Examen	(22 août 2011)
LAGITION	(22 auul 2011)

Nom:	
Prénom :	
Section :	

Lisez ces quelques consignes avant de commencer l'examen.

- Veuillez commencer par écrire en lettres MAJUSCULES votre nom, prénom et section sur *toutes* les feuilles. Les feuilles sans nom ou sans section seront pénalisées.
- La calculatrice n'est pas autorisée.
- L'examen dure 4 heures.
- Veuillez vous assurer que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Soient $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}: x \mapsto 1/x^3$ et $a \in \mathbb{R} \setminus \{0\}$. Montrez que f est continue en a en montrant (directement) que la définition de continuité en ε - δ de f est satisfaite.

/6

(22 août 2011)

Nom :	 	 _	 _	 _	_	_
Prénom :						

Section :

Question 2.

(a) Soient $A, B \subseteq \mathbb{R}$ deux ensembles arbitraires tels que $A \subseteq B$. Montrez que $\sup A \leqslant \sup B$. Énoncez les définitions et les résultats que vous utilisez.

(b) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrez que, quels que soient $a,b \in \mathbb{R}$, on a $\big[f(a),f(b)\big] \subseteq f\big([a,b]\big)$. Énoncez les résultats que vous utilisez.

(c) Montrez que $o((x-42)^3) + o((x-42)^5) = o((x-42)^3)$.

(d) Soient $x \in \mathbb{R}^N$ et $\|\cdot\|$ une norme sur \mathbb{R}^N . Montrez que si x = 0, alors $\|x\| = 0$.

Examen

(22 août 2011)

Nom :		 	 _
Prénom :	 	 	
Section :			

Question 3. Soient les fonctions $f:[-1,1]\to\mathbb{R}:x\mapsto 1+x\sqrt{1-x^2}$ et $g:[-1,1]\to\mathbb{R}:x\mapsto \mathrm{e}^{x/2}$.

/₆

- (a) f et g sont-elles continues sur [-1,1]? Dérivables sur]-1,1[?
- (b) Montrez que 0 est racine de f g.
- (c) Montrez que $\partial f(0) > \partial g(0)$.
- (d) Déduisez en qu'il existe un $\varepsilon > 0$ tel que $f(\varepsilon) > g(\varepsilon)$.
- (e) Montrez qu'il existe un x > 0 tel que f(x) = g(x).
- (f) Existe-il une autre racine strictement positive de f-g ?

Veillez à la qualité de vos justifications.

Analyse m	athématique I	Nom :
Examen	(22 août 2011)	Prénom :
		Section :

Question 3 (suite). Poursuivez votre réponse sur cette page.

Examen (22 août 2011)

Nom :
Prénom :
Section :

Question 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable sur \mathbb{R} . Les implications suivantes sont-elles vraies ou fausses ?

$$f$$
 est strictement décroissante $\overset{(a)}{\underset{(b)}{\rightleftharpoons}} \forall x \in \mathbb{R}, \ \partial f(x) < 0.$

Justifiez vos réponses par une preuve détaillée ou par un contre-exemple explicite. Énoncez les définitions et les résultats que vous utilisez.

Analyse m	athématique I	Nom:
Examen	(22 août 2011)	Prénom :
		Section :

Question 5. Soit f une fonction définie sur $[0,+\infty[$ et à valeurs réelles. On suppose que f est continue et que $\lim_{x\to+\infty}f(x)=0$. Montrez que f est bornée. Veuillez rappeler les énoncés des théorèmes que vous utilisez.

/4

Examen

(22 août 2011)

Nom :	 	 	
Prénom :		 	
Section :			

Question 6. Calculez le développement de Taylor d'ordre 3 en x=1 avec un reste exprimé en termes de petit o de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

/5

$$f(x) = x^2 \cdot e^{-\sinh(x-1)}$$

De plus, calculez, si elle existe, la valeur de la limite suivante :

$$\lim_{x \to 1} \frac{f(x) - 1}{x - 1}.$$

Détaillez vos calculs.

Examen

(22 août 2011)

Nom :	 	
Prénom :	 	
Section :		

Question 7. Soit $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x^2 + x + 1 & \text{si } x < 0, \\ e^{\lambda x} & \text{si } x \ge 0, \end{cases}$$

où $\lambda \in \mathbb{R}$ est un paramètre.

- (a) Esquissez le graphe de f_{λ} pour $\lambda = 0$, $\lambda = 2$ et $\lambda = -2$.
- (b) Pour quelle(s) valeur(s) de $\lambda \in \mathbb{R}$, la fonction f_{λ} est-elle continue? Expliquez votre démarche et justifiez en les différentes étapes. En particulier, pour la ou les valeurs de λ trouvées, montrez explicitement que f_{λ} est continue.
- (c) Même question que la précédente avec « continue » remplacé par « dérivable ».

Analyse m	athématique I	Nom:
Examen	(22 août 2011)	Prénom :
		Section :

Question 7 (suite). Poursuivez votre réponse sur cette page.

Analyse mathématique I Examen (22 août 2011) Prénom : ______ Section : _____

Question 8. Donnez toutes les fonctions $u : \mathbb{R} \to \mathbb{R}$ qui sont solutions de l'équation

/4

Analyse m	athématique I	Nom:
Examen	(22 août 2011)	Prénom :
		Section :

Question 8 (suite). Poursuivez votre réponse sur cette page.