Algèbre linéaire et géométrie I Août 2017, section physique

Documents autorisés.

Exercice 1. Soient la base B = ((1,0,0),(0,1,0),(0,0,1)) de \mathbb{R}^3 et $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ tel que

$$M_B(f) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}.$$

Soient $v_1 = (1, -2, 1), v_2 = (2, 0, -1)$ et $v_3 = (1, 1, 1) \in \mathbb{R}^3$.

- 1. Montrer que $C = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 et déterminer $M_C(f)$.
- 2. Déterminer une base de Ker(f) et une base de Im(f).
- 3. A-t-on $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$? A-t-on $\mathbb{R}^3 = \operatorname{Ker}(f \circ f) \oplus \operatorname{Im}(f \circ f)$?

Exercice 2.

1. Soient E un K-espace vectoriel de dimension finie, U, V des sous-espaces vectoriels de E et $f \in \text{End}_K(E)$. Montrer que f(U) = f(V) si et seulement si U + Ker(f) = V + Ker(f).

Soient $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et $U_a = \langle (1, 0, 1), (a, 1, 0) \rangle \subseteq \mathbb{R}^3, \ a \in \mathbb{R}$. Soient la base B = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) de \mathbb{R}^3 et $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ tel que

$$M_B(f) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

- 2. Déterminer la dimension de V + Ker(f).
- 3. Déterminer les $a \in \mathbb{R}$ tels que $((1,0,1),(a,1,0),(1,1,-1)) = \mathbb{R}^3$.
- 4. Déterminer les $a \in \mathbb{R}$ tels que $f(V) = f(U_a)$.

Exercice 3. Soit $n \ge 2$ entier. Soient $\alpha, \beta : \mathbb{R}^n \to \mathbb{R}$ des applications linéaires non nulles telles que $\operatorname{Ker}(\alpha) \ne \operatorname{Ker}(\beta)$. Soit l'application

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^2$$

 $u \longmapsto (\alpha(u), \beta(u)).$

- 1. Montrer que f est linéaire et que $Ker(f) = Ker(\alpha) \cap Ker(\beta)$.
- 2. Déterminer dim $\operatorname{Ker}(\alpha)$ et montrer que $\operatorname{Ker}(\alpha) + \operatorname{Ker}(\beta) = \mathbb{R}^n$.
- 3. Montrer que f est surjective.