Algèbre linéaire et géométrie I Juin 2017, section mathématique

Documents autorisés.

Exercice 1. Soient $B = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ dont la matrice dans la base B est

$$M_B(f) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Soient $v_0 = e_1 - e_2 + e_3$, $v_1 = e_3$, $v_2 = e_1 + e_2 + e_3$, et $C = (v_0, v_1, v_2)$.

1. Montrer que C est une base de \mathbb{R}^3 et déterminer $M_C(f)$.

Soit $p \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ la projection sur $\langle v_0, v_1 \rangle$ parallèlement à $\langle v_2 \rangle$.

- 2. Existe-t-il $u \in \mathbb{R}^3$ tel que f(u) et p(u) sont non nuls et (f(u), p(u)) n'est pas libre?
- 3. Montrer que (f, p) est libre.

Exercice 2. Soient E un K-espace vectoriel de dimension finie et $f, g \in \operatorname{End}_K(E)$.

- 1. Montrer que si $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g \circ f)$ alors $\operatorname{Im}(f) \cap \operatorname{Ker}(g) = \{0_E\}$.
- 2. Montrer que si g est bijectif, alors $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g \circ f)$ ssi $\operatorname{Ker}(f \circ g \circ f) = \operatorname{Ker}(f)$.
- 3. Soient $f, g_a \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ dont les matrices dans une base $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 sont

$$M_B(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $M_B(g_a) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & a & 0 \\ a & 1 & 0 \end{pmatrix}$.

Déterminer les $a \in \mathbb{R}$ tels que $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(g_a \circ f)$.

Exercice 3. Soit E un K-espace vectoriel de dimension finie. Pour tout sous-espace vectoriel U de E, soit $S(U) = \{ f \in \operatorname{End}_K(E) \mid f(U) \subseteq U \}$. Soient $V, W \subseteq E$ des sous-espaces tels que $E = V \oplus W$ et p la projection sur V parallèlement à W. Soient

$$C(p) = \{ f \in \operatorname{End}_K(E) \mid f \circ p = p \circ f \}$$

et $\varphi : \operatorname{End}_K(E) \to \operatorname{Hom}_K(W,V)$ l'application linéaire qui à $f \in \operatorname{End}_K(E)$ associe $\varphi(f) : W \to V$, $w \mapsto p(f(w))$.

- 1. Montrer que $S(W) = \text{Ker}(\varphi)$.
- 2. Montrer que φ est surjective.
- 3. Montrer que $S(V) \cap S(W) = C(p)$ et $S(V) + S(W) = \operatorname{End}_K(E)$.
- 4. Déterminer $\dim C(p)$ en fonction de $\dim V$ et $\dim W$.