October 15, 2009

ANNEAUX

Contents

1. Anneaux	1
2. Anneaux commutatifs	3
Idéaux	3
Morphismes	5
Anneaux de nombres	7
Anneaux de polynômes	9
Compléments	11
3. Arithmétique des anneaux	13
Anneaux de polynômes	13
Anneaux d'entiers des extensions quadratiques de \mathbb{Q}	16
Compléments	19

1. Anneaux

Exercice 1.1. Soit V le \mathbb{R} -espace vectoriel de dimension trois $V = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. Montrer que $(V, +, \wedge)$ n'est pas un anneau.

Exercice 1.2. Soient E un ensemble et $\mathcal{P}(E)$ l'ensemble des parties de E. Pour $A, B \in$ $\mathcal{P}(E)$ on définit la différence symétrique de A et de B par

$$A \triangle B = (A \cup B) \setminus (A \cap B).$$

Montrer que $(\mathcal{P}(E), \triangle, \cap)$ est un anneau commutatif.

Exercice 1.3. Soit (S, +) le groupe abélien des suites $(u_n)_{n\geq 0}$ avec $u_n \in \mathbb{Z}$.

- 1. Montrer que $(\operatorname{End}_{\operatorname{grp}}(\mathcal{S}), +, \circ)$ est un anneau.
- 2. Soit $f: \mathcal{S} \to \mathcal{S}$ l'application donnée par $f(u_0, u_1, u_2, u_3, \ldots) = (0, u_0, u_1, u_2, \ldots)$.

 - (a) Montrer que f ∈ End_{grp}(S).
 (b) Montrer qu'il existe f' ∈ End_{grp}(S) tel que f' ∘ f = Id_S.
 - (c) Montrer que $f \circ g \neq \mathrm{Id}_{\mathcal{S}}$ pour tout $g \in \mathrm{End}_{\mathrm{grp}}(\mathcal{S})$.

Exercice 1.4 (Quaternions réels). Soit \mathbb{H} le sous-ensemble de $M_2(\mathbb{C})$

$$\mathbb{H} \stackrel{=}{=} \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \ \alpha, \beta \in \mathbb{C} \right\}.$$

- 1. Montrer que \mathbb{H} est un sous-anneau non commutatif de $M_2(\mathbb{C})$.
- 2. Montrer que tout élément non nul de H est inversible.
- 3. Soient

$$\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \in \mathbb{H}.$$

- (a) Montrer que $i^2 = j^2 = k^2 = -1$ et ij = -ji = k, jk = -kj = i, ki = -ik = j.
- (b) Montrer que \mathbb{H} est un \mathbb{R} -espace vectoriel et que (1,i,j,k) en est une base.

Exercice 1.5. Soient $S, T \in M_4(\mathbb{Q})$ les matrices

$$S = \begin{pmatrix} 0 & -3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad T = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

- 1. Montrer que $S^2 + 3 = 0$, $T^2 + 1 = 0$, et $ST = T^{-1}S$.
- 2. Soit $D = \mathbb{Q}[S,T]$ le plus petit sous-anneau de $M_4(\mathbb{Q})$ contenant $\mathbb{Q}1$, S, et T. Montrer que D est un sous-espace vectoriel de dimension 4 de $M_4(\mathbb{Q})$ et que (1, S, T, ST) en est une base.
- 3. Montrer que $\det(a+bS+cT+dST)=(a^2+3b^2)^2+(c^2+3d^2)^2+6(ad+bc)^2+2(ac-3bd)^2$ pour tous $a,b,c,d\in\mathbb{Q}$.
- 4. Montrer que tout élément non nul de D est inversible.

Exercice 1.6. Soient R un anneau non nul et $x \in R$ un élément nilpotent, c'est-à-dire tel qu'il existe $n \in \mathbb{N}$ tel que $x^n = 0$.

- 1. Montrer que $1 + x \in R^{\times}$.
- 2. Soit $u \in R^{\times}$. Montrer que $1 + uxu^{-1} \in R^{\times}$.
- 3. Soit $u \in R^{\times}$ tel que ux = xu. Montrer que $u + x \in R^{\times}$.
- 4. Soient $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{Q})$. Montrer que X est nilpotent, $U \in GL_2(\mathbb{Q})$, et $U + X \notin GL_2(\mathbb{Q})$.

Exercice 1.7. Soient R un anneau et Z(R) son centre

$$Z(R) \underset{\text{def}}{=} \{ z \in R \mid \forall x \in R, \, xz = zx \}.$$

1. Montrer que Z(R) est un sous-anneau commutatif de R.

Soit K un corps.

- 2. Soit $S = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix} \in M_3(K), \ a, b, c, d, e \in K \right\}$. Montrer que S est un sous-anneau de $M_3(K)$ et que $Z(S) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & e \end{pmatrix} \in M_3(K), \ a, e \in K \right\}$.
- 3. Soit $n \ge 1$ entier. Montrer que $Z(M_n(K)) = KI_n$ où I_n est la matrice identité de $M_n(K)$. (Considérer les matrices élémentaires.)

Exercice 1.8. Soit $\iota : \mathbb{C} \to M_2(\mathbb{R})$ l'application donnée par $x + iy \mapsto \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, $x, y \in \mathbb{R}$. Montrer que ι est un morphisme d'anneaux \mathbb{R} -linéaire injectif.

Exercice 1.9. Soient R, S des anneaux non nuls et $\varphi : R \to S$ un morphisme d'anneaux. Montrer que φ induit un morphisme de groupes $\varphi^{\times} : R^{\times} \to S^{\times}$.

Exercice 1.10. Soient K un corps et $n \geq 2$ un entier. Pour $a_1, \ldots, a_n \in K$ on note $\text{Diag}(a_1, \ldots, a_n) \in M_n(K)$ la matrice $(a_{i,j})_{1 \leq i,j \leq n}$ donnée par $a_{i,i} = a_i$ et $a_{i,j} = 0$ si $i \neq j$.

- 1. Montrer que l'application $K^{\times} \to GL_n(K)$, $a \mapsto \text{Diag}(a, 1, ..., 1)$ est un morphisme de groupes injectif. Peut-on l'étendre en un morphisme d'anneaux $K \to M_n(K)$?
- 2. Montrer que l'application $K \to M_n(K)$, $a \mapsto \text{Diag}(a, \ldots, a)$ est un morphisme d'anneaux injectif.

2. Anneaux commutatifs

Idéaux.

Exercice 2.1. Soient A un anneau commutatif non nul.

- 1. Soit I un idéal de A. Montrer que I = A si et seulement si $1 \in I$.
- 2. Soit $a \in A$. Montrer que (a) = A si et seulement si $a \in A^{\times}$.

Exercice 2.2. Soit A un anneau commutatif non nul. Montrer que A est un corps si et seulement si les seuls idéaux de A sont (0) et A.

Exercice 2.3. Soient K, L des corps et $A = K \times L$.

- 1. Déterminer les idéaux de l'anneau A.
- 2. Montrer que A n'est pas un corps.

Exercice 2.4. Soient K un corps et $A = \left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \in M_2(K), x, y \in K \right\}$.

- 1. Montrer que A est un sous-anneau commutatif de $M_2(K)$.
- 2. Déterminer A^{\times} .
- 3. Soient $a, b \in A \setminus A^{\times}$. Montrer que ab = 0.
- 4. Déterminer les idéaux de A.

Exercice 2.5. Soient A un anneau commutatif non nul et $a, b \in A$.

- 1. On suppose que (a) = (b). Montrer que a = 0 si et seulement si b = 0.
- 2. On suppose A intègre. Montrer que : $(a) = (b) \Leftrightarrow \exists u \in A^{\times}$ tel que a = ub.

Exercice 2.6. Soit $A = \mathcal{C}([0,1],\mathbb{R})$ l'anneau des fonctions continues de [0,1] dans \mathbb{R} .

- 1. Montrer que $A^{\times} = \{ f \in A \mid \forall x \in [0, 1], f(x) \neq 0 \}.$
- 2. Déterminer les éléments nilpotents et les éléments idempotents de A.
- 3. Montrer que A n'est pas intègre.
- 4. Soient S un sous-ensemble non vide de [0,1] et $\mathcal{I}(S)=\{f\in A\mid \forall\, x\in S, f(x)=0\}$. Montrer que $\mathcal{I}(S)$ est un idéal de A.
- 5. Soient $I = \mathcal{I}([0, \frac{1}{3}])$ et $J = \mathcal{I}([\frac{2}{3}, 1])$. Déterminer $IJ, I \cap J$, et I + J.

Exercice 2.7. Soient A un anneau commutatif et I,J deux idéaux de A. Montrer que : $I+J=A \Rightarrow IJ=I\cap J$.

Exercice 2.8. Soient A un anneau commutatif et I, J deux idéaux de A. Montrer que : $I + J = A \Rightarrow I^n + J^n = A$ pour tout entier $n \ge 1$. (Considérer $(x + y)^{2n}$ avec $x \in I$ et $y \in J$ tels que x + y = 1.)

Exercice 2.9 (Nilpotents). Soient A un anneau commutatif et $\mathrm{Nil}(A)$ l'ensemble des éléments nilpotents de A

$$\mathrm{Nil}(A) \underset{\mathrm{def}}{=} \{ a \in A \mid \exists \, n \in \mathbb{N} \text{ tel que } a^n = 0 \}.$$

Montrer que Nil(A) est un idéal de A.

Exercice 2.10. Soient A un anneau commutatif et I, J, K des idéaux de A.

- 1. Montrer que IJ + IK = I(J + K).
- 2. Montrer que $(I \cap J) + (I \cap K) \subseteq I \cap (J + K)$.
- 3. Montrer que : $J \subseteq I \Rightarrow (I \cap J) + (I \cap K) = I \cap (J + K)$.

4. Soient F un corps, A = F[X, Y], I = (X), J = (Y), et K = (X + Y). Montrer que $(I \cap J) + (I \cap K) = (X^2, XY)$ et $I \cap (J + K) = (X)$.

Exercice 2.11. Soient A un anneau commutatif non nul, S une partie multiplicativement stable, et I un idéal de A. Montrer que $S^{-1}I = S^{-1}A$ si et seulement si $I \cap S \neq \emptyset$.

Exercice 2.12. Soient A un anneau commutatif non nul, S une partie multiplicativement stable, et I, J des idéaux de A.

- 1. Montrer que $S^{-1}(I+J) = S^{-1}I + S^{-1}J$.
- 2. Montrer que $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$.
- 3. Montrer que $S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$.

Exercice 2.13. Soient A un anneau commutatif et $a \in A$. Montrer que $a \in A^{\times}$ si et seulement si a n'appartient à aucun idéal maximal de A.

Exercice 2.14. Soient A un anneau commutatif et \mathfrak{m} un idéal de A.

- 1. Montrer que $A^{\times} \subseteq A \setminus \mathfrak{m}$ si et seulement si $\mathfrak{m} \neq A$.
- 2. On suppose que $A \setminus \mathfrak{m} = A^{\times}$.
 - (a) Montrer que m est maximal.
 - (b) Montrer que \mathfrak{m} est l'unique idéal maximal de A.
- 3. On suppose que \mathfrak{m} est l'unique idéal maximal de A. Montrer que $A \setminus \mathfrak{m} = A^{\times}$.

Exercice 2.15. Soient A un anneau commutatif et \mathfrak{p} un idéal premier de A. Soient $n \geq 1$ entier et I_1, \ldots, I_n des idéaux de A tels que $I_1 \ldots I_n \subseteq \mathfrak{p}$. Montrer qu'il existe $1 \leq k \leq n$ tel que $I_k \subseteq \mathfrak{p}$.

Exercice 2.16. Soient A un anneau commutatif intègre et $a, b \in A$ avec $a \neq 0$. On suppose que (a) est premier et que $(a) \subseteq (b)$. Montrer que (a) = (b) ou (b) = A.

Exercice 2.17 (Août 2009). Soient A un anneau commutatif, I un idéal de $A, a \in A$, et

$$(I:a) = \{b \in A \mid ab \in I\}.$$

- 1. (a) Montrer que (I:a) est un idéal de A.
 - (b) Montrer que $I \subseteq (I:a)$.
 - (c) Montrer que si $a \in A^{\times}$ alors (I : a) = I.
 - (d) Montrer que (I:a) = A si et seulement si $a \in I$.
- 2. Soit \mathfrak{p} un idéal premier de A. Montrer que $\{a \in A \mid (\mathfrak{p}:a) = \mathfrak{p}\} = A \setminus \mathfrak{p}$.

Soient S un sous-ensemble non vide de A et

$$(I:S) \underset{\text{def}}{=} \{b \in A \mid \forall a \in S, \, ab \in I\}.$$

- 3. (a) Montrer que (I:S) est un idéal de A.
 - (b) Montrer que (I:S) = (I:(S)).
 - (c) Montrer que (I:A) = I et (I:I) = A.
- 4. Soit J un idéal de A.
 - (a) Montrer que (I:J)=A si et seulement si $J\subseteq I$.
 - (b) Soit \mathfrak{p} un idéal premier de A. Montrer que $(\mathfrak{p}:J)=\mathfrak{p}$ si et seulement si $J\not\subseteq\mathfrak{p}$.
 - (c) Soit $\mathfrak m$ un idéal maximal de A. Montrer que $(\mathfrak p:\mathfrak m)=\mathfrak p$ si et seulement si $\mathfrak p\neq\mathfrak m$.

Morphismes.

Exercice 2.18. Soit $f: A \to B$ un morphisme d'anneaux commutatifs non nuls. Montrer que si A est un corps alors f est injectif.

Exercice 2.19. Soit $f: A \to B$ un morphisme d'anneaux commutatifs non nuls.

- 1. Montrer que Ker f n'est pas un sous-anneau de A.
- 2. Montrer que Im f est un idéal de B si et seulement si f est surjective.

Exercice 2.20. Soient A, B des anneaux commutatifs, C, D des sous-anneaux de A, B respectivement, et $f: A \to B$ un morphisme d'anneaux.

- 1. Montrer que $f(C) = \{f(c), c \in C\}$ est un sous-anneau de B.
- 2. Montrer que $f^{-1}(D) = \{a \in A \mid f(a) \in D\}$ est un sous-anneau de A.

Exercice 2.21. Soient A, B, C des anneaux commutatifs et $f: A \to B, g: B \to C$ des morphismes d'anneaux.

- 1. Montrer que $g \circ f$ est un morphisme d'anneaux, que $f^{-1}(\operatorname{Ker} g)$ est un idéal de A, et que $\operatorname{Ker}(g \circ f) = f^{-1}(\operatorname{Ker} g)$, $\operatorname{Im}(g \circ f) = g(\operatorname{Im} f)$.
- 2. On suppose que A est un sous-anneau de B. Soient $\iota: A \hookrightarrow B$ l'inclusion, I un idéal de B, et $\pi: B \to B/I$ la projection. Montrer que $A \cap I$ est un idéal de A et que $\operatorname{Ker}(\pi \circ \iota) = A \cap I$, $\operatorname{Im}(\pi \circ \iota) = A/(A \cap I)$.

Exercice 2.22. Soit A un anneau commutatif non nul.

- 1. Montrer qu'il existe un unique morphisme d'anneaux $\nu_A : \mathbb{Z} \to A$.
- 2. On suppose A intègre. Montrer que $\operatorname{Ker} \nu_A = (0)$ ou $p\mathbb{Z}$ avec p premier.

Exercice 2.23. Soient $n \in \mathbb{Z}$, $\sqrt{n} \in \mathbb{C}$ tel que $\sqrt{n^2} = n$, et $\mathbb{Z}[\sqrt{n}]$ le sous-anneau de \mathbb{C} engendré par \sqrt{n} . Déterminer les morphismes d'anneaux $\mathbb{Z}[\sqrt{n}] \to \mathbb{C}$.

Exercice 2.24. Soit $f: \mathbb{R} \to \mathbb{R}$ un morphisme d'anneau.

- 1. Montrer que la restriction de f à \mathbb{Q} est l'identité.
- 2. Soit $x \in \mathbb{R}$ tel que $x \ge 0$. Montrer que $f(x) \ge 0$.
- 3. Montrer que f est croissante.
- 4. Montrer que $f = \mathrm{Id}_{\mathbb{R}}$.
- 5. Soit $\varphi : \mathbb{C} \to \mathbb{C}$ un morphisme d'anneau tel que $\varphi(\mathbb{R}) \subset \mathbb{R}$. Montrer que $\varphi = \mathrm{Id}_{\mathbb{C}}$ ou φ est la conjugaison complexe $z \mapsto \bar{z}$.

Exercice 2.25. Soient A un anneau commutatif, I un idéal de A, et $\pi:A\to A/I$ le morphisme de projection $a\mapsto a \bmod I,\ a\in A$.

1. Montrer que π induit une bijection croissante

$$\{ \text{Idéaux de } A \text{ contenant } I \} \stackrel{\sim}{\longrightarrow} \{ \text{Idéaux de } A/I \}$$

$$J \longmapsto J/I.$$

- 2. Montrer que π induit une bijection entre les idéaux premiers de A/I et les idéaux premiers de A contenant I.
- 3. Montrer que π induit une bijection entre les idéaux maximaux de A/I et les idéaux maximaux de A contenant I.

Exercice 2.26. Soient $f: A \to B$ un morphisme d'anneaux commutatifs et J un idéal de B.

- 1. Montrer que $f^{-1}(J) = \{a \in A \mid f(a) \in J\}$ est un idéal de A.
- 2. Montrer que si J est premier alors $f^{-1}(J)$ est premier.
- 3. On suppose f surjectif. Montrer que si J est maximal alors $f^{-1}(J)$ est maximal.
- 4. (a) Soient $A = \mathbb{Z}$, $B = \mathbb{Q}$, f = inclusion, et J = (0). Montrer que J est un idéal maximal de B et que $f^{-1}(J)$ n'est pas un idéal maximal de A.
 - (b) Soient $A = \mathbb{Q}$, $B = \mathbb{Q}[X]$, f = inclusion, et J = (X). Montrer que J est un idéal maximal de B et que $f^{-1}(J)$ est un idéal maximal de A.

Exercice 2.27. Soient $f: A \to B$ un morphisme d'anneaux commutatifs et I un idéal de

- 1. Soient $A = \mathbb{Z}$, $B = \mathbb{Q}$ et f = inclusion. Montrer que $f(I) = \{f(a), a \in I\}$ est un idéal de B si et seulement si I = (0).
- 2. On suppose f surjectif. Montrer que f(I) est un idéal de B.
- 3. Soient $A = \mathbb{Z}$, $B = \mathbb{Z}/n\mathbb{Z}$ avec $n \geq 2$, $f = \text{projection modulo } n\mathbb{Z}$, et $I = p\mathbb{Z}$ avec p premier. Montrer que I est un idéal maximal de A et que f(I) est un idéal maximal de B si et seulement si p divise n.
- 4. Soient $A = \mathbb{Z}[X]$, $B = (\mathbb{Z}/n\mathbb{Z})[X]$ avec $n \geq 2$, $f = \text{projection modulo } n\mathbb{Z}[X]$, et I = (X). Montrer que (X) est un idéal premier de A et que f(I) est un idéal premier de B si et seulement si n est premier.

Exercice 2.28. Soit $f: A \to B$ un morphisme d'anneaux commutatifs.

- 1. On rappelle que si J est un idéal de B alors $f^{-1}(J)$ est un idéal de A (cf. exercice 2.26). Soient J_1, J_2 deux idéaux de B.

 - (a) Montrer que $f^{-1}(J_1 + J_2) \supseteq f^{-1}(J_1) + f^{-1}(J_2)$. (b) Montrer que $f^{-1}(J_1 \cap J_2) = f^{-1}(J_1) \cap f^{-1}(J_2)$.
 - (c) Montrer que $f^{-1}(J_1J_2) \supseteq f^{-1}(J_1)f^{-1}(J_2)$.
- 2. Pour I un idéal de A soit $f_*(I)$ l'idéal de B engendré par f(I) (cf. exercice 2.27). Soient I_1, I_2 deux idéaux de A.
 - (a) Montrer que $f_*(I_1+I_2)=f_*(I_1)+f_*(I_2)$. (b) Montrer que $f_*(I_1\cap I_2)\subseteq f_*(I_1)\cap f_*(I_2)$.

 - (c) Montrer que $f_*(I_1I_2) = f_*(I_1)f_*(I_2)$.

Exercice 2.29. Soient A un anneau commutatif et $\nu: \mathbb{Z} \to A$ le morphisme d'anneaux donné par $\nu(1) = 1_A$.

- 1. On suppose que $\nu(n) \in A^{\times}$ pour tout $n \in \mathbb{Z} \setminus \{0\}$.
 - (a) Montrer que ν est injectif.
 - (b) Montrer qu'il existe un unique morphisme $\varphi : \mathbb{Q} \hookrightarrow A$ tel que $\varphi_{\mathbb{Z}} = \nu$.
- 2. On suppose que ν est injectif et que $\nu(2) \in A^{\times}$.
 - (a) Montrer que $B = \{\frac{m}{2^n}, n \in \mathbb{N}, m \in \mathbb{Z}\}$ est un sous-anneau de \mathbb{Q} .
 - (b) Montrer qu'il existe un unique morphisme $\psi: B \hookrightarrow A$ tel que $\psi_{|\mathbb{Z}} = \nu$.
 - (c) On suppose que $\nu(n) \in A^{\times}$ pour tout $n \in \mathbb{Z} \setminus \{0\}$. Montrer que $\varphi_{|B} = \psi$.

Exercice 2.30. Soit $f: A \to B$ un morphisme d'anneaux non nuls. On suppose que A a un unique idéal maximal et que f est surjectif. Montrer que B a un unique idéal maximal.

Exercice 2.31. Soient A un anneau commutatif, \mathfrak{m} un idéal maximal de A, et $a \in A$ tel que $a \notin \mathfrak{m}$.

1. Montrer que $\mathfrak{m} + (a) = A$.

2. Soit $a\mathfrak{m}=(a)\mathfrak{m}$. Montrer que $A/a\mathfrak{m}\simeq A/\mathfrak{m}\times A/(a)$.

Exercice 2.32. Soient A un anneau commutatif et I, J, K des idéaux de A tels que I + J = I + K = J + K = A.

- 1. Montrer que $I \cap J + K = A$ (cf. exercice 2.7).
- 2. Montrer que l'application $A \to A/I \cap J \times A/K$, $a \mapsto (a+I \cap J, a+K)$, induit un isomorphisme $A/I \cap J \cap K \simeq A/I \cap J \times A/K$.
- 3. Montrer que l'application $A \to A/I \times A/J \times A/K$, $a \mapsto (a+I, a+J, a+K)$, induit un isomorphisme $A/I \cap J \cap K \simeq A/I \times A/J \times A/K$.

Exercice 2.33 (Idempotents). Soient A un anneau commutatif non nul et $\mathrm{Id}(A)$ l'ensemble des éléments idempotents de A

$$Id(A) = \{e \in A \mid e^2 = e\}.$$

Noter que $\{0,1\} \subseteq \operatorname{Id}(A)$.

- 1. Soit $e \in Id(A)$.
 - (a) Montrer que $e \in A^{\times}$ si et seulement si e = 1.
 - (b) Montrer que $1 e \in Id(A)$.
 - (c) Montrer que e(1-e)=0.
- 2. On suppose que $A \simeq B \times C$ où B et C sont des anneaux non nuls. Montrer que $\mathrm{Id}(A) \neq \{0,1\}.$
- 3. On suppose que $\operatorname{Id}(A) \neq \{0,1\}$. Soit $e \in \operatorname{Id}(A) \setminus \{0,1\}$.
 - (a) Montrer que les anneaux A/(e) et A/(1-e) sont non nuls.
 - (b) Montrer que (e) + (1 e) = A.
 - (c) Montrer que $(e) \cap (1 e) = (0)$.
 - (d) Montrer que $A \simeq A/(e) \times A/(1-e)$.

Exercice 2.34. Soient A, B des anneaux commutatifs non nuls.

- 1. Soient I un idéal de A et J un idéal de B.
 - (a) Montrer que $I \times J$ est un idéal de $A \times B$.
 - (b) Montrer que $(A \times B)/(I \times J) \simeq (A/I) \times (B/J)$.
- 2. Soit I un idéal de $A \times B$. Pour $x \in A \times B$ on note xI l'idéal produit $(x)I = \{xc; c \in I\}$. Soient $e_A = (1_A, 0_B), e_B = (0_A, 1_B) \in A \times B$.
 - (a) Montrer que $e_A I \cap e_B I = (0_{A \times B})$ et que $I = e_A I + e_B I$.
 - (b) Montrer que $I = p_A(I) \times p_B(I)$ où p_A et p_B sont les morphismes de projection de $A \times B$ dans A et B respectivement.
 - (c) Montrer que I est premier si et seulement si $[p_A(I) = A$ et $p_B(I)$ est premier] ou $[p_A(I)$ est premier et $p_B(I) = B$].

Anneaux de nombres.

Exercice 2.35. Pour $n \ge 1$ entier soit $\sqrt[3]{n} \in \mathbb{R}$ l'unique réel positif dont le cube est n. Soit $Z = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}, \ a, b, c \in \mathbb{Z}\} \subset \mathbb{R}$. Montrer que Z est un sous-anneau de \mathbb{R} .

Exercice 2.36. Pour $n \ge 1$ entier soient $\sqrt{n} \in \mathbb{R}$ l'unique réel positif dont le carré est n et $\mathbb{Z}[\sqrt{n}]$ le sous-anneau de \mathbb{R} engendré par \sqrt{n} .

- 1. Montrer que $\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n}, a, b \in \mathbb{Z}\}.$
- 2. Montrer que les anneaux $\mathbb{Z}[\sqrt{2}]$ et $\mathbb{Z}[\sqrt{3}]$ ne sont pas isomorphes.

3. Montrer que $\mathbb{Q}[\sqrt{n}] = \{a + b\sqrt{n}, a, b \in \mathbb{Q}\}$ est un corps.

Exercice 2.37. Soit $O = \left\{ \frac{a+b\sqrt{5}}{2}, \ a, b \in \mathbb{Z} \text{ tels que } a \equiv b \mod 2\mathbb{Z} \right\} \subset \mathbb{R}$.

- 1. Montrer que O est un sous-anneau de \mathbb{R} .
- 2. Montrer que $O = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, le sous-anneau de \mathbb{R} engendré par $\frac{1+\sqrt{5}}{2} \in \mathbb{R}$.

Exercice 2.38 (Entiers de Gauss). Soit $\mathbb{Z}[i]$ le sous-anneau de \mathbb{C} engendré par $i \in \mathbb{C}$.

- 1. Montrer que $\mathbb{Z}[i] = \{a + bi; a, b \in \mathbb{Z}\}.$
- 2. Montrer que $\mathbb{Z}[i]^{\times} = \langle i \rangle$.
- 3. Montrer que $\mathbb{Q}[i] = \{a + bi; a, b \in \mathbb{Q}\}$ est un corps.

Exercice 2.39. Soit $\mathbb{Z}[\sqrt{2}]$ le sous-anneau de \mathbb{R} engendré par $\sqrt{2}$.

- 1. Montrer que $3 + 2\sqrt{2} \in \mathbb{Z}[\sqrt{2}]^{\times}$.
- 2. Montrer que $\mathbb{Z}[\sqrt{2}]^{\times}$ est infini.

Exercice 2.40. Soit $\mathbb{Z}[i]$ l'anneau des entiers de Gauss (cf. exercice 2.38).

- 1. Soit $n \in \mathbb{Z}$. Montrer que $A = \{a + bni; a, b \in \mathbb{Z}\}$ est un sous-anneau de $\mathbb{Z}[i]$.
- 2. Soit $A \subseteq \mathbb{Z}[i]$ un sous-anneau.
 - (a) Montrer que \mathbb{Z} est un sous-anneau de A.
 - (b) Montrer que $I = \{b \in \mathbb{Z} \mid \exists a \in \mathbb{Z} \text{ tel que } a + b i \in A\}$ est un idéal de \mathbb{Z} .
 - (c) Soit $n \in \mathbb{Z}$ tel que $I = n\mathbb{Z}$. Montrer que $A = \{a + bni; a, b \in \mathbb{Z}\}$.

Exercice 2.41. Soit $A = \{\frac{a}{b} \in \mathbb{Q} \mid a, b \in \mathbb{Z} \text{ premiers entre eux et } b \text{ impair } \}.$

- 1. Montrer que A est un sous-anneau de \mathbb{Q} .
- 2. Déterminer A^{\times} .
- 3. Déterminer les idéaux de A.
- 4. Montrer que A possède un unique idéal maximal \mathfrak{m} .
- 5. Montrer que $A/\mathfrak{m} \simeq \mathbb{Z}/2\mathbb{Z}$.

Exercice 2.42. Soit $B = \{\frac{a}{b} \in \mathbb{Q} \mid a \in \mathbb{Z} \text{ et } b = 2^n, n \in \mathbb{N}\}.$

- 1. Montrer que B est un sous-anneau de \mathbb{Q} .
- 2. Déterminer B^{\times} .
- 3. Déterminer les idéaux premiers et les idéaux maximaux de B.
- 4. Soit p un nombre premier impair. Montrer que $B/pB \simeq \mathbb{Z}/p\mathbb{Z}$.

Exercice 2.43 (Le corps des réels). Soient $\mathcal{S}(\mathbb{Q})$ l'anneau des suites à valeurs dans \mathbb{Q} et $\mathcal{C}(\mathbb{Q})$ le sous-ensemble de $\mathcal{S}(\mathbb{Q})$ formé des suites qui sont de Cauchy. Soit

$$C_0(\mathbb{Q}) = \{(a_n)_{n \in \mathbb{N}} \in C(\mathbb{Q}) \mid \lim_{n \to +\infty} a_n = 0 \}.$$

- 1. Montrer que $\mathcal{C}(\mathbb{Q})$ est un sous-anneau de $\mathcal{S}(\mathbb{Q})$ et que $\mathcal{C}_0(\mathbb{Q})$ est un idéal de $\mathcal{C}(\mathbb{Q})$. L'anneau des nombres réels est l'anneau quotient $\mathbb{R} = \mathcal{C}(\mathbb{Q})/\mathcal{C}_0(\mathbb{Q})$.
 - 2. Montrer que l'application $\mathbb{Q} \to \mathbb{R}$ donnée par $a \mapsto (a, a, a, ...) \mod \mathcal{C}_0(\mathbb{Q})$ est un morphisme d'anneaux injectif.
 - 3. Soit $(a_n)_{n\in\mathbb{N}}\in\mathcal{C}(\mathbb{Q})\setminus\mathcal{C}_0(\mathbb{Q})$. Montrer que : $\exists \epsilon>0, \exists N\in\mathbb{N}\mid n\geq N\Rightarrow |a_n|>\epsilon$.
 - 4. Montrer que \mathbb{R} est un corps et que $\mathcal{C}_0(\mathbb{Q})$ est un idéal maximal de $\mathcal{C}(\mathbb{Q})$.

Exercice 2.44. Soit $n \in \mathbb{N}$ tel que $n \geq 2$. Déterminer les idéaux premiers et les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$.

Exercice 2.45. Soient $n, m \in \mathbb{N}$ tels que $n, m \geq 2$.

- 1. Déterminer les sous-anneaux de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.
- 2. Déterminer $(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z})^{\times}$.
- 3. Déterminer les idéaux de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.
- 4. Déterminer les idéaux premiers et les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

Exercice 2.46. Soient $p \in \mathbb{N}$ un nombre premier et $n \in \mathbb{N}$ tel que $n \geq 1$.

- 1. Déterminer les idéaux de $\mathbb{Z}/p^n\mathbb{Z}$.
- 2. Montrer que $\mathbb{Z}/p^n\mathbb{Z}$ possède un unique idéal maximal \mathfrak{m} .
- 3. Montrer que $(\mathbb{Z}/p^n\mathbb{Z})/\mathfrak{m} \simeq \mathbb{Z}/p\mathbb{Z}$.

Exercice 2.47. Soient $n, m \in \mathbb{N}$ tels que $n, m \geq 1$.

- 1. Montrer qu'il existe un unique morphisme d'anneaux π de $\mathbb{Z}/nm\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$. Déterminer $\operatorname{Ker} \pi$ et $\operatorname{Im} \pi$.
- 2. Donner des conditions nécessaires et suffisantes pour qu'il existe un morphisme d'anneaux $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$.

Exercice 2.48 (Entiers p-adiques). Soit $p \in \mathbb{N}$ un nombre premier. Pour $n \geq 1$ entier soit $\pi_n : \mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ le morphisme de projection $m \mod p^{n+1}\mathbb{Z} \mapsto m \mod p^n\mathbb{Z}$, $m \in \mathbb{Z}$. Soit

$$\mathbb{Z}_p \underset{\text{def}}{=} \Big\{ (a_n)_{n \ge 1} \in \prod_{n \ge 1} \mathbb{Z}/p^n \mathbb{Z} \mid \forall n \ge 1, \, \pi_n(a_{n+1}) = a_n \Big\}.$$

- 1. Montrer que \mathbb{Z}_p est un sous-anneau de $\prod_{n\geq 1}\mathbb{Z}/p^n\mathbb{Z}$.
- 2. Montrer que $\mathbb{Z} \to \mathbb{Z}_p$, $m \mapsto (m \mod p^n \mathbb{Z})_{n \geq 0}$ est un morphisme d'anneaux injectif.
- 3. (a) Soient $n \ge 1$, $a_{n+1} \in \mathbb{Z}/p^{n+1}\mathbb{Z}$, et $\pi_n(a_{n+1}) = a_n \in \mathbb{Z}/p^n\mathbb{Z}$. Montrer que a_{n+1} est inversible si et seulement si a_n l'est.
 - (b) Soit $(a_n)_{n\geq 1}\in \mathbb{Z}_p$. Montrer que $(a_n)_{n\geq 1}\in \mathbb{Z}_p^{\times}$ si et seulement si $a_1\neq 0$.
- 4. Montrer que les idéaux de \mathbb{Z}_p sont (0) et les $p^n\mathbb{Z}_p$, $n \geq 0$.
- 5. Soit $n \geq 1$. Montrer que $\mathbb{Z}_p/p^n\mathbb{Z}_p \simeq \mathbb{Z}/p^n\mathbb{Z}$.

Anneaux de polynômes.

Exercice 2.49.

- 1. Soient $A = \mathbb{Z}/15\mathbb{Z}$ et $P(X) = X^2 1 \in A[X]$. Montrer que $\{a \in A \mid P(a) = 0\} = \{1, -1, 4, -4\}$ et vérifier que P(X) = (X 1)(X + 1) = (X 4)(X + 4) dans A[X].
- 2. Soient $A = \mathbb{Z}/6\mathbb{Z}$ et $P(X) = X^2 X \in A[X]$. Montrer que $\{a \in A \mid P(a) = 0\} = \{0, 1, 3, 4\}$ et vérifier que P(X) = X(X 1) = (X 3)(X 4) dans A[X].

Exercice 2.50. Soient A un anneau commutatif, $\varepsilon \in A$ tel que $\varepsilon^2 = 0$, et $P(X) = \varepsilon X + 1 \in A[X]$. Montrer que $P(X) \in A[X]^{\times}$.

Exercice 2.51. Montrer que l'idéal (X) de $\mathbb{Z}[X]$ est premier non maximal.

Exercice 2.52. Soient A, B des anneaux commutatifs intègres et $\psi : A[X] \to B[X]$ un morphisme d'anneaux.

- 1. Montrer que ψ induit un morphisme de groupes $\psi^{\times}: A^{\times} \to B^{\times}$.
- 2. Montrer que : ψ isomorphisme d'anneaux $\Rightarrow \psi^{\times}$ isomorphisme de groupes.
- 3. Montrer que les anneaux $\mathbb{R}[X]$ et $\mathbb{C}[X]$ ne sont pas isomorphes.

Exercice 2.53. Soient A un anneau commutatif, I un idéal de A, et I[X] le sous-ensemble de A[X] formé des polynômes dont tous les coefficients sont dans I.

- 1. Montrer que I[X] est un idéal de A[X].
- 2. Montrer que les anneaux A[X]/I[X] et (A/I)[X] sont isomorphes.
- 3. Montrer que I est premier si et seulement si I[X] est premier.
- 4. Soit $n \in \mathbb{N}$. Montrer que les anneaux $\mathbb{Z}[X]/n\mathbb{Z}[X]$ et $(\mathbb{Z}/n\mathbb{Z})[X]$ sont isomorphes.
- 5. Montrer que les anneaux A[X,Y]/(Y) et A[X] sont isomorphes.

Exercice 2.54. Soient K un corps et $a, b \in K$. Soient les applications

$$\varphi: K[X,Y] \longrightarrow K[X] \times K[Y] \qquad \text{et} \qquad \psi: K[X] \times K[Y] \longrightarrow K \times K$$
$$P(X,Y) \longmapsto \left(P(X,b), P(a,Y)\right) \qquad \text{et} \qquad \left(Q(X), R(Y)\right) \longmapsto \left(Q(a), R(b)\right).$$

- 1. Montrer que φ et ψ sont des morphismes d'anneaux.
- 2. Soit $D = \{(\alpha, \beta) \in K \times K \mid \alpha = \beta\}$. Montrer que Im $\varphi = \psi^{-1}(D)$.
- 3. Montrer que ψ est surjective et que $\operatorname{Im}(\psi \circ \varphi) \simeq K$.

Exercice 2.55. Soit A un anneau commutatif. Pour un morphisme d'anneau $\sigma: A \to A$ soit $\psi_{\sigma}: A[X] \to A[X]$ l'application $\sum_{0 \le k \le n} a_k X^k \mapsto \sum_{0 \le k \le n} \sigma(a_k) X^k$, $n \in \mathbb{N}$, $a_k \in A$.

- 1. Montrer que ψ_{σ} est un morphisme d'anneau.
- 2. Déterminer $\operatorname{Ker} \psi_{\sigma}$ et $\operatorname{Im} \psi_{\sigma}$ en fonction de $\operatorname{Ker} \sigma$ et $\operatorname{Im} \sigma$. En déduire que ψ_{σ} est bijective si et seulement si σ l'est.
- 3. Montrer que l'application $\psi : \operatorname{Aut}(A) \to \operatorname{Aut}(A[X])$, $\sigma \mapsto \psi_{\sigma}$ est un morphisme de groupes injectif.

Exercice 2.56. Soient A un anneau commutatif non nul, $a, b \in A$ avec $a \in A^{\times}$, et $\gamma(a,b): A[X] \to A[X]$ l'application donnée par $P(X) \mapsto P(aX+b), P(X) \in A[X]$. Montrer que $\gamma(a,b)$ est un automorphisme d'anneau et déterminer son inverse.

Exercice 2.57. Soit A un anneau commutatif. Pour $Q(X) \in A[X]$ soit $c_Q : A[X] \to A[X]$ l'application donnée par $P(X) \mapsto P(Q(X)), P(X) \in A[X]$.

- 1. Montrer que c_Q est un morphisme d'anneau.
- 2. Montrer que Im c_Q est le plus petit sous-anneau de A[X] contenant A et Q(X).

On suppose que A est intègre.

- 3. Montrer que $\deg Q \ge 1 \Rightarrow \deg \mathsf{c}_Q(P) = \deg P \deg Q$.
- 4. Déterminer $Ker c_Q$.
- 5. Déterminer les $Q(X) \in K[X]$ tels que $c_Q \in Aut(K[X])$.

Exercice 2.58. Soient K un corps et $\psi: K[X] \xrightarrow{\sim} K[X]$ un automorphisme d'anneau.

- 1. Montrer que $\psi_{|K} \in \text{Aut}(K)$.
- 2. Montrer que $\psi(X)$ est irréductible dans K[X]. En déduire que $K[X]/(\psi(X))$ est un corps et un K-espace vectoriel de dimension $\deg \psi(X)$.
- 3. Montrer que ψ induit un automorphisme de corps $\bar{\psi}: K[X]/(X) \xrightarrow{\sim} K[X]/(\psi(X))$. En déduire que deg $\psi(X) = 1$.
- 4. Montrer que $\operatorname{Aut}(K[X])$ est l'ensemble des applications $K[X] \to K[X]$ données par $\sum_{0 \le k \le n} \alpha_k X^k \mapsto \sum_{0 \le k \le n} \sigma(\alpha_k) (aX + b)^k$ avec $\sigma \in \operatorname{Aut}(K)$, $a \in K^\times$ et $b \in K$.

Exercice 2.59. Soit A un anneau commutatif non nul. Pour $Q(X) \in A[X]$ soit $b_Q : A[X] \to A[X]$ l'application donnée par $P(X) \mapsto Q(P(X)), P(X) \in A[X]$. Déterminer les $Q(X) \in A[X]$ tels que b_Q est un morphisme d'anneaux.

Exercice 2.60. Soit A un anneau commutatif non nul.

- 1. Montrer que $A[X]/(X^2+1) \simeq A[X]/(X^2+2X+2)$.
- 2. Montrer que $A[X,Y]/(XY+X+Y) \simeq A[X,Y]/(XY+X-1)$.
- 3. Montrer que $A[X,Y]/(X^2+Y^2-2) \simeq A[X,Y]/(X^2+Y^2+2X+2Y)$.

Compléments.

Exercice 2.61 (Morphisme de Frobenius). Soient p un nombre premier, A un anneau commutatif intègre de caractéristique p, et $\varphi: A \to A$ l'application $a \mapsto a^p$.

- 1. (a) Montrer que φ est un endomorphisme d'anneau injectif.
 - (b) Soit $A = \mathbb{F}_p$. Montrer que $\varphi = \mathrm{Id}_A$.
 - (c) Soit $A = \mathbb{F}_p[X]$. Montrer que $\operatorname{Im} \varphi = \mathbb{F}_p[X^p]$.
- 2. Soit $F = \{ a \in A \mid \varphi(a) = a \}.$
 - (a) Montrer que F est un sous-anneau de A.
 - (b) Montrer que $Card(F) \leq p$.
 - (c) Montrer que $F \simeq \mathbb{F}_p$.

Exercice 2.62. Soit A un anneau commutatif non nul. Pour $a \in A$ soit $\mu_a : A \to A$ l'application de multiplication par a donnée par $x \mapsto ax$, $x \in A$.

- 1. Montrer que μ_a est un endomorphisme du groupe (A, +) pour tout $a \in A$.
- 2. Montrer que μ_a est surjectif si et seulement si $a \in A^{\times}$.
- 3. On suppose que A est intègre. Montrer que μ_a est injectif si et seulement si $a \neq 0$.
- 4. On suppose que A est intègre et fini. Montrer que A est un corps.

Exercice 2.63. Soit A un anneau commutatif intègre n'ayant qu'un nombre fini d'idéaux.

- 1. Soit $a \in A$ non nul. Montrer qu'il existe 1 < n < m entiers tels que $(a^n) = (a^m)$.
- 2. Montrer que A est un corps.

Exercice 2.64. Soient A un anneau commutatif non nul et I un idéal de A non premier. Montrer qu'il existe des idéaux I_1, I_2 de A tels que $I \subsetneq I_i$ pour i = 1, 2 et $I_1I_2 \subseteq I$.

Exercice 2.65 (Théorème de Krull). Soient A un anneau commutatif et $Nil(A) = \{a \in A \mid \exists n \in \mathbb{N} \text{ tel que } a^n = 0\}$ l'idéal des éléments nilpotents de A (cf. exercice 2.9).

- 1. Soit \mathfrak{p} un idéal premier de A. Montrer que $Nil(A) \subseteq \mathfrak{p}$.
- 3. Soient $a \in A$ tel que $a \notin Nil(A)$ et $S = \{a^n, n \in \mathbb{N}\}.$
 - (a) Montrer que l'ensemble des idéaux I de A tels que $I \cap S = \emptyset$ contient un élément maximal \mathfrak{p} . (Utiliser le Lemme de Zorn.)
 - (b) Montrer que p est un idéal premier de A. (cf. exercice 2.64.)
- 4. Soit $\mathcal{P}(A)$ l'ensemble des idéaux premiers de A. Montrer que

$$\mathrm{Nil}(A) = \bigcap_{\mathfrak{p} \in \mathcal{P}(A)} \mathfrak{p} .$$

Exercice 2.66 (Radical). Soient A un anneau commutatif et I un idéal de A. Le radical de I est

$$\sqrt{I} \stackrel{\text{def}}{=} \{ a \in A \mid \exists n \in \mathbb{N} \text{ tel que } a^n \in I \}.$$

- 1. Montrer que \sqrt{I} est un idéal de A contenant I.
- 2. Soit $\pi: A \to A/I$ le morphisme de projection. Montrer que $\sqrt{I}/I = \text{Nil}(A/I)$.
- 3. Soit $\mathcal{P}(A;I)$ l'ensemble des idéaux premiers de A contenant I. Montrer que \sqrt{I} $\bigcap_{\mathfrak{p}\in\mathcal{P}(A;I)}\mathfrak{p} \text{ (cf. exercice 2.65)}.$

Exercice 2.67 (Janvier 2009). Soient A un anneau commutatif et $Nil(A) = \{a \in A \mid$ $\exists n \geq 1$ tel que $a^n = 0$ } l'ensemble des éléments nilpotents de A.

- 1. (a) Soient B un anneau intègre et $f: A \to B$ un morphisme d'anneau. Montrer que $Nil(A) \subseteq Ker f$.
 - (b) Soit \mathfrak{p} un idéal premier de A. Montrer que Nil(A) $\subseteq \mathfrak{p}$.

On suppose que l'anneau A n'est pas nul.

- 2. Montrer que $Nil(A) \neq A$.
- 3. Soient $s \in A \setminus Nil(A)$ et $S = \{s^n : n \in \mathbb{N}\}.$
 - (a) Montrer que $0 \notin S$.
 - (b) Montrer que l'anneau $S^{-1}A$ n'est pas nul.
- 4. (a) Montrer que $S^{-1}A$ contient un idéal premier \mathfrak{q} .
 - (b) Montrer que $\frac{s}{1} \notin \mathfrak{q}$.
 - (c) Soit $\varphi: A \to S^{-1}A$, $a \mapsto \frac{a}{1}$. Montrer que $s \notin \varphi^{-1}(\mathfrak{q})$.
- 5. Soit ${\mathcal P}$ l'ensemble des idéaux premiers de A. Montrer que

$$Nil(A) = \bigcap_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}.$$

Exercice 2.68. Soient A un anneau commutatif non nul et \mathfrak{p} un idéal premier de A. Soient $A_{\mathfrak{p}}$ le localisé de A par rapport à $S = A \setminus \mathfrak{p}$ et $\mathfrak{p}A_{\mathfrak{p}} = S^{-1}\mathfrak{p}$.

- 1. Soit $\sigma: A \to A_{\mathfrak{p}}$ le morphisme $a \mapsto \frac{a}{1}$. Montrer que Ker $\sigma \subseteq \mathfrak{p}$.
- 2. Montrer que $A_{\mathfrak{p}} \setminus \mathfrak{p}A_{\mathfrak{p}} = A_{\mathfrak{p}}^{\times}$.
- 3. Montrer que $\mathfrak{p}A_{\mathfrak{p}}$ est l'unique idéal maximal de $A_{\mathfrak{p}}$. (cf. exercice 2.14.)
- 4. Soit $\pi: A_{\mathfrak{p}} \to A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ le morphisme de projection. Montrer que $\operatorname{Ker}(\pi \circ \sigma) = \mathfrak{p}$.
- 5. Montrer que $\operatorname{Frac}(A/\mathfrak{p}) \simeq A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$.

Exercice 2.69 (Radical de Jacobson). Soient A un anneau commutatif non nul, $\mathcal{J}(A)$ l'intersection des idéaux maximaux de A, et $a \in A$. Montrer que $a \in \mathcal{J}(A)$ si et seulement si $1 - ax \in A^{\times}$ pour tout $x \in A$.

Exercice 2.70. Soient A un anneau commutatif, $A = \prod_{n \in \mathbb{N}} A = \{(a_n)_{n \in \mathbb{N}}; a_n \in A\}$, et $\mathcal{A}_0 \underset{\text{\tiny def}}{=} \{(a_n)_{n \in \mathbb{N}} \in \mathcal{A} \mid a_n = 0 \text{ pour tout } n \in \mathbb{N} \text{ sauf un nombre fini}\}.$

1. Montrer que A_0 est un sous-groupe du groupe produit (A, +).

Pour $a = (a_n)_{n \in \mathbb{N}}$ et $b = (b_n)_{n \in \mathbb{N}} \in \mathcal{A}_0$, on définit

$$a * b = (c_n)_{n \in \mathbb{N}}$$
 avec $c_n = \sum_{k+m=n} a_k b_m$.

- 2. Montrer que $(A_0, +, *)$ est un anneau commutatif.
- 3. Montrer que $A \to A_0$, $a \mapsto (a, 0, 0, ...)$ est un morphisme d'anneaux injectif. 4. Montrer que $A[X] \to A_0$, $\sum_{n \in \mathbb{N}} a_n X^n \mapsto (a_n)_{n \in \mathbb{N}}$ est un isomorphisme d'anneaux.

Exercice 2.71 (Septembre 2007). Soit K un corps de caractéristique 0. Pour $n \in \mathbb{N}$ et $P(X) \in K[X]$ on note $P^{(n)}(X)$ le polynôme obtenu en dérivant n fois P(X) par rapport à X (avec la convention $P^{(0)} = P$). Soit $a \in K$.

1. Soit $P(X) \in K[X]$. Montrer qu'il existe une unique suite $(\alpha_n(P))_{n \in \mathbb{N}}$ d'éléments de K telle que $\alpha_n(P) = 0$ pour $n > \deg P$ et $P(X) = \sum_{n \in \mathbb{N}} \alpha_n(P)(X - a)^n$.

Soit $\theta_a: K[X] \to K[X]$ l'application donnée par $P(X) \mapsto \sum_{n \in \mathbb{N}} \frac{P^{(n)}(a)}{n!} (X-a)^n$.

- 2. Montrer que θ_a est un morphisme d'anneau.
- 3. Calculer $\theta_a(X)$ et $\theta_a(c)$ avec $c \in K$. Montrer que $\theta_a = \mathrm{Id}_{K[X]}$ et que $\alpha_n(P) = \frac{P^{(n)}(a)}{n!}$ pour tous $P(X) \in K[X]$ et $n \in \mathbb{N}$.

Exercice 2.72 (Septembre 2007). Soit A un anneau commutatif non nul.

- 1. Soit $a \in A$. Montrer que (a) = A si et seulement si $a \in A^{\times}$.
- 2. Montrer que A possède un unique idéal maximal \mathfrak{m} si et seulement si $A^{\times} = A \setminus \mathfrak{m}$. Soient X un espace topologique non vide, \mathcal{C} l'anneau commutatif des applications continues de X dans \mathbb{R} , et $x_0 \in X$. Soit

$$\mathcal{I} = \{ f \in \mathcal{C} \mid \text{ il existe un voisinage } \mathcal{V}(x_0) \text{ de } x_0 \text{ tel que } f_{|\mathcal{V}(x_0)} = 0 \}.$$

3. Montrer que \mathcal{I} est un idéal de \mathcal{C} .

Soient $\xi: \mathcal{C} \to \mathbb{R}$ le morphisme d'anneau donné par $f \mapsto f(x_0)$ et $A = \mathcal{C}/\mathcal{I}$.

- 4. Montrer que l'association $\bar{\xi}: A \to \mathbb{R}$, $f \mod \mathcal{I} \mapsto f(x_0)$ est un morphisme d'anneau surjectif.
- 5. Montrer que $\mathfrak{m} = \operatorname{Ker} \bar{\xi}$ est un idéal maximal de A.
- 6. Montrer que \mathfrak{m} est l'unique idéal maximal de A.

Exercice 2.73. Soit A un anneau commutatif non nul. Montrer que les inversibles de A[X] sont les polynômes $a_nX^n + \ldots + a_1X + a_0$ avec $n \in \mathbb{N}$ et $a_k \in A$ tels que $a_0 \in A^{\times}$ et a_k nilpotent pour tout $1 \leq k \leq n$.

3. Arithmétique des anneaux

Anneaux de polynômes.

Exercice 3.1. Soient A un anneau intègre, $P(X) \in A[X]$, et $a \in A$.

- 1. Montrer que P(X) est irréductible dans A[X] si et seulement si P(X+a) l'est.
- 2. Montrer que (X a) divise P(X) dans A[X] si et seulement si P(a) = 0.
- 3. On suppose P(X) unitaire et deg P=2 ou 3. Montrer que P(X) est irréductible dans A[X] si et seulement si il n'a pas de racine dans A.

Exercice 3.2. Déterminer les racines du polynôme $X^3 - X$ dans $\mathbb{Z}/6\mathbb{Z}$.

Exercice 3.3. Soit K un corps.

- 1. Montrer qu'un polynôme dans K[X] de degré $n \ge 1$ a au plus n racines dans K.
- 2. Soit G un sous-groupe fini de K^{\times} . Montrer que G est cyclique.
- 3. Soit $p \in \mathbb{N}$ premier. Montrer que \mathbb{F}_p^{\times} est cyclique.
- 4. Montrer que $\{\pm 1, \pm i, \pm j, \pm k\}$ est un sous-groupe non cyclique de \mathbb{H}^{\times} (exercice 1.4).

Exercice 3.4. Soit A un anneau commutatif.

- 1. On suppose que A est un corps. Montrer que A[X] est principal.
- 2. On suppose que A[X] est principal.
 - (a) Montrer que A est intègre.
 - (b) Montrer que X est irréductible dans A[X].
 - (c) Montrer que l'idéal (X) est maximal dans A[X].
 - (d) Montrer que A est un corps.

Exercice 3.5. Soit $p \in \mathbb{Z}$ un nombre premier.

- 1. Soit $P(X) \in \mathbb{Z}[X]$. Montrer que : $p \in (P(X)) \Leftrightarrow (P(X)) = \mathbb{Z}[X]$ ou $p\mathbb{Z}[X]$.
- 2. Montrer que $(p, X) \neq \mathbb{Z}[X]$ et $(p, X) \neq p\mathbb{Z}[X]$.
- 3. Montrer que (p, X) n'est pas un idéal principal de $\mathbb{Z}[X]$.

Exercice 3.6. Soient $A = \mathbb{Z}[i\sqrt{3}]$ le sous-anneau de \mathbb{C} engendré par $i\sqrt{3}$ et $K = \operatorname{Frac} A$.

- 1. Montrer que $K = \{x + i\sqrt{3}y ; x, y \in \mathbb{Q}\}.$
- 2. Montrer que $X^2 + X + 1$ est réductible dans K[X] et irréductible dans A[X].

Exercice 3.7 (Août 2009). Soient A un anneau commutatif intègre et $K = \operatorname{Frac} A$. Soit l'application

$$\rho: A[X] \longrightarrow K(X)$$

$$P(X) \longmapsto X^{\deg P} P\left(\frac{1}{X}\right),$$

avec la convention $X^{-\infty} = 0$. Soient $P(X), Q(X) \in A[X]$.

- 1. Montrer que $\rho(P) \in A[X]$ et que ρ n'est pas un morphisme d'anneau.
- 2. Montrer que $\rho(PQ) = \rho(P)\rho(Q)$.
- 3. On suppose que $P(0) \neq 0$. Montrer que deg $\rho(P) = \deg P$ et que $\rho^2(P) = P$.
- 4. Montrer que P(X) est irréductible dans A[X] si et seulement si $\rho(P(X))$ l'est.

Exercice 3.8. Soient K un corps et $a, b \in K$.

- 1. Montrer que $K[X]/(X-a) \simeq K$.
- 2. Montrer que $K[X,Y]/(Y-b) \simeq K[X]$.
- 3. Montrer que $K[X,Y]/(X-a,Y-b) \simeq K$.
- 4. Montrer que $K[X,Y]/(X+Y) \simeq K[X]$.

Exercice 3.9. Soit $\mathbb{Q}[\sqrt{2}]$ le sous-anneau de \mathbb{R} engendré par $\sqrt{2}$ et \mathbb{Q} .

- 1. Montrer que $\mathbb{Q}[X]/(X^2-2) \simeq \mathbb{Q}[\sqrt{2}]$.
- 2. Montrer que $\mathbb{Q}[\sqrt{2}]$ est un corps.

Exercice 3.10. Soit $\mathbb{Z}[i]$ le sous-anneau de \mathbb{C} engendré par i.

- 1. Montrer que $\mathbb{Z}[X]/(X^2+1) \simeq \mathbb{Z}[i]$.
- 2. Montrer que $(X^2 + 1)$ est un idéal premier non maximal de $\mathbb{Z}[X]$.

Exercice 3.11. Montrer que les idéaux suivants sont premiers dans $\mathbb{Z}[X]$.

- (a) $p\mathbb{Z}[X]$ avec $p \in \mathbb{N}$ premier,
- (b) (P(X)) avec $P(X) \in \mathbb{Z}[X]$ irréductible,
- (c) (p, P(X)) avec p premier et $P(X) \in \mathbb{Z}[X]$ irréductible tel que $P(X) \mod p\mathbb{Z}[X]$ est irréductible dans $\mathbb{F}_p[X]$.

Exercice 3.12. Soient K un corps et $a, b \in K^{\times}$. Montrer que les anneaux $K[X]/(X^2-a^2)$ et $K[X]/(X^2-b^2)$ sont isomorphes.

Exercice 3.13. Factoriser les polynômes suivants dans les anneaux indiqués.

- 1. $X^4 + 1$, $X^4 4$ et $X^6 1$ dans $\mathbb{C}[X]$, $\mathbb{R}[X]$ et $\mathbb{Q}[X]$. 2. $X^2 + X + 1$, $X^3 + X + 2$ et $X^4 + X^3 + X + 1$ dans $\mathbb{F}_3[X]$. 3. $X^2 + 1$ et $X^4 + 1$ dans $\mathbb{F}_5[X]$.

Exercice 3.14. Montrer que les polynômes suivants sont irréductibles dans $\mathbb{Q}[X]$.

- 1. $2X^{10} 15$, $3X^7 + 21$, $6X^{53} 126$, et $7X^5 + 42X + 12$. 2. $X^5 12X^3 + 36X 18$ et $3X^{10} 75X^9 + 4230X^6 7185X + 8610$.

Exercice 3.15. Soient $n \ge 1$ entier et $a \in \mathbb{Z} \setminus \{-1, 0, 1\}$ sans facteur carré. Montrer que $X^n - a$ est irréductible dans $\mathbb{Q}[X]$.

Exercice 3.16 (Septembre 2007). Soient A un anneau commutatif et I, J deux idéaux de A. Soit $\varphi: A \to A/I \times A/J$ le morphisme d'anneaux donné par $a \mapsto (a \mod I, a \mod J)$.

- 1. Déterminer $\operatorname{Ker} \varphi$.
- 2. Montrer que φ est surjective si et seulement si I+J=A.
- 3. Soit $P(X) = X^4 6X^3 + 18X^2 12X \in \mathbb{Q}[X]$. Montrer que l'anneau $\mathbb{Q}[X]/(P(X))$ est isomorphe à $\mathbb{Q} \times K$ où K est un corps.

Exercice 3.17. Soit $p \in \mathbb{Z}$ un nombre premier. On pose

$$\Phi_p(X) \stackrel{=}{\underset{\text{def}}{=}} X^{p-1} + X^{p-2} + \ldots + X + 1 \in \mathbb{Z}[X].$$

- 1. Montrer que $\Phi_p(X) = \frac{X^p-1}{X-1}$.
- 2. Montrer que $\Phi_p(X+1)$ est un polynôme d'Eisenstein.
- 3. Montrer que $\Phi_p(X)$ est irréductible dans $\mathbb{Q}[X]$.
- 4. Factoriser $\Phi_p(X)$ dans $\mathbb{F}_p[X]$.

Exercice 3.18. Soit $P(X) = X^3 + X^2 + 1 \in \mathbb{F}_2[X]$.

- 1. Montrer que P(X) est irréductible dans $\mathbb{F}_2[X]$.
- 2. Montrer que $k = \mathbb{F}_2[X]/(P(X))$ est un corps à huit éléments.

Exercice 3.19. Soit $p \in \mathbb{N}$ un nombre premier.

- 1. Factoriser $X^p 1$ dans $\mathbb{F}_p[X]$.
- 2. Factoriser $X^p X$ dans $\mathbb{F}_p[X]$.

Exercice 3.20. Factoriser $X^4 - X$ dans $\mathbb{F}_2[X]$ et $X^9 - X$ dans $\mathbb{F}_3[X]$.

Exercice 3.21. Soit $p \in \mathbb{N}$ un nombre premier, $p \neq 2$. On pose $(\mathbb{F}_p^{\times})^2 = \{x^2, x \in \mathbb{F}_p^{\times}\}.$

- 1. Montrer que $(\mathbb{F}_p^{\times})^2$ est de cardinal $\frac{p-1}{2}$.

- 2. Soit $\alpha \in \mathbb{F}_p^{\times}$ tel que $\alpha \notin (\mathbb{F}_p^{\times})^2$. Montrer que $X^2 \alpha$ est irréductible dans $\mathbb{F}_p[X]$. 3. Montrer que $k = \mathbb{F}_p[X]/(X^2 \alpha)$ est un corps. 4. Montrer que k est un \mathbb{F}_p -espace vectoriel de dimension 2 et que $(1,\beta)$ avec $\beta = X$ $X \mod (X^2 - \alpha)$ en est une base.
- 5. Montrer que tout $x \in k$ est racine du polynôme $X^{p^2} X \in \mathbb{F}_p[X]$.
- 6. Factoriser $X^{p^2} X$ dans k[X] et dans $\mathbb{F}_p[X]$.

Exercice 3.22. Soient K un corps.

1. Soit $P(X) \in K[X]$ un polynôme ayant une racine simple dans K. Montrer que $Y^n - P(X)$ est irréductible dans K[X,Y] pour tout entier $n \ge 1$.

- 2. (a) On suppose que la caractéristique de K est différente de 2. Montrer que $X^2 + Y^2 1$ est irréductible dans K[X,Y].
 - (b) On suppose que la caractéristique de K est 2. Montrer que $X^2 + Y^2 1 = (X + Y + 1)^2$ et que X + Y + 1 est irréductible dans K[X, Y].

Exercice 3.23 (Août 2008).

- 1. Étudier l'irréductibilité des polynômes suivants dans $\mathbb{Q}[X,Y]$.
 - (a) $X^2 + Y^2$
 - (b) $X^2 + Y^2 + X$
 - (c) $X^2 + Y^2 + X + 1$
 - (d) $X^2 + Y^2 + XY$.
- 2. Même question dans $\mathbb{C}[X,Y]$.

Exercice 3.24 (Janvier 2008). Soient $P(X,Y) = Y^4 - 7X^3 - 3X^2 + 81$ et $Q(X,Y) = 2Y^4 - 14X^3 - 6X^2 \in \mathbb{Q}[X,Y]$.

- 1. Montrer que $7X^3 + 3X^2 81$ est irréductible dans $\mathbb{Q}[X]$.
- 2. Montrer que P(X,Y) est irréductible dans $\mathbb{Q}[X,Y]$.
- 3. Montrer que $\mathbb{Q}[X,Y]/(P)$ est intègre.
- 4. Montrer que $\mathbb{Q}[X,Y]/(PQ) \simeq \mathbb{Q}[X,Y]/(P) \times \mathbb{Q}[X,Y]/(Q)$.
- 5. Montrer que $\mathbb{Q}[X,Y]/(Q)$ est intègre. L'anneau $\mathbb{Q}[X,Y]/(PQ)$ est-il intègre?

Exercice 3.25 (Janvier 2009). Soient les polynômes $P(X,Y) = Y^2 - X^3Y + XY - 2Y + X^3 - X + 2$ et $Q(X,Y) = Y^2 - X^3Y + XY + 1 \in \mathbb{Q}[X,Y]$.

- 1. Montrer que $X^3 X + 2$ est irréductible dans $\mathbb{Q}[X]$.
- 2. Montrer que P(X,Y) est irréductible dans $\mathbb{Q}[X,Y]$.
- 3. Montrer que l'application $\mathbb{Q}[X,Y] \to \mathbb{Q}[X,Y]$ donnée par $R(X,Y) \mapsto R(X,Y+1)$ est un automorphisme d'anneau.
- 4. Montrer que Q(X,Y) est irréductible dans $\mathbb{Q}[X,Y]$.
- 5. Étudier l'irréductibilité de P(X,Y) Q(X,Y) dans $\mathbb{Q}[X,Y]$.

Exercice 3.26. Soient K un corps, $A = K[X,Y]/(X^2, XY, Y^2)$, $x = X \mod (X^2, XY, Y^2)$ et $y = Y \mod (X^2, XY, Y^2) \in A$.

- 1. Montrer que A est un K-espace vectoriel et que (1, x, y) en est une base.
- 2. Montrer que $A^{\times} = \{ax + by + c \mid a, b, c \in K \text{ et } a \neq 0\}.$
- 3. Montrer que les idéaux principaux de A sont (0), A, (y) et les $(x + \lambda y)$, $\lambda \in K$.
- 4. Soit I un idéal non principal de A. Montrer que I=(x,y).

Anneaux d'entiers des extensions quadratiques de \mathbb{Q} .

Exercice 3.27 (Extensions algébriques de \mathbb{Q}). Soit $\alpha \in \mathbb{C}$ tel qu'il existe $Q(X) \in \mathbb{Q}[X]$ non nul tel que $Q(\alpha) = 0$.

- 1. Montrer qu'il existe un unique $P_{\min}(\alpha)(X) = P(X) \in \mathbb{Q}[X]$ tel que
 - (i) $P(X) \neq 0$,
 - (ii) P(X) est unitaire,
 - (iii) $P(\alpha) = 0$,
 - (iv) $\deg P = \min\{\deg Q : Q(X) \in \mathbb{Q}[X] \text{ tel que } Q \neq 0 \text{ et } Q(\alpha) = 0\}.$
- 2. Montrer que $P_{\min}(\alpha)(X)$ est irréductible dans $\mathbb{Q}[X]$.
- 3. Soit $\varphi: \mathbb{Q}[X] \to \mathbb{C}$ le morphisme $Q(X) \mapsto Q(\alpha)$. Montrer que $\operatorname{Ker} \varphi = (P_{\min}(\alpha))$.

- 4. Montrer que Im $\varphi = \mathbb{Q}(\alpha)$ est un sous-corps de \mathbb{C} .
- 5. Soit $n = \deg P_{\min}(\alpha)$. Montrer que $\mathbb{Q}(\alpha)$ est un \mathbb{Q} -espace vectoriel de dimension n admettant pour base $(1, \alpha, \dots, \alpha^{n-1})$.
- 6. On suppose $\alpha \neq 0$ et $P_{\min}(\alpha)(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$. Écrire α^{-1} dans la base $(1, \alpha, \ldots, \alpha^{n-1})$.
- 7. Soit $\mu_{\alpha} : \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ l'application $x \mapsto \alpha x$ de multiplication par α . Montrer que μ_{α} est \mathbb{Q} -linéaire, donner la matrice de μ_{α} dans la base $(1, \alpha, \dots, \alpha^{n-1})$, et montrer que le polynôme caractéristique de μ_{α} est $P_{\min}(\alpha)$.

Exercice 3.28 (Clôture algébrique de \mathbb{Q} dans \mathbb{C}). Soit le sous-ensemble de \mathbb{C}

$$\overline{\mathbb{Q}} \underset{\text{def}}{=} \big\{ \alpha \in \mathbb{C} \mid \exists \ Q(X) \in \mathbb{Q}[X] \setminus \{0\} \text{ tel que } Q(\alpha) = 0 \big\}.$$

- 1. Soient $\alpha \in \mathbb{C}$ et $\mathbb{Q}[\alpha]$ le sous-anneau de \mathbb{C} engendré par α et \mathbb{Q} . Montrer que $\alpha \in \overline{\mathbb{Q}}$ si et seulement si $\mathbb{Q}[\alpha]$ est un \mathbb{Q} -espace vectoriel de dimension finie.
- 2. Soient $\alpha, \beta \in \overline{\mathbb{Q}}$, $P_{\alpha} = P_{\min}(\alpha)$, $P_{\beta} = P_{\min}(\beta)$ (cf. exercice 3.27), et $\psi : \mathbb{Q}[X, Y] \to \mathbb{C}$ le morphisme $Q(X, Y) \mapsto Q(\alpha, \beta)$.
 - (a) Montrer que $(P_{\alpha}(X), P_{\beta}(Y)) \subseteq \text{Ker } \psi$.
 - (b) Montrer que l'idéal $(P_{\alpha}(X), P_{\beta}(Y))$ de $\mathbb{Q}[X, Y]$ est un sous- \mathbb{Q} -espace vectoriel de $\mathbb{Q}[X, Y]$ de dimension deg P_{α} deg P_{β} .
 - (c) Montrer que Im ψ est un \mathbb{Q} -espace vectoriel de dimension finie.
- 3. Montrer que $\overline{\mathbb{Q}}$ est un sous-anneau de \mathbb{C} .
- 4. Montrer que $\overline{\mathbb{Q}}$ est un sous-corps de \mathbb{C} .
- 5. Montrer que $\dim_{\mathbb{Q}} \overline{\mathbb{Q}} = \infty$.
- 6. Montrer que $\overline{\mathbb{Q}}$ est dénombrable. En déduire que $\overline{\mathbb{Q}} \neq \mathbb{C}$.

Exercice 3.29 (Extensions quadratiques de \mathbb{Q}). Une extension quadratique de \mathbb{Q} est un sous-corps de \mathbb{C} de dimension $2 \operatorname{sur} \mathbb{Q}$. Pour $d \in \mathbb{Q}$ soit $\sqrt{d} \in \mathbb{C}$ une racine de $X^2 - d \in \mathbb{Q}[X]$ (l'autre est $-\sqrt{d}$). Un entier $n \in \mathbb{Z}$ est sans facteur carré si n = -1 ou $n = \pm p_1 \dots p_r$ avec $r \geq 1$, p_i premier et $p_i \neq p_j$ pour $i \neq j$. Soit K une extension quadratique de \mathbb{Q} .

- 1. Soit $\alpha \in K$. Montrer qu'il existe $P(X) \in \mathbb{Q}[X]$ tel que deg P=2 et $P(\alpha)=0$.
- 2. Montrer qu'il existe $\alpha \in \overline{\mathbb{Q}}$ tel que $K = \mathbb{Q}(\alpha)$.
- 3. Montrer qu'il existe $d \in \mathbb{Q}$ tel que $K = \mathbb{Q}(\sqrt{d})$.
- 4. Montrer qu'il existe $d \in \mathbb{Z}$ sans facteur carré tel que $K = \mathbb{Q}(\sqrt{d})$.
- 5. Soit $\alpha = x + y\sqrt{d} \in K$ avec $x, y \in \mathbb{Q}$. Donner $P_{\min}(\alpha)$ en fonction de x, y.

Exercice 3.30 (Anneau des entiers d'une extension quadratique de \mathbb{Q}). Soient $d \in \mathbb{Z}$ sans facteur carré, $K_d = \mathbb{Q}(\sqrt{d})$, et O_d le sous-ensemble de K_d formé des éléments qui sont racine d'un polynôme unitaire de degré 2 à coefficients entiers

$$O_d = \{ \alpha \in K_d \mid \exists n, m \in \mathbb{Z} \text{ tels que } \alpha^2 + n\alpha + m = 0 \}.$$

- 1. Montrer que $\mathbb{Z}[\sqrt{d}] \subseteq O_d$ et que $\mathbb{Q} \cap O_d = \mathbb{Z}$.
- 2. Soit $\alpha = x + y\sqrt{d} \in K_d$ avec $x, y \in \mathbb{Q}$. Montrer que $\alpha \in O_d$ si et seulement si $2x \in \mathbb{Z}$ et $x^2 dy^2 \in \mathbb{Z}$.
- 3. Montrer que

si
$$d \equiv 2$$
 ou $3 \mod 4\mathbb{Z}$ alors $O_d = \{a + b\sqrt{d}, a, b \in \mathbb{Z}\},$
si $d \equiv 1 \mod 4\mathbb{Z}$ alors $O_d = \{\frac{a + b\sqrt{d}}{2}, a, b \in \mathbb{Z} \text{ tels que } a \equiv b \mod 2\mathbb{Z}\}.$

4. Montrer que O_d est un sous-anneau de K_d avec $O_d = \mathbb{Z}[\sqrt{d}]$ si $d \equiv 2$ ou $3 \mod 4\mathbb{Z}$ et $O_d = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ si $d \equiv 1 \mod 4\mathbb{Z}$.

Exercice 3.31 (Norme et unités). Soient $d \in \mathbb{Z}$ sans facteur carré et $K_d = \mathbb{Q}(\sqrt{d})$.

- 1. Montrer que l'application norme $N_d: K_d^{\times} \to \mathbb{Q}^{\times}$ donnée par $x + y\sqrt{d} \mapsto x^2 dy^2$, $x, y \in \mathbb{Q}$, est un morphisme de groupes.
- 2. Montrer que $N_d(O_d) \subset \mathbb{Z}$.
- 3. Montrer que $O_d^{\times} = \{ \alpha \in O_d \mid N_d(\alpha) = \pm 1 \}.$

Exercice 3.32 (Unités, cas imaginaire). Soit $d \in \mathbb{Z}$ sans facteur carré tel que d < 0.

- 1. Montrer que $O_d^{\times} = \{ \alpha \in O_d \mid N_d(\alpha) = 1 \}$ (cf. exercice 3.31).
- 2. Montrer que l'application $\iota: K_d \to \mathbb{R} \oplus \mathbb{R}, x + y\sqrt{d} \mapsto (x,y)$ est injective.
- 3. Montrer que $\iota(O_d^{\times}) \subseteq (\frac{1}{2}\mathbb{Z} \oplus \frac{1}{2}\mathbb{Z}) \cap E(1,-d)$ où E(1,-d) est l'ellipse d'équation $X^2 + (-d)Y^2 = 1$ dans $\mathbb{R} \oplus \mathbb{R}$.
- 4. Montrer que E(1, -d) est compact dans $\mathbb{R} \oplus \mathbb{R}$.
- 5. Montrer que O_d^{\times} est fini.

Exercice 3.33 (Unités, cas réel). Soit $d \in \mathbb{Z}$ sans facteur carré tel que d > 0.

- 1. (a) Soient d=2 et $u=1+\sqrt{2}\in K_d$. Montrer que $u\in O_d^\times$ (cf. exercice 3.31).
 - (b) Montrer que O_d^{\times} est infini.
 - (c) Mêmes questions avec d = 3, 6, 7 et $u = 2 + \sqrt{3}, 5 + 2\sqrt{6}, 8 + 3\sqrt{7}$ resp.
- 2. (a) Soient d = 5 et $v = \frac{1}{2} + \frac{1}{2}\sqrt{5} \in K_d$. Montrer que $v \in O_d^{\times}$ (cf. exercice 3.31).
 - (b) Montrer que O_d^{\times} est infini.
 - (c) Mêmes questions avec d = 13, 17 et $v = \frac{3}{2} + \frac{1}{2}\sqrt{13}, 4 + \sqrt{17}$ respectivement.

Exercice 3.34 (Norme et irréductibles). Soient $d \in \mathbb{Z}$ sans facteur carré, $K_d = \mathbb{Q}(\sqrt{d})$, N_d la norme de l'exercice 3.31, et $\alpha \in O_d$. Montrer que si $N_d(\alpha)$ est irréductible dans \mathbb{Z} alors α est irréductible dans O_d . (La réciproque est fausse, cf. exercice 3.35.)

Exercice 3.35 (Anneaux non factoriels). Soient d = -5 et $K_d = \mathbb{Q}(\sqrt{-5})$.

- 1. Montrer que $a^2 + 5b^2 \neq 2$ et $a^2 + 5b^2 \neq 3$ pour tous $a, b \in \mathbb{Z}$.
- 2. Montrer que $2, 3, 1 + \sqrt{-5}, 1 \sqrt{-5}$ sont irréductibles dans O_d (cf. exercice 3.34).
- 3. Montrer que O_d n'est pas factoriel.
- 4. Mêmes questions avec d = 10 et $2, 3, 4 + \sqrt{10}, 4 \sqrt{10}$.

Exercice 3.36. Soient d = -5 et $K_d = \mathbb{Q}(\sqrt{-5})$.

- 1. Soit $\alpha \in O_d$ tel que $\alpha \mid 3$ et $\alpha \mid 1 + \sqrt{-5}$. Montrer que $\alpha \in O_d^{\times}$ (cf. exercice 3.35).
- 2. Montrer que $(3O_d + (1 + \sqrt{-5})O_d) \cap \mathbb{Z} = 3\mathbb{Z}$.
- 3. Montrer que le Lemme de Bézout est faux dans O_d .

Exercice 3.37 (Anneaux euclidiens). Soient $d=-1,\ K_d=\mathbb{Q}(i),\ \text{et }N_d$ la norme de l'exercice 3.31. Soient $\alpha,\beta\in O_d$ avec $\beta\neq 0$ et $x,y\in\mathbb{Q}$ tels que $\frac{\alpha}{\beta}=x+iy\in K_d$.

- 1. Montrer qu'il existe $a, b \in \mathbb{Z}$ tels que $|x a| \leq \frac{1}{2}$ et $|y b| \leq \frac{1}{2}$.
- 2. Montrer que $\left|\frac{\alpha}{\beta} (a+ib)\right| \leq \frac{1}{\sqrt{2}}$.
- 3. Soient $\delta = a + ib$ et $\rho = \alpha \delta \dot{\beta}$. Montrer que $N_d(\rho) < N_d(\beta)$.
- 4. Montrer que O_d est euclidien.
- 5. Soient d=2 et $K_d=\mathbb{Q}(\sqrt{2})$. Montrer que O_d est euclidien.

Exercice 3.38 (Ramification). Soit $p \in \mathbb{N}$ un nombre premier impair.

- 1. Montrer que l'inclusion de $\mathbb{Z}[\sqrt{d}]$ dans O_d induit un isomorphisme d'anneaux $\mathbb{Z}[\sqrt{d}]/p\mathbb{Z}[\sqrt{d}] \simeq O_d/pO_d.$
- 2. Montrer que l'application $\mathbb{Z}[X] \to \mathbb{Z}[\sqrt{d}], Q(X) \mapsto Q(\sqrt{d})$ induit un isomorphisme d'anneaux $\mathbb{F}_p[X]/(X^2-d) \simeq O_d/pO_d$.
- 3. L'entier d est un carré $\operatorname{mod} p$ s'il existe $r \in \mathbb{Z}$ tel que $d \equiv r^2 \operatorname{mod} p\mathbb{Z}$. Montrer que si $d \in p\mathbb{Z}$ alors O_d/pO_d n'est pas intègre,
 - si $d \notin p\mathbb{Z}$ et d carré modp alors $O_d/pO_d \simeq \mathbb{F}_p \oplus \mathbb{F}_p$,
 - si $d \notin p\mathbb{Z}$ et d non carré modp alors O_d/pO_d est un corps.
- 4. Montrer que
 - si $d \in p\mathbb{Z}$ alors $p = \pi^2$ avec $\pi \in O_d$ irréductible,
 - si $d \notin p\mathbb{Z}$ et d carré mod p alors $p = \pi_1 \pi_2$ avec $\pi_1, \pi_2 \in O_d$ irréductibles,
 - si $d \notin p\mathbb{Z}$ et d non carré mod p alors p est irréductible dans O_d .
- 5. On suppose $p \equiv 1 \mod 4\mathbb{Z}$.
 - (a) Montrer que -1 est un carré mod p.
 - (b) Montrer qu'il existe $a, b \in \mathbb{Z}$ tels que $p = a^2 + b^2$.

Compléments.

Exercice 3.39 (Nombres décimaux). Soit $\mathbb{Z}\left[\frac{1}{10}\right]$ le sous-anneau de \mathbb{Q} engendré par $\frac{1}{10}$. Montrer que $\mathbb{Z}[\frac{1}{10}]$ est euclidien.

Exercice 3.40. Soient A un anneau principal et S une partie multiplicativement stable de A. Montrer que $S^{-1}A$ est principal.

Exercice 3.41. Soient A un anneau factoriel et S une partie multiplicativement stable

- 1. Montrer que $S^{-1}A$ est factoriel.
- 2. Soit \mathcal{R} un système de représentants d'éléments irréductibles de A. Montrer que $\{\frac{\pi}{1} \in S^{-1}A \mid \pi \in \mathcal{R} \text{ et } (\pi) \cap S = \emptyset\}$ est un système de représentants d'irréductibles $\operatorname{de} S^{-1}A.$

Exercice 3.42 (Janvier 2008). Soient $\zeta \in \mathbb{C}$ une racine du polynôme $X^2 + X + 1$ et $\mathbb{Z}[\zeta] = \{a + \zeta b \; ; \; a, b \in \mathbb{Z}\}.$ Pour $a, b \in \mathbb{Z}$ on pose $N(a + \zeta b) = a^2 - ab + b^2$.

- 1. (a) Montrer que $\mathbb{Z}[\zeta]$ est un sous-anneau de \mathbb{C} .
 - (b) Montrer que $\mathbb{Z}[\zeta]$ est stable par conjugaison complexe.
- 2. (a) Soient $z, z' \in \mathbb{Z}[\zeta]$. Montrer que N(zz') = N(z)N(z').
- (b) Montrer que $\mathbb{Z}[\zeta]^{\times} = \{z \in \mathbb{Z}[\zeta] \mid N(z) \in \mathbb{Z}^{\times}\}.$ 3. (a) Montrer que 1ζ est irréductible dans $\mathbb{Z}[\zeta].$
 - (b) Montrer que 3 est réductible dans $\mathbb{Z}[\zeta]$.

Exercice 3.43 (Août 2008). Soit A un anneau commutatif.

- 1. Soient $\varphi:A\to B$ un morphisme d'anneaux commutatifs, J un idéal de B, et $\varphi^{-1}(J) = \{a \in A \mid \varphi(a) \in J\}$. Montrer que si J est un idéal premier de B alors $\varphi^{-1}(J)$ est un idéal premier de A.
- 2. Soient I un idéal de A et $\pi: A \to A/I, a \mapsto a+I$ le morphisme de projection. Soient $a \in A$ et J l'idéal engendré par a+I dans A/I. Montrer que $\pi^{-1}(J)=(a,I)$.
- 3. Montrer que l'idéal $(X^2+1,3)$ est premier dans $\mathbb{Z}[X]$. Est-il maximal?

4. Soit $\mathbb{Z}[i]$ l'anneau des entiers de Gauss. Montrer que 3 est irréductible dans $\mathbb{Z}[i]$.

Exercice 3.44 (Janvier 2009).

- 1. Soient A un anneau commutatif et I, J des idéaux de A.
 - (a) Montrer que $(A/I)/(I+J/I) \simeq A/I+J$.
 - (b) On suppose que J=(a) avec $a \in A$. Montrer que I+J/I=(a+I).

Soit $\mathbb{Z}[i]$ l'anneau des entiers de Gauss.

- 2. Montrer que $\mathbb{Z}[X]/(X^2+1) \simeq \mathbb{Z}[i]$.
- 3. Soient $p \in \mathbb{N}$ un nombre premier et $p\mathbb{Z}[i]$ l'idéal engengré par p dans $\mathbb{Z}[i]$.
 - (a) Montrer que $\mathbb{Z}[X]/(p, X^2 + 1) \simeq \mathbb{Z}[i]/p\mathbb{Z}[i]$.
 - (b) Montrer que $\mathbb{Z}[X]/(p, X^2 + 1) \simeq \mathbb{F}_p[X]/(X^2 + 1)$.
- 4. Décomposer $X^2 + 1$ en produit d'éléments irréductibles dans $\mathbb{F}_3[X]$ et dans $\mathbb{F}_5[X]$.
- 5. (a) Montrer que $\mathbb{Z}[i]/3\mathbb{Z}[i]$ est un corps.
 - (b) Montrer que $\mathbb{Z}[i]/5\mathbb{Z}[i] \simeq \mathbb{F}_5 \times \mathbb{F}_5$.

Exercice 3.45 (Août 2009). Soit $\mathbb{Z}[i]$ l'anneau des entiers de Gauss.

- 1. Soit $\sigma: \mathbb{C} \to \mathbb{C}$ la conjugaison complexe.
 - (a) Montrer que la restriction de σ à $\mathbb{Z}[i]$ est un automorphisme d'anneau.
 - (b) Montrer que $\mathbb{Z}[i]^{\times} = \{x \in \mathbb{Z}[i] \mid x\sigma(x) = 1\}.$
 - (c) Soit $x \in \mathbb{Z}[i]$ tel que $x\sigma(x) = p$ premier. Montrer que x est irréductible dans
 - (d) Montrer que 1+i est irréductible dans $\mathbb{Z}[i]$ et que 1-i=u(1+i) avec $u \in \mathbb{Z}[i]^{\times}$.
- 2. Soit $P(X) = 4X^5 + 4X^2 + 1 \in \mathbb{Z}[X]$.

 - (a) Montrer que $(1+i)P(\frac{X}{1+i}) \in \mathbb{Z}[i][X]$. (b) Montrer que $(1+i)P(\frac{X}{1+i})$ est irréductible dans $\mathbb{Q}(i)[X]$.
 - (c) Montrer que P(X) est irréductible dans $\mathbb{Q}(i)[X]$.
 - (d) Montrer que P(X) est irréductible dans $\mathbb{Q}[X]$.
 - (e) Montrer que $X^5 + 4X^3 + 4$ est irréductible dans $\mathbb{Q}[X]$ (cf. exercice 3.7).

Exercice 3.46 (Septembre 2007). Soient K un corps, V un espace vectoriel sur K de dimension finie, et $f:V\to V$ une application K-linéaire. Pour $n\in\mathbb{N}$ on pose $f^n=$ $f \circ \ldots \circ f$ (n fois) si $n \ge 1$ et $f^0 = \mathrm{Id}_V$. Soit $\psi : K[X] \to \mathrm{End}_{K\text{-lin}}(V)$ l'application donnée par $P(X) \mapsto P(f)$.

- 1. Montrer que ψ est un morphisme d'anneau.
- 2. Montrer qu'il existe un unique polynôme $P_f(X) \in K[X]$ tel que : (i) $P_f(X) \neq 0$,
 - (ii) $P_f(X)$ est unitaire, et (iii) $P(f) = 0 \Rightarrow P_f(X)$ divise P(X).
- 3. On suppose que f vérifie la relation $f^2 + \mathrm{Id}_V = 0$.
 - (a) On suppose $K = \mathbb{R}$. Montrer que l'anneau $\operatorname{Im} \psi$ est isomorphe à \mathbb{C} .
 - (b) On suppose $K = \mathbb{C}$. Montrer que Im ψ est isomorphe à \mathbb{C} ou $\mathbb{C} \times \mathbb{C}$.

Exercice 3.47. Soient K un corps, I = (X - XYZ) l'idéal de K[X, Y, Z], et x, y, zles images de X, Y, Z dans A = K[X, Y, Z]/I. Soit $P(X, Y, Z) \in K[X, Y, Z]$ tel que $P(X) + I \in A^{\times}$. On pose $\alpha = P(0, Y, Z) \in K[Y, Z]$.

- 1. Montrer que $\alpha \in K^{\times}$.
- 2. Montrer que si $XY XP(X, Y, Z) \in I$ alors $Y \alpha \in (1 YZ) = J \subset K[Y, Z]$.
- 3. Montrer que si $Y \alpha \in J$ alors $Y \alpha \in (Y^2 1) \subset K[Y]$.

- 4. Montrer que $xy \neq ux$ pour tout $u \in A^{\times}$.
- 5. Montrer que (x) = (xy) dans A.

Exercice 3.48 (Janvier 2008). Soient A un anneau commutatif et J un idéal de A.

- 1. Soit B un sous-anneau de A.
 - (a) Montrer que $J \cap B$ est un idéal de B.
 - (b) Montrer que si J est premier dans A alors $J \cap B$ est premier dans B.
- 2. Soit I un idéal de A tel que $I \subseteq J$. Montrer que J est un idéal premier (resp. maximal) de A si et seulement si J/I est un idéal premier (resp. maximal) de A/I. Soit J un idéal premier de $\mathbb{Z}[X]$.
 - 3. (a) Montrer que $J \cap \mathbb{Z} = (0)$ ou $J \cap \mathbb{Z} = p\mathbb{Z}$ avec p premier dans \mathbb{Z} .
 - (b) Montrer que $J \cap \mathbb{Z} = p\mathbb{Z}$ avec p premier si et seulement si $p \in J$.
 - 4. On suppose $J \cap \mathbb{Z} = p\mathbb{Z}$ avec p premier. Soit $I = p\mathbb{Z}[X]$ l'idéal engendré par p dans $\mathbb{Z}[X]$.
 - (a) Montrer que $\mathbb{Z}[X]/I \simeq \mathbb{F}_p[X]$.
 - (b) Montrer que si $I \neq J$ alors l'idéal J/I est engendré par un élément irréductible.
 - (c) Montrer que $J = p\mathbb{Z}[X]$ ou (P(X), p) avec $P(X) + p\mathbb{Z}[X]$ irréductible dans $\mathbb{F}_p[X]$.
 - 5. Déterminer l'ensemble des idéaux maximaux \mathfrak{m} de $\mathbb{Z}[X]$ tels que $\mathfrak{m} \cap \mathbb{Z} \neq (0)$.

Exercice 3.49 (Août 2008). Soit p un nombre premier. Pour $a \in \mathbb{Z}$ soit $\bar{a} = a + p\mathbb{Z} \in \mathbb{F}_p$. Soit $\pi : \mathbb{Z}[X] \to \mathbb{F}_p[X]$ le morphisme $\sum_{0 \le k \le n} a_k X^k \mapsto \sum_{0 \le k \le n} \bar{a}_k X^k$. Pour $\alpha \in \mathbb{F}_p$ soit $\xi_\alpha : \mathbb{F}_p[X] \to \mathbb{F}_p, P(X) \mapsto P(\alpha)$ le morphisme d'évaluation en α . Soient $a \in \mathbb{Z}$ et

$$\mathfrak{m}_a = \{P(X) \in \mathbb{Z}[X] \mid p \text{ divise } P(a)\}.$$

- 1. (a) Montrer que $\mathfrak{m}_a = \operatorname{Ker}(\xi_{\bar{a}} \circ \pi)$.
 - (b) Montrer que \mathfrak{m}_a est un idéal maximal de $\mathbb{Z}[X]$.
 - (c) Montrer que $\pi(\mathfrak{m}_a) = \operatorname{Ker}(\xi_{\bar{a}})$.
- 2. Soient $a, b \in \mathbb{Z}$. Montrer que $\mathfrak{m}_a = \mathfrak{m}_b$ si et seulement si $\bar{a} = \bar{b}$.
- 3. Montrer que $\bigcap_{\alpha \in \mathbb{F}_p} \operatorname{Ker}(\xi_{\alpha}) = (X^p X)$.
- 4. Montrer que

$$\bigcap_{a\in\mathbb{Z}}\mathfrak{m}_a=(X^p-X,p).$$

Exercice 3.50. Soit $A = \mathcal{H}(\mathbb{C})$ l'anneau commutatif des fonctions holomorphes $\mathbb{C} \to \mathbb{C}$.

- 1. Montrer que A est intègre.
- 2. Déterminer A^{\times} . Montrer que : $f \in A^{\times} \Leftrightarrow \exists g \in A \mid f = \exp(g)$.
- 3. Soit $f \in A$. Montrer que f est irréductible dans A si et seulement si f a un unique zéro qui de plus est simple.
- 4. Montrer que A n'est pas factoriel.