implies that for alln ≥ n0 :

(f + gn0
)(xn0 , y) ≤ −

n+1∑
i=n0+1

vi +
n∑

i=n0+1

gi(y, xi)− hn(xn0 , y) + hn(xn0 , xn0+1) + wn+1

≤ −
n+1∑

i=n0+1

vi +
n∑

i=n0+1

gi(y, xi)− hn(y, xn+1) + wn+1.

Since‖hn(y, xn+1) + wn+1‖Y ≤ ‖hn‖Z + ‖wn+1‖Y <
ρn0

3
for n large enough, we have

∥∥∥− n+1∑
i=n0+1

vi +
n∑

i=n0+1

gi(y, xi)− hn(y, xn+1) + wn+1

∥∥∥
Y

< ρn0.(12)

for n is large enough. Therefore,y ∈ An0 ⊂ BX(xn0 ,
1

2n0
). Sincen0 is arbitrary,y = x.

Remark 15. 1. It is possible tolocalizethe equilibrium points of the bifunctionf + g
in Theorem 14. More precisely, under the assumption of Theorem 14, we have:
for all ε ∈ R+

0 , there existsε1 ∈ R+
0 such that ifx1 is anε1–approximatively equi-

librium point off in the direction ofe, then there existg ∈ Z andx ∈ X such that
‖g‖Z ≤ ε, ‖x− x1‖ ≤ ε andx is an equilibrium point off + g.
In order to prove this, it suffices, at the beginning of the proof, to define the first
bump functionb1 asb1(x) := b(2r

ε
x).

2. Since(f +g)(x, x) = 0, we have proved thatx is an efficient solution of the function
(f + g)(x, ·) : X → Y . Using the ideas of [12], we can prove moreover that it is
strongefficient:

[ (f + g)(x, um) ≤ ωm with ωm → 0 ] ⇒ [ um → x ] .

3. In the proof, at every step, the functiongk : X ×X → Y is of the formgk(x, y) :=(
g̃k(y) − g̃k(x)

)
εke, whereg̃k : X → R is a continuous bump function. So, iff is

defined byf(x, y) := h(y)− h(x), with h : X → Y o-lsc and bounded below, then
we prove the existence of a continuous perturbationg̃, as small as desired, such that
h + g̃ admits a (strong) efficient solution onX :

∃x ∈ X, {x} = {x ∈ X : h + g̃(x) ≤ h + g̃(x)} .

In other words, we recover the Deville-Godefroy-Zizler variational principle ob-
tained in [12].
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Let us present now some examples of Banach spaces(Z, ‖·‖Z) of norm bounded, bounded
below, continuous bifunctions fromX ×X to Y satisfying the conditions (i)-(iv) of The-
orem 14. An easy way to construct such a Banach space of perturbations is to proceed as
follows : let us consider(Z̃, ‖·‖Z̃) a Banach space ofreal-valued, continuous and bounded
functions defined onX which satisfies the corresponding conditions (i)-(iv) of the original
Deville-Godefroy-Zizler variational principle (see Section 1). It suffices then to takeZ as
the space of all bifunctionsg : X ×X → Y defined byg(x, y) := (g̃(y)− g̃(x))e, where
g̃ ∈ Z̃, endowed with the following norm :

‖g‖Z := ‖g̃‖Z̃ + ‖g‖∞ .

Examples of such Banach spacesZ̃ are given in [10] and [17].
The following example will give, as a corollary of Theorem 14, a variant of Ekeland princi-
ple for equilibrium problems. Let̃Z = L be the space of all bounded real-valued Lipschitz
continuous functions̃g onX with ‖g̃‖L := ‖g̃‖∞ + ‖g̃‖Lip where

‖g̃‖Lip := sup
{ |g̃(x)− g̃(y)|

‖x− y‖
: x, y ∈ X, x 6= y

}
.

It is straightforward to prove thatL is a Banach space which satisfies hypotheses (i)–(iii).
Concerning hypothesis (iv), one can apply the construction exposed in [10, 17] to produce
a bounded Lipschitzian bump function.

Corollary 16 (Ekeland equilibrium principle). Let f : X × X → Y satisfying the
following assumptions :

(1) f is diagonal null;

(2) f(x, .) is bounded below for allx ∈ X;

(3) f is lower transitive;

(4) f is cf-lsc.

Then, for everyε ∈ R+
0 and e ∈ K \ {0}, there existsε1 ∈ R+

0 such that ifx1 is an
ε1–approximatively equilibrium point off in the direction ofe, then there existsx ∈ X
such that :

(a) ∀y ∈ X, f(x, y) + εe /∈ −K ,

(b) ‖x− x1‖ ≤ ε,

(c) x is an equilibrium point off + ε‖ · − · ‖e, i. e . :

∀y ∈ X \ {x}, f(x, y) + ε‖x− y‖e /∈ −K .
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PROOF. Let ε ∈ R+
0 ande ∈ K \ {0} be fixed. We can suppose that‖e‖Y = 1. By

Theorem 14 and Remark 15 (1), there existsg̃ ∈ L andx ∈ X such thatsup{|g̃(x)−g̃(y)| :
x, y ∈ X, x 6= y} ≤ ε, sup

{
|g̃(x)−g̃(y)|
‖x−y‖ : x, y ∈ X, x 6= y

}
≤ ε, ‖x− x1‖ ≤ ε andx is an

equilibrium point off +g, whereg : X×X → Y is defined byg(x, y) := (g̃(y)− g̃(x))e :

∀y ∈ X \ {x}, f(x, y) + (g̃(y)− g̃(x))e /∈ −K .

Since, for ally ∈ X, g̃(y)− g̃(x) ≤ ε andg̃(y)− g̃(x) ≤ ε‖x− y‖, by transitivity of the
order we thus have :

∀y ∈ X \ {x}, f(x, y) + εe /∈ −K ,

and
∀y ∈ X \ {x}, f(x, y) + ε‖x− y‖e /∈ −K .

Remark 17. Let us recall the vector Ekeland principle obtained in [5] :

Theorem ([5]). Let (X, d) be a complete metric space. Assume that the functionf :
X ×X → Y satisfies the following assumptions:

(1’) f is diagonal null;

(2’) e∗(f(x, ·)) is bounded below for allx ∈ X (wheree∗ is in the dual cone ofK and
e∗(e) = 1 for a fixed pointe ∈ K \ {0});

(3’) f is lower transitive;

(4’) f(x, ·) is q-lsc for allx ∈ X.

Let ε ∈ R+
0 andλ ∈ R+

0 be given and letx0 ∈ X be such that :

(a’) ∀y ∈ X, f(x0, y) + εe /∈ −K.

Then, there existsx ∈ X such that :

(b’) d(x, x0) ≤ λ,

(c’) ∀y ∈ X \ {x}, f(x, y) + ε
λ
d(x, y)e /∈ −K,

(d’) f(x, x0) ∈ K.

In that paper [5], the authors mentioned that iff is lower transitive and if there exists
ŷ ∈ X such that the functione∗(f(·, ŷ)) is upper bounded, then there existsx0 ∈ X
satisfying (a’). Let us compare their Theorem with Corollary 16 :
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• Condition (2’) is weaker than (2), see [5].

• If int K 6= ∅ (resp. ifdim Y is finite andf is bounded below) then, by Proposition 5
(resp. Proposition 6), assumption (4) is weaker than (4’).

• Of course, anε-approximatively equilibrium pointx1 of f in the direction ofe satisfies
(a’). And Proposition 13 shows the existence of such anε-approximatively equilibrium
point under assumptions (2) and (3).

• In Corollary 16, starting with anε-approximatively equilibrium pointx1, we find a
point satisfying (a) (see (a’)) and we get (b) (similar to (b’) withx1 instead ofx0) and
(c) (similar to (c’)). We don’t getf(x, x1) ∈ K.

Let us recall that a bornology onX, denoted byβ, is any family of bounded sets whose
union is allX, which is closed under reflection through the origin (that isS ∈ β implies
−S ∈ β), under multiplication by positive scalars and is directed upwards (that is the
union of any two members ofβ is contained in some member ofβ). There are many
possibilities. Let us describe the smallest and the largest ones : theGâteauxbornology
β = G consisting of all finite symmetric sets and theFréchetbornologyβ = F consisting
of all bounded symmetric sets. A functionf : X → Y is said to beβ-differentiableat x
andT ∈ L(X, Y ) is called itsβ-derivativeatx, if for eachS ∈ β,

lim
t

>−→0

f(x + ty)− f(x)

t
= T (x) uniformly for y ∈ S.

We denote theβ-derivative off at x by ∂βf(x). It is clear that we find again the well-
known Ĝateaux (resp. Fréchet) derivative withβ = G (resp.β = F ). We can take for̃Z
the Banach spaceDβ of all real-valued functions defined onX that are bounded, Lipschitz
continuous andβ-differentiable equipped with the norm

‖g̃‖Dβ
:= ‖g̃‖∞ + ‖∂β g̃‖∞

(cfr. [17] for a proof that this space is complete and verifies hypotheses (i)–(iv) of the scalar
version of the Deville-Godefroy-Zizler variational principle.) This gives the following
variant of Borwein-Preiss smooth principle for equilibrium problem :

Corollary 18 (Borwein-Preiss smooth equilibrium principle). LetX be a Banach space
that admits a Lipschitz continuous bump function which isβ-differentiable. Then, for
every cf-lsc, diagonal null and lower transitive bifunctionf : X × X → Y such that
f(x, ·) is bounded below for allx ∈ X, and for everyε ∈ R+

0 , there exists a bifunction
g : X ×X → Y which is Lipschitz continuous andβ-differentiable such that‖g‖∞ ≤ ε,
‖∂βg‖∞ ≤ ε andf + g admits an equilibrium point.

17



5.2 Existence results for vector equilibria

Here we are interested in the existence of exact solutions of vector equilibrium problems.
First, in the compact case, using Proposition 13 (which is clearly true for bifunctions
defined onC ×C whereC is a subset ofX), and then using the existence of approximate
solutions, we prove the same existence results for the problem (WVEP) than in [5] but
under weaker assumptions.

Theorem 19.LetC be a compact subset ofX. If the bifunctionf : C×C → Y satisfies :

(i) f is diagonal null;

(ii) f(x, ·) is bounded below for allx ∈ C;

(iii) f is lower transitive;

(iv) f is cf-lsc;

then, the solution set for the problem (WVEP) forf onC × C is non-empty.

In [5, Theorem 3], assumption (iv) is replaced (in a stronger way, cfr. Section 3) by asking
f(x, ·) q-lsc for allx andf(·, y) usc for ally.
PROOF OFTHEOREM 19. Lete ∈ K \{0}. By Proposition 13, we construct a sequence
(xn)n≥1 ⊂ C such that for alln ≥ 1 :

∃ρn ∈ R+
0 , ∀x ∈ C, ∀ξ ∈ BY (0, ρn) : f(xn, x) +

1

n
e + ξ /∈ −K,(13)

and such that for alln ≥ 2 :

f(xn−1, xn) ∈ −K + BY (0,
1

2n−1
).(14)

Sincef is lower transitive we havef(xn, xn+l) ≤
∑n+l−1

i=n f(xi, xi+1) for all n ≥ 2 and all
l ≥ 1, and thenf(xn, xn+l) ∈ −K + BY (0, 1

2n−1 ). Up to a subsequence, we can assume
(sinceC is compact) thatxn → x ∈ C. Sincef is cf-lsc, there exists a sequenceωn → 0
such that :

f(xn, x) ∈ −K + BY (0, ωn).(15)

By contradiction, let us suppose that :

∃y ∈ C, f(x, y) ∈ − int K.(16)

By lower transitivity off and (15), we have :

f(xn, y) ≤ f(xn, x) + f(x, y)

∈ −K + BY (f(x, y), ωn).

On the other hand, by (16), forn big enough:BY (f(x, y), ωn) + 1
n
e ⊂ − int K. So,

f(xn, y) + 1
n
e ∈ − int K for n big enough. This contradicts (13) and completes the proof.
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Now, by following the proof of [5, Theorem 4] and using Theorem 19, we recover an
existence result in the non-compact case for cf-lsc bifunctions.

Theorem 20. Let X be a reflexive Banach space. If the bifunctionf : X × X → Y
satisfies :

(i) f is diagonal null;

(ii) f(x, ·) is bounded below for allx ∈ X;

(iii) f is lower transitive;

(iv) f is cf-lsc;

(v) for all x ∈ X, the level setL(x) := {y ∈ X : f(x, y) ∈ −K} is weakly closed;

(vi) (coercivity condition) there exists a compact setC ⊂ X such that :

∃x0 ∈ X, ∀x ∈ X \ C, ∃y ∈ X, ‖y − x0‖ < ‖x− x0‖ : f(x, y) ∈ −K.

then, the solution set for the problem (WVEP) is non-empty.

In [6], Bianchi and Pini introduced coercivity conditions (as condition (vi) above) as weak
as possible, exploiting the generalized monotonicity of the functionf defining the scalar
equilibrium problem. By using other coercivity conditions, we get finally existence results
in the non-compact case, without any assumptions on the level setsL(x) (hypothesis (v)
in Theorem 20 is satisfied under some convexity assumptions onf , for examplef(x, ·)
quasi-convex for allx ∈ X, see [3]). The coercivity condition in the following result is
stronger than the previous one, but natural in our context. It allows to bound sequences of
approximatively equilibrium points.

Theorem 21. Let X be a reflexive Banach space. If the bifunctionf : X × X → Y
satisfies :

(i) f is diagonal null;

(ii) f(x, ·) is bounded below for allx ∈ X;

(iii) f is lower transitive;

(iv) f is weakly cf-lsc;

(v) (coercivity condition) for each sequence(xn)n≥1 in X such that‖xn‖ → +∞, there
existδ ∈ R+

0 and a subsequence(xnk
)k≥1 ⊂ (xn)n≥1 such that :

∀k ≥ 1, ∃l ≥ 1 : f(xnk
, xnk+l

) /∈ −K + BY (0, δ).

then, the solution set for the problem (WVEP) is non-empty.
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PROOF. As in the proof of Theorem 19, let us consider a sequence(xn)n≥1 ⊂ X sa-
tisfying relations (13) and (14). The coercivity condition implies that this sequence is
bounded. Indeed, if not, there existδ ∈ R+

0 and a subsequence(xnk
)k≥1 ⊂ (xn)n≥1

such that :∀k ≥ 1, ∃l ≥ 1 : f(xnk
, xnk+l

) /∈ −K + BY (0, δ). For k ≥ 1 such that
1

2nk−1 < δ, there existsl ≥ 1 such thatf(xnk
, xnk+l

) /∈ −K + BY (0, 1
2nk−1 ) and this is a

contradiction. So, up to a subsequence, we can assume that(xn)n≥1 weakly converges to
x ∈ X. Sincef is weakly cf-lsc, relation (15) is satisfied and we then conclude as in the
proof of Theorem 19.

Remark 22. Let us note that the following (strong) coercivity condition implies hypo-
thesis (v) in Theorem 21 :

∀x ∈ X, ∀k ∈ K \ {0}, ∃α ∈ R+
0 , ∀y ∈ X, ‖y‖ ≥ α : f(x, y) ≥ k.

The same result can also be obtained if hypothesis (v) is replaced by the following one :
there exist a bounded setC ⊂ X andk0 ∈ K \ {0} such that :

∀x ∈ X \ C, ∃y ∈ X : f(x, y) ∈ −k0 −K.

If the subsetC is assumed to be compact, we get the result by asking the bifunctionf cf-lsc
instead of weakly cf-lsc. Let us note that, iff(x, ·) is q-lsc and convex for allx ∈ X, then
f(x, ·) is weakly q-lsc for allx ∈ X and thenf is weakly cf-lsc.
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