Algèbre linéaire et géométrie I Juin 2018, section mathématique

Documents autorisés.

Exercice 1. Soient $B = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $f, g \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ telles que

$$M_B(f) = \begin{pmatrix} 3 & -4 & 2 \\ 2 & -3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $M_B(g) = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

- 1. Montrer que $C = (g(e_1), g(e_2), g(e_3))$ est une base de \mathbb{R}^3 et déterminer $M_C(f)$.
- 2. Déterminer une base de Ker(f Id) et une base de $Ker(f \circ f Id)$.
- 3. Quels sont les plans P de \mathbb{R}^3 tels que $\dim(f \operatorname{Id})(P) = \dim g(P)$? Quels sont ceux tels que $\dim(f \circ f \operatorname{Id})(P) = \dim g(P)$?

Exercice 2. Soient E un K-espace vectoriel de dimension finie et $f, g \in \operatorname{End}_K(E)$.

- 1. Montrer que dim $\operatorname{Im}(g \circ f) = \dim \operatorname{Im}(f)$ si et seulement si $\operatorname{Im}(f) \cap \operatorname{Ker}(g) = \{0_E\}$.
- 2. Montrer que dim $\operatorname{Im}(f \circ g) = \dim \operatorname{Im}(f)$ si et seulement si $\operatorname{Ker}(f) + \operatorname{Im}(g) = E$.

Soient $f, g_a \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ dont les matrices dans une base $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 sont

$$M_B(f) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $M_B(g_a) = \begin{pmatrix} a & 0 & 1 \\ 0 & a & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- 3. Déterminer les $a \in \mathbb{R}$ tels que dim $\operatorname{Im}(g_a \circ f) = \dim \operatorname{Im}(f)$.
- 4. Déterminer les $a \in \mathbb{R}$ tels que dim $\operatorname{Im}(f \circ g_a) = \dim \operatorname{Im}(f)$.

Exercice 3. Soit E un K-espace vectoriel de dimension finie. Soient V, W des sous-espaces vectoriels de E tels que $E = V \oplus W$ et $p \in \operatorname{End}_K(E)$ la projection sur V parallèlement à W. Soit l'application linéaire

$$\pi : \operatorname{End}_K(E) \longrightarrow \operatorname{End}_K(E)$$

$$f \longmapsto f - f \circ p.$$

- 1. Montrer que $\operatorname{Im}(\pi) = \{g \in \operatorname{End}_K(E) \mid V \subseteq \operatorname{Ker}(g)\}.$
- 2. Montrer que l'application linéaire $\operatorname{Im}(\pi) \to \operatorname{Hom}_K(W, E), g \mapsto g_{|W}$ est bijective.
- 3. Soit $F = \{ f \in \text{End}_K(E) \mid f \circ p = f \}$. Déterminer dim F en fonction de dim E et dim V.