Introduction à la géométrie algébrique Août 2009

Documents autorisés.

Exercice 1. Soit A un anneau commutatif. Soient I un idéal de A, $a \in A$, et

$$(I:a) \underset{\text{def}}{=} \{b \in A \mid ab \in I\}.$$

- 1. (a) Montrer que (I:a) est un idéal de A.
 - (b) Montrer que $I \subseteq (I:a)$.
 - (c) Montrer que si $a \in A^{\times}$ alors (I : a) = I.
 - (d) Montrer que (I:a) = A si et seulement si $a \in I$.
- 2. Soit \mathfrak{p} un idéal premier de A. Montrer que $\{a \in A \mid (\mathfrak{p}:a) = \mathfrak{p}\} = A \setminus \mathfrak{p}$.

Soient S un sous-ensemble non vide de A et

$$(I:S) \underset{\text{def}}{=} \{b \in A \mid \forall a \in S, ab \in I\}.$$

- 3. (a) Montrer que (I:S) est un idéal de A.
 - (b) Montrer que (I : S) = (I : (S)).
 - (c) Montrer que (I:A) = I et (I:I) = A.
- 4. Soit J un idéal de A.
 - (a) Montrer que (I:J)=A si et seulement si $J\subseteq I$.
 - (b) Soit \mathfrak{p} un idéal premier de A. Montrer que $(\mathfrak{p}:J)=\mathfrak{p}$ si et seulement si $J \not\subseteq \mathfrak{p}$.
 - (c) Soit \mathfrak{m} un idéal maximal de A. Montrer que $(\mathfrak{p} : \mathfrak{m}) = \mathfrak{p}$ si et seulement si $\mathfrak{p} \neq \mathfrak{m}$.

Exercice 2. Soient A un anneau commutatif intègre et K = Frac A. Soit l'application

$$\rho: A[X] \longrightarrow K(X)$$

$$P(X) \longmapsto X^{\deg P} P\left(\frac{1}{X}\right),$$

avec la convention $X^{-\infty} = 0$. Soient $P(X), Q(X) \in A[X]$.

- 1. Montrer que $\rho(P) \in A[X]$ et que ρ n'est pas un morphisme d'anneau.
- 2. Montrer que $\rho(PQ) = \rho(P)\rho(Q)$.
- 3. On suppose que $P(0) \neq 0$. Montrer que deg $\rho(P) = \deg P$ et que $\rho^2(P) = P$.
- 4. Soit $P(X) \in A[X]$ tel que $P(X) \neq X$. Montrer que P(X) est irréductible dans A[X] si et seulement si $\rho(P(X))$ l'est.

Exercice 3. Soit $\mathbb{Z}[i]$ l'anneau des entiers de Gauss.

- 1. Soit $\sigma: \mathbb{C} \to \mathbb{C}$ la conjugaison complexe.
 - (a) Montrer que la restriction de σ à $\mathbb{Z}[i]$ est un automorphisme d'anneau.
 - (b) Montrer que $\mathbb{Z}[i]^{\times} = \{x \in \mathbb{Z}[i] \mid x\sigma(x) = 1\}.$
 - (c) Soit $x \in \mathbb{Z}[i]$ tel que $x\sigma(x) = p$ premier. Montrer que x est irréductible dans $\mathbb{Z}[i]$.
 - (d) Montrer que 1+i est irréductible dans $\mathbb{Z}[i]$ et que 1-i=u(1+i) avec $u\in\mathbb{Z}[i]^{\times}$.
- 2. Soit $P(X) = 4X^5 + 4X^2 + 1 \in \mathbb{Z}[X]$.

 - (a) Montrer que $(1+i)P(\frac{X}{1+i}) \in \mathbb{Z}[i][X]$. (b) Montrer que $(1+i)P(\frac{X}{1+i})$ est irréductible dans $\mathbb{Q}(i)[X]$.
 - (c) Montrer que P(X) est irréductible dans $\mathbb{Q}(i)[X]$.
 - (d) Montrer que P(X) est irréductible dans $\mathbb{Q}[X]$.
 - (e) Montrer que $X^{5} + 4X^{3} + 4$ est irréductible dans $\mathbb{Q}[X]$.