Test n° 6

(24 octobre 2011)

Nom:	
Prénom :	
Section :	

Veuillez commencer par écrire *lisiblement* en lettres *majuscules* votre NOM, PRÉNOM et SECTION (MATH, PHYS, INFO, ou PINFO) sur *toutes* les feuilles. Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. Les feuilles qui ne respectent pas ces consignes seront pénalisées.

Veuillez lire attentivement les conseils ci-dessous.

- Assurez-vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit *convaincre* le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à rédiger *soigneusement* vos réponses ; en particulier structurez-les clairement. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Donnez, en bon français, la contraposée de la phrase « si je rate ma session en juin, alors je ne prendrai pas de vacances en août ».

 $/_2$

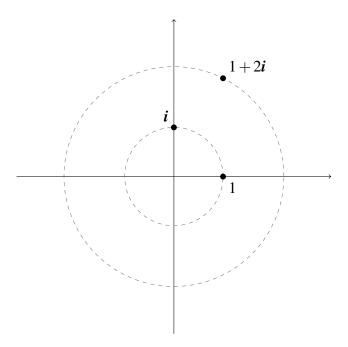
Question 2. Calculez $(1+2i)^4$.

/2

Test n° 6 (24 octobre 2011)

Nom : _____ Prénom : _____ Section : _____

Question 3. Donnez, sous la forme a+bi, toutes les solutions complexes de l'équation $X^4=-7-24i$. Donnez leur position dans le plan complexe en utilisant la « règle des parallèles » pour positionner cis $\theta \cdot$ cis θ' sur le cercle unité.



Test n° 6

(24 octobre 2011)

	Nom:
	Prénom :
4	Section:

Question 4.

- on a
- (a) Soit $A \in \mathbb{R}^{n \times n}$ une matrice antisymétrique. Montrez que, quel que soit $i \in \{1, ..., n\}$, on a $A_{ii} = 0$.
- (b) Soit $A \in \mathbb{R}^{n \times n}$ la matrice définie par

$$A_{ij} = \begin{cases} 1 & \text{si } i \neq j, \\ 0 & \text{sinon.} \end{cases}$$

Calculez $\sum_{i=1}^{n} \sum_{j=1}^{n} (i^2 - j^2 + A_{ij})$. Expliquez votre démarche.

Test n° 6

(24 octobre 2011)

Nom :		 			_
Prénom : _					_1
Section :					

Question 5. Déterminez le ou les $\tau \in \mathbb{R}^{>0}$ tels que la tangente à l'image de la fonction $\gamma : \mathbb{R} \to \mathbb{R}^2 : t \mapsto (\sqrt[3]{t}, \mathrm{e}^{\sqrt{t}})$ au point $\gamma(\tau)$ passe par le point (0,0).

/4

Question 6. Calculez $\int_{\pi/2}^{\pi} \frac{\sin \sqrt{x}}{\sqrt{x}} dx =$

 $\frac{1}{2}$

Test n° 6

(24 octobre 2011)

Nom:
Prénom :
Section :

Question 7. Soient $A_1, A_2, \dots, A_n \in \mathbb{R}^{p \times p}$. Montrez par récurrence que, pour tout $n \geqslant 1$, on a :

$$(A_1A_2\cdots A_n)^t = A_n^t \cdots A_2^t A_1^t.$$

Pour rappel, si $A \in \mathbb{R}^{p \times p}$, A^t désigne la transposée de A.

Question 8. Soit $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$. Donnez, lorsqu'elle existe, la pente de la droite du plan complexe passant par z_1 et z_2 en fonction de a_1, b_1, a_2, b_2 .

Test n° 6

(24 octobre 2011)

Nom :			_			_
Prénom :	 		_	_	 	_
Section :						

Question 9. Trouvez la matrice *M* dont l'inverse est

$$M^{-1} = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Expliquez votre démarche et détaillez vos calculs.

Test n° 6

(24 octobre 2011)

	Nom:
	Prénom :
4	Section:

Question 10. Calculez les sommes suivantes.

(a) Soit
$$t \ge 1$$
. $\sum_{k=-5}^{t} e =$

(b) Soit
$$\ell \geqslant 7$$
. $\sum_{j=7}^{\ell} (j+n) =$

Question 11. Résoudre dans
$$\mathbb{C}$$
 l'équation $X^2 - 4X + 4 - 2i = 0$.

