
THE EXTERIOR SQUARE OF A SIMPLE ALGEBRA

MAJA VOLKOV

Abstract. We construct the exterior square over K of a simple algebra central over a
quadratic extension F of K, and prove that it is isomorphic to the direct product of its
exterior square over F with its norm from F to K.
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Introduction

Let K be a characteristic zero field. Exterior powers of finite dimensional K-algebras
are constructed for two fundamental classes of these : central simple K-algebras (see [BI]
§10.A) and étale K-algebras (see [Sa] §1). This raises the question of extending these
constructions to semisimple algebras. In this paper we consider the particular case of the
exterior square of a simple algebra central over a quadratic extension of K. We construct
and describe our object using the theory of idempotents and Galois descent. Along the
way we are led to consider exterior squares of direct products of central simple algebras.

Let F/K be a quadratic field extension and A a central simple F -algebra. The exterior
square of A over F is introduced in section 1. It is the central simple F -algebra

λ2
FA =

def
EndA⊗FA

(
(A⊗FA)(1− gA)

)
where gA ∈ A⊗F A is the Goldman element of A related to the reduced trace map of A.
In section 2 we compute the exterior square of the tensor product of two central simple
F -algebras (proposition 2.2), which enables us to highlight the unsual behaviour of λ2

F
with respect to simple subalgebras (proposition 2.4).
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The exterior square of an étale algebra L/F is introduced in section 3. Following [Sa],
it is the étale F -algebra

λ2
FL =

def
Im
(

Sym2
F L→ EndF (∧2

FL)
)

where Sym2
F L is the subalgebra of symmetric elements in L⊗F L naturally acting on the

F -vector space ∧2
FL. We compute its associated Galois set of characters in proposition 3.2

and describe its behaviour with respect to direct products in proposition 3.4. When L is a
maximal étale subalgebra of a central simple F -algebra A, that is when dimF L = degF A,
we show in proposition 3.7 that λ2

FL identifies with a maximal étale subalgebra of λ2
FA,

thus relating both constructions.
In section 4 we define and compute the exterior square over F of the direct product of

two central simple F -algebras B and C. We first consider the case when D = B × C is
a maximal subalgebra of a central simple F -algebra A, that is when degF B + degF C =
degF A, and describe in proposition 4.3 the natural image of D⊗F D in λ2

FA. In the

general case, scalar extension to an algebraic closure F canonically embeds D into a split
central simple F -algebra of degree degF B + degF C, and we define λ2

FD to be the image

of D⊗FD in the exterior square over F of that split algebra (see definition 4.7). We then
show in proposition 4.8 that there is a canonical F -algebra isomorphism

λ2
F (B × C) ' λ2

FB ×B⊗FC × λ2
FC .

We then proceed to construct the exterior square over K of a central simple F -algebra.
In section 5 we review some basic facts on norm (or corestriction) algebras. Here we only
consider norms from F to K which significantly simplifies their description since F/K is
quadratic. In section 6 we define λ2

KA for a central simple F -algebra A by combining the
results of section 4 with Galois descent. We first note that F⊗KA is canonically isomorphic
to the product of two central simple F -algebras (lemma 6.1), so that we may consider the
F -algebra λ2

F (F⊗KA) of definition 4.7. The Galois group G(F/K) acts naturally on the
latter, and we set (definition 6.2)

λ2
KA =

def

(
λ2
F (F⊗KA)

)G(F/K)
.

It is a semisimple K-algebra such that F ⊗K λ2
KA ' λ2

F (F ⊗KA). Our main result is
that this algebra is canonically isomorphic to the direct product of two familiar algebras
attached to A, the one being central simple over F and the other over K.

Theorem.(6.3) Let F/K be a quadratic field extension and A a central simple F -algebra.
There is a canonical K-algebra isomorphism

λ2
KA ' λ2

FA×NF/K(A).

As an illustration we compute the exterior square over K of certain cyclic F -algebras
in example 6.6. We finally show that our construction commutes with scalar extension.

Theorem.(6.7) Let F/K be a quadratic extension and A a central simple F -algebra. Let
L/K be a field extension. There is a canonical L-algebra isomorphism

L⊗Kλ2
KA ' λ2

L(L⊗KA).
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1. The exterior square

Let A be a central simple F -algebra of degree n over F . The F -algebra isomorphism
A⊗F Aop ' EndF (A) of the Artin-Whaples Theorem induces an F -linear isomorphism,
called the Sandwich map,

SdA : A⊗FA
∼−→ EndF (A)

a⊗ b 7−→

{
A→ A

c 7→ acb.

Viewing the reduced trace map TrdA : A→ F as an F -linear endomorphism of A via the
canonical embedding F ↪→ A, the element gA ∈ A⊗FA such that SdA(gA) = TrdA is the
Goldman element of A. It satisfies the following properties (see [BI] §3.A):

(i) g2
A = 1.

(ii) For all a, b ∈ A, gA(a⊗ b) = (b⊗ a)gA.
(iii) When A = EndF (V ) with V a vector space over F , the canonical isomorphism

EndF (V )⊗FEndF (V ) ' EndF (V ⊗FV ) sends gA to the F -linear automorphism of
V ⊗F V given by u⊗ v 7→ v ⊗ u.

In the split case, let V ∗ = HomF (V, F ) be the dual vector space, (ei)1≤i≤n an F -basis
for V , and (e∗i )1≤i≤n the dual basis (that is, e∗i (ej) = δij for all i, j). Under the canonical
isomorphism EndF (V ) ' V ⊗F V ∗ the Goldman element is

gA =
∑

1≤i,j≤n
(ei ⊗ e∗j )⊗ (ej ⊗ e∗i ) ∈ (V ⊗F V ∗)⊗F (V ⊗F V ∗).

The exterior square of A over F is

λ2
FA =

def
EndA⊗FA

(
(A⊗FA)(1− gA)

)
.

For A = F the Goldman element is trivial and λ2
FF = 0. For n ≥ 2 the algebra λ2

FA is

central simple over F , of degree
(
n
2

)
= n(n−1)

2 , and Brauer equivalent to A⊗FA. When A =
EndF (V ) with V an F -vector space, the canonical identification EndF (V )⊗F EndF (V ) '
EndF (V ⊗F V ) induces an isomorphism

λ2
F EndF (V ) ' EndF (∧2

FV ).

Example 1.1. Let L/F be a cyclic extension of degree n with Gal(L/F ) = 〈τ〉, and
a ∈ F×. The cyclic algebra (L/F, a, τ) is central simple over F , of degree n, and its index
is the order of a in F×/NL/F (L×). Writing ∼ for Brauer equivalence, we have

λ2
F (L/F, a, τ) ∼ (L/F, a, τ)⊗F (L/F, a, τ) 'Mn

(
(L/F, a2, τ)

)
.

When n is even, let E be the subfield of L fixed by τn/2 and τ̄ the image of τ in Gal(E/F ).
Then [E : F ] = n/2, Gal(E/F ) = 〈τ̄〉, and

(L/F, a2, τ) 'M2

(
(E/F, a, τ̄)

)
.

Comparing degrees and Brauer classes we obtain

λ2
F (L/F, a, τ) '

{
Mn−1

(
(E/F, a, τ̄)

)
when n is even

Mn−1
2

(
(L/F, a2, τ)

)
when n is odd.
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Lemma 1.2. Let A be a central simple F -algebra and L/F a field extension. There is a
canonical L-algebra isomorphism L⊗F λ2

FA ' λ2
L(L⊗FA).

Proof. Follows from the invariance of TrdA under scalar extension. �

The symmetric square of A over F is

s2
FA =

def
EndA⊗FA

(
(A⊗FA)(1 + gA)

)
.

It is a central simple F -algebra of degree n(n+1)
2 Brauer equivalent to A⊗F A. When

A = EndF (V ) the canonical identification EndF (V )⊗F EndF (V ) ' EndF (V ⊗F V ) induces
an isomorphism s2

F EndF (V ) ' EndF (S2
FV ).

The exterior and symmetric square may be described using the theory of idempotents
(see [La] §21). Recall that if R is a ring and e ∈ R is an idempotent, then eRe is a ring
with identity e, that is simple when R is. Consider the elements

eA =
def

1

2
(1− gA) and fA =

def

1

2
(1 + gA) ∈ A⊗FA .

Then eA and fA = 1 − eA are orthogonal idempotents, and multiplication on the right
induces F -algebra isomorphisms

eA(A⊗FA)eA ' λ2
FA and fA(A⊗FA)fA ' s2

FA .

2. Tensor products

Let A be a central simple F -algebra and eA, fA = 1 − eA ∈ A ⊗F A the idempotents
introduced in section 1. We have the Pierce decomposition ( [La] §21)

A⊗FA = eA(A⊗FA)eA ⊕ eA(A⊗FA)fA ⊕ fA(A⊗FA)eA ⊕ fA(A⊗FA)fA.

Multiplication on the right yields eA(A⊗FA)fA ' HomA⊗FA

(
(A⊗FA)eA, (A⊗FA)fA

)
and

fA(A⊗FA)eA ' HomA⊗FA

(
(A⊗FA)fA, (A⊗FA)eA

)
. Set

λs2
FA =

def
HomA⊗FA

(
(A⊗FA)eA , (A⊗FA)fA

)
and

sλ2
FA =

def
HomA⊗FA

(
(A⊗FA)fA , (A⊗FA)eA

)
.

In the split case the identification EndF (V )⊗FEndF (V ) ' EndF (V⊗FV ) induces isomor-
phisms λs2

F EndF (V ) ' HomF (∧2
FV, S

2
FV ) and sλ2

F EndF (V ) ' HomF (S2
FV,∧2

FV ). We
write the Pierce decomposition in the matrix form

A⊗FA =

(
eA(A⊗FA)eA eA(A⊗FA)fA
fA(A⊗FA)eA fA(A⊗FA)fA

)
'
can

(
λ2
FA λs2

FA
sλ2

FA s2
FA

)
as it is more suggestive regarding the algebra structure.

Lemma 2.1. Let A,B be central simple algebras over F with respective Goldman elements
gA and gB. The canonical isomorphism (A⊗F B) ⊗F (A⊗F B) ' (A⊗F A)⊗F (B⊗F B)
identifies the Goldman element of A⊗FB with gA ⊗ gB.

Proof. The canonical isomorphism (A⊗FB)⊗F (A⊗FB) ' (A⊗FA)⊗F (B⊗FB) identifies
TrdA⊗FB with TrdA⊗TrdB via the Sandwich maps. �
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Proposition 2.2. Let A,B be central simple F -algebras. There is a canonical F -algebra
isomorphism

λ2
F (A⊗FB) '

(
λ2
FA⊗F s2

FB λs2
FA⊗F sλ2

FB
sλ2

FA⊗F λs2
FB s2

FA⊗F λ2
FB

)
.

Proof. Let ξ : (A⊗FA)⊗F (B⊗FB)→ (A⊗FB)⊗F (A⊗FB) be the canonical isomorphism
(a⊗ a′)⊗ (b⊗ b′) 7→ (a⊗ b)⊗ (a′ ⊗ b′). Then ξ−1 induces an isomorphism

λ2
F (A⊗FB) ' ξ−1(eA⊗B)

(
(A⊗FA)⊗F (B⊗FB)

)
ξ−1(eA⊗B).

By lemma 2.1 we have ξ(gA ⊗ gB) = gA⊗B, therefore

ξ−1(eA⊗B) =
1

2

(
1− gA ⊗ gB

)
= eA ⊗ fB + fA ⊗ eB

where eA ⊗ fB and fA ⊗ eB are orthogonal idempotents. It follows that λ2
F (A⊗F B) is

isomorphic to((
eA(A⊗A)eA

)
⊗
(
fB(B⊗B)fB

) (
eA(A⊗A)fA

)
⊗
(
fB(B⊗B)eB

)(
fA(A⊗A)eA

)
⊗
(
eB(B⊗B)fB

) (
fA(A⊗A)fA

)
⊗
(
eB(B⊗B)eB

))
which yields the result. �

Example 2.3. When A = EndF (V ) and B = EndF (W ) with V,W vector spaces over F ,
we have

λ2
F

(
EndF (V )⊗F EndF (W )

)
' λ2

F

(
EndF (V ⊗FW )

)
' EndF

(
∧2
F (V ⊗FW )

)
.

The canonical decomposition

∧2
F (V ⊗FW ) ' ∧2

FV ⊗F S2
FW ⊕ S2

FV ⊗F ∧2
FW

identifies EndF
(
∧2
F (V ⊗FW )

)
with(

EndF
(
∧2
FV ⊗S2

FW
)

HomF

(
∧2
FV ⊗S2

FW,S
2
FV ⊗∧2

FW
)

HomF

(
S2
FV ⊗∧2

FW,∧2
FV ⊗S2

FW
)

EndF
(
S2
FV ⊗∧2

FW
) )

,

which in turn is isomorphic to(
EndF (∧2

FV )⊗EndF (S2
FW ) HomF (∧2

FV, S
2
FV )⊗HomF (S2

FW,∧2
FW )

HomF (S2
FV,∧2

FV )⊗HomF (∧2
FW,S

2
FW ) EndF (S2

FV )⊗EndF (∧2
FW )

)
in accordance with proposition 2.2.

Let A be a central simple F -algebra and B ⊆ A a subalgebra. Then B⊗FB ⊆ A⊗FA
is a subalgebra stable by conjugation by gA. It follows that eA(B⊗FB)eA is a subalgebra
of eA(A⊗FA)eA ' λ2

F (A).

Proposition 2.4. Let A be a central simple F -algebra and B ⊂ A a proper simple subal-
gebra central over F . Then eA(B⊗FB)eA ' λ2

FB × s2
FB.

Proof. Let C = CA(B) be the centraliser of B in A. By the Double Centraliser Theorem,
C is central simple over F and the map µ : B⊗F C → A, b ⊗ c 7→ bc is an F -algebra
isomorphism. Let ξ : (B⊗F B)⊗F (C⊗F C) → (B⊗F C)⊗F (B⊗F C) be the canonical
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isomorphism (b⊗ b′)⊗ (c⊗ c′) 7→ (b⊗ c)⊗ (b′⊗ c′) and ι : B⊗FB ↪→ (B⊗FB)⊗F (C⊗FC)
be the map β 7→ β ⊗ 1. The diagram

B⊗FB� _
ι
��

� � incl // A⊗FA

(B⊗FB)⊗F (C⊗FC)
∼
ξ
// (B⊗FC)⊗F (B⊗FC)

o µ⊗µ

OO

commutes, and (µ⊗µ)(eB⊗C) = eA since TrdB⊗C = TrdA ◦µ. Therefore the isomorphism
(µ⊗ µ) ◦ ξ identifies ξ−1(eB⊗C) ι(B⊗FB) ξ−1(eB⊗C) with eA(B⊗FB)eA. Proposition 2.2
shows that ξ−1(eB⊗C)

(
(B⊗FB)⊗F (C⊗FC)

)
ξ−1(eB⊗C) identifies with((

eB(B⊗B)eB
)
⊗
(
fC(C⊗C)fC

) (
eB(B⊗B)fB

)
⊗
(
fC(C⊗C)eC

)(
fB(B⊗B)eB

)
⊗
(
eC(C⊗C)fC

) (
fB(B⊗B)fB

)
⊗
(
eC(C⊗C)eC

)) .
When B 6= A we have degF C ≥ 2 hence λ2

FC 6= 0, from which it follows that

ξ−1(eB⊗C) ι(B⊗FB) ξ−1(eB⊗C) ' eB(B⊗FB)eB × fB(B⊗FB)fB.

�

Example 2.5. LetB = EndF (V ) and A = EndF (V⊗FW ) where V,W are F -vector spaces.
Example 2.3 shows that eA(B⊗FB)eA ' EndF (∧2

FV )× EndF (S2
FV ) when dimF W ≥ 2.

3. Étale algebras

Let L be an étale F -algebra. Let Sym2
F L be the subalgebra of L⊗F L consisting of

elements fixed by the automorphism sL : x⊗ y 7→ y⊗ x, that is, the subalgebra generated
by the x⊗y+y⊗x with x, y ∈ L. Since multiplication by elements in Sym2

F L stabilises the
sub-vector space of antisymmetric elements in L⊗F L, it induces an F -algebra morphism

ΨL : Sym2
F L→ EndF (∧2

FL) .

The exterior square of L over F is defined in [Sa] §1 as

λ2
FL =

def
Im ΨL .

This object is denoted E2(L/F ) in [Sa], and our notation is justified by proposition 3.7
below. It is an étale F -algebra of dimension

(
n
2

)
, where n = dimF L. Let eL ∈ Sym2

F L be
the unique idempotent such that ΨL induces an isomorphism

ΨL : (Sym2
F L)eL

∼−→ λ2
FL .

In the split case L ' F × . . . × F (n times), let {e1, . . . , en} be a full set of orthogonal
idempotents of L, that is, orthogonal idempotents such that e1 + . . .+ en = 1. Then

eL =
∑

1≤i<j≤n
(ei ⊗ ej + ej ⊗ ei) .

Similarly, multiplication by Sym2
F L stabilises the sub-vector space of symmetric elements

in L⊗F L, this time inducing an F -algebra isomorphism

ΦL : Sym2
F L

∼−→ EndF (S2
FL) .
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Thus, as expected, we define the symmetric square of L over F to be

s2
FL =

def
Im ΦL ' Sym2

F L .

It is an étale F -algebra of dimension
(
n+1

2

)
.

These constructions are compatible with scalar extension : if E/F is a field extension,
there are canonical E-algebra isomorphisms

E⊗F s2
FL ' s2

E(E⊗F L) and E⊗F λ2
FL ' λ2

E(E⊗F L) .

Let G = Gal(F/F ) be the absolute Galois group of F . Recall that the functor L 7→
X(L) = HomF−alg(L,F ) sets an anti-equivalence between the category of étale F -algebras

and the category of finite continuous G-sets, a quasi-inverse being X 7→ Maps(X,F )G =
MapsG(X,F ). We have #X(L) = dimF L. The étale F -algebra L is split if and only if G
acts trivially on X(L) and it is a field if and only if G acts transitively on X(L). There
are canonical identifications

X(L1 × L2) = X(L1) tX(L2) and X(L1⊗F L2) = X(L1)×X(L2),

where G acts on X(L1) × X(L2) by g(ξ1, ξ2) = (gξ1, gξ2). If E/F is an algebraic field
extension and ResE/F is the restriction of the Galois action to the absolute Galois group
of E, with obvious notations we have XE(E⊗F L) = ResE/F (XF (L)).

Lemma 3.1. Let Γ be a finite group of automorphisms of the étale F -algebra L, and let
LΓ be the étale subalgebra of elements fixed by Γ. Then X(LΓ) = X(L)/X(Γ).

Note that X(Γ) is a finite subgroup of AutG(X(L)), and X(L)/X(Γ) is the quotient
G-set consisting of orbits in X(L) under the action of X(Γ). Of course, the inclusion
LΓ ↪→ L induces the surjection X(L) � X(LΓ), ξ 7→ ξ|LΓ .

Proof. The canonical isomorphism L
∼−→ MapsG(X(L), F ) sends LΓ to the set of G-

maps X(L) → F that are constant on X(Γ)-orbits, which is canonically isomorphic to
MapsG(X(L)/X(Γ), F ). Therefore X(LΓ) is canonically isomorphic to X(L)/X(Γ). �

We now apply lemma 3.1 to L⊗F L and ΓL = 〈sL〉, where sL : x ⊗ y 7→ y ⊗ x is the
switch map. Under the identification X(L⊗F L) = X(L) × X(L), the G-automorphism
X(sL) is given by (ξ, η) 7→ (η, ξ).

Let ∆(L) = {(ξ, ξ) ; ξ ∈ X(L)} be the diagonal of X(L)×X(L). Then ∆(L) is G-stable
and fixed by sL. Therefore ∆(L) embeds in the quotient (X(L)×X(L))/X(ΓL), and we
identify it with its image.

Proposition 3.2. Let L be an étale F -algebra. We have canonical identifications

X(s2
FL) =

(
X(L)×X(L)

)
/X(ΓL) and X(λ2

FL) = X(s2
FL) \∆(L).

Proof. The left-hand side identification follows from lemma 3.1 since s2
FL = (L⊗F L)ΓL .

Let ψ : s2
FL � λ2

FL be the surjective morphism induced by ΨL under s2
FL ' Sym2

F L.
Then X(ψ) embeds X(λ2

FL) into X(s2
FL) by γ 7→ γ ◦ ψ. Let us show that the image of

X(ψ) does not meet ∆(L). This implies that X(ψ) is bijective since

#
(
X(s2

FL) \∆(L)
)

=
n(n+ 1)

2
− n =

n(n− 1)

2
= #X(λ2

FL),

where n = dimF L.
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The canonical isomorphism Sym2
F L/(1−eL) Sym2

F L ' (Sym2
F L)eL together with ΨL :

(Sym2
F L)eL

∼−→ λ2
FL show that ImX(ψ) = {γ ∈ X(s2

FL) | γ(eL) = 1}. Let ξ ∈ X(L). In
order to compute (ξ, ξ)(eL) we may assume that L is split. If {e1, . . . , en} is a full set of
orthogonal idempotents of L, we have

(ξ, ξ)(eL) =
∑

1≤i<j≤n
2 ξ(eiej) = 0.

Therefore ImX(ψ) does not meet ∆(L) and X(ψ) is bijective. �

Consider the multiplication map

µL : L⊗F L −→ L

x⊗ y 7−→ xy.

The separability idempotent εL is the unique element of L⊗FL satisfying µL(εL) = 1 and
εL(x⊗ y) = εL(y ⊗ x) for all x, y ∈ L, see [BI] §18.A. The canonical isomorphism

L⊗F L
∼−→ MapsG(X(L)×X(L), F )

sends εL to the characteristic function of the diagonal ∆(L). Thus, (ξ, η)(εL) = 1 if ξ = η
and is zero otherwise, where (ξ, η) : L⊗F L→ F is given by (ξ, η)(x⊗ y) = ξ(x)η(y).

Consider the nondegenerate symmetric bilinear form L × L → F , (x, y) 7→ TrL/F (xy),
where

TrL/F (x) =
∑

ξ∈X(L)

ξ(x) .

Pick an F -basis (z1, . . . , zn) for L, and let (z′1, . . . , z
′
n) be the dual basis with respect to

TrL/F ,that is, such that TrL/F (ziz
′
j) = δij . Then the separability idempotent is

εL =
∑

1≤i≤n
zi ⊗ z′i .

Lemma 3.3. Let L be an étale F -algebra. We have εL + eL = 1.

Proof. We may assume that L is split. Let {e1, . . . , en} be a full set of orthogonal idem-
potents of L. Then X(L) = {e∗1, . . . , e∗n}, where e∗i : L → F is given by e∗i (ej) = δi,j . We
have 1− eL =

∑
1≤k≤n ek ⊗ ek, hence

(e∗i , e
∗
j )(1− eL) =

∑
1≤k≤n

e∗i (ek)⊗ e∗j (ek) =
∑

1≤k≤n
δi,k ⊗ δj,k = δi,j .

Thus the canonical isomorphism L⊗F L
∼−→ Maps(X(L)×X(L), F ) sends 1 − eL to the

characteristic function of ∆(L). Therefore 1− eL = εL. �

Proposition 3.4. Let L1 and L2 be étale F -algebras. There are canonical isomorphisms

s2
F (L1 × L2) ' s2

FL1 × L1⊗F L2 × s2
FL2

and

λ2
F (L1 × L2) ' λ2

FL1 × L1⊗F L2 × λ2
FL2.
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Proof. Let L = L1 × L2. We compute X(s2
FL) and X(λ2

FL) using proposition 3.2. We
have X(L) = X(L1) tX(L2), so X(L⊗F L) = X(L)×X(L) identifies with[

X(L1)×X(L1)
]
t
[
(X(L1)×X(L2)) t (X(L2)×X(L1))

]
t
[
X(L2)×X(L2)

]
.

The bracketed G-sets are stable by the action of the switch map sL. Its restriction to
(X(L1)×X(L2))t (X(L2)×X(L1)) sends (ξ1, ξ2) ∈ X(L1)×X(L2) to (ξ2, ξ1) ∈ X(L2)×
X(L1). Therefore the quotient G-set is isomorphic to X(L1) × X(L2) = X(L1⊗F L2).
Hence

X(s2
FL) ' X

(
s2
FL1 × L1⊗F L2 × s2

FL2

)
,

from which the first isomorphism follows.
We have X(λ2

FL) = X(s2
FL) \ ∆(L). Since ∆(L) = ∆(L1) t ∆(L2) does not meet

X(L1)×X(L2), we find that X(λ2
FL) identifies with(

X(s2
FL1) \∆(L1)

)
t
(
X(L1)×X(L2)

)
t
(
X(s2

FL2) \∆(L2)
)
.

Hence
X(λ2

FL) ' X
(
λ2
FL1 × L1⊗F L2 × λ2

FL2

)
,

from which the second isomorphism follows. �

Remark 3.5. The isomorphisms of proposition 3.4 easily generalises to a finite product
of étale F -algebras. For instance

λ2
F

( ∏
1≤i≤r

Li

)
'
∏

1≤i≤r
λ2
FLi ×

∏
1≤i<j≤r

Li⊗F Lj .

Let A be a central simple F -algebra and L an étale subalgebra of A. We say that L is
a maximal étale subalgebra of A when dimF L = degF A. It is easy to see that an étale
subalgebra L ⊆ A is maximal if and only if the restriction of TrdA to L is TrL/F .

Recall from section 1 that λ2
FA ' eA(A⊗F A)eA, where 2eA = 1 − gA and gA is the

Goldman element of A. Let Sym2
F A be the subalgebra of symmetric elements in A⊗FA,

that is, the subalgebra fixed by conjugation by gA. Thus gA, eA ∈ Sym2
F A. Further the

relation 2 eA(a⊗ b)eA = (a⊗ b+ b⊗ a)eA = eA(a⊗ b+ b⊗ a) for a, b ∈ A shows that

λ2
FA ' eA(A⊗FA)eA = (Sym2

F A)eA = eA(Sym2
F A).

Lemma 3.6. Let A be a central simple F -algebra and L a maximal étale subalgebra of A.
We have eL eA = eA eL = eA.

Proof. Lemma 3.3 shows that eL = 1− εL, where εL is the separability idempotent of L.
As 2eA = 1−gA, we need to check that εL gA = gA εL = εL. Let (z1, . . . , zn) be an F -basis
for L and (z′1, . . . , z

′
n) be the dual basis with respect to TrL/F . Then

gA εL gA = gA

(∑
1≤i≤n

zi ⊗ z′i
)
gA =

∑
1≤i≤n

z′i ⊗ zi = εL ,

thus εL commutes with gA. It is enough to check the equality εL gA = εL in the split
case. Since L is maximal, we may assume that L = F × . . .× F (degF A times) and that
A = EndF (L). Under the identification A⊗FA ' EndF (L⊗F L) we have

(εL gA)(x⊗ y) = εL(y ⊗ x) = εL(x⊗ y)

for all x, y ∈ L. Hence εL gA = εL. �
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Proposition 3.7. Let A be a central simple F -algebra and L a maximal étale subalgebra
of A. There is a canonical F -algebra isomorphism

eA(L⊗F L)eA ' λ2
FL .

Thus λ2
FL is a maximal étale subalgebra of λ2

FA. Note that the result does not hold when
L is not maximal in A : take L = F and A with degF A ≥ 2, then eA(F⊗FF )eA = FeA ' F
whereas λ2

FF = 0.

Proof. We have eA(L ⊗F L)eA = (Sym2
F A)eA and λ2

FL ' (Sym2
F L)eL. The relations

eL eA = eA eL = eA of lemma 3.6 show that multiplication by eA defines a map

(Sym2
F L)eL −→ (Sym2

F A)eA

s eL 7−→ s eA.

It is an F -algebra morphism since Sym2
F L ⊆ Sym2

F A lie in the commutant of eA, and it is
clearly surjective. Injectivity may be checked in the split case : if {e1, . . . , en} is a full set
of orthogonal idempotents of L and s =

∑
1≤k≤`≤n sk,`(ek ⊗ e` + e` ⊗ ek) ∈ Sym2

F L with
sk,` ∈ F , then s eA = 0 if and only if sk,` = 0 for all 1 ≤ k < ` ≤ n, which is equivalent to
s eL = 0. �

Remark 3.8. Proposition 3.7 shows that the isomorphism class of λ2
FL does not depend

on the central simple F -algebra in which it is maximally embedded. In particular one
may pick A = EndF (L), in which case one recovers the original construction of λ2

FL given
in [Sa].

Remark 3.9. Let A be a central simple F -algebra and L a maximal étale subalgebra of
A. Just as for A (see section 1), there is a Sandwich map for L

SdL : L⊗F L→ EndF (L).

We have SdL = mL ◦µL, where µL : L⊗FL� L, x⊗y 7→ xy is the multiplication map and
mL : L ↪→ EndF (L) is the canonical embedding sending x ∈ L to the multiplication by x
in EndF (L). Thus Im SdL ' L, and Ker SdL = KerµL = (1 − εF )(L⊗F L) = eL(L⊗F L)
by lemma 3.3.

By maximality of L in A, the restriction map ResL : EndF (A) � HomF (L,A) sends
TrdA to TrL/F . The following diagram commutes

L⊗F L� _

��

SdL // EndF (L)� _

��
HomF (L,A)

A⊗FA
∼

SdA

// EndF (A)

ResL

OO

where all the vertical maps are canonical. One recovers EndF (L) with the help of this
diagram through gA and the map ResL◦ SdA : it induces an isomorphism

(L⊗F L)gA ' EndF (L).
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Indeed, for x, y ∈ L and a ∈ A, we have

SdA((x⊗ y)gA)(a) = TrdA(ay)x,

thus SdA((x ⊗ y)gA) restricts on L to the map L → L, z 7→ TrL/F (zy)x. Now the above
isomorphism follows from the nondegeneracy of the bilinear form TrL/F , which yields the

isomorphism L⊗F L
∼−→ EndF (L), x⊗ y 7→ [ z 7→ TrL/F (zy)x ].

4. Direct products

We begin with two elementary lemmas on idempotents.

Lemma 4.1. Let R be a ring, e ∈ R an idempotent, and g = 1− 2e. If {p1, . . . , pr} is a
full set of orthogonal idempotents of R commuting with g, then {ep1, . . . , epr} is a full set
of orthogonal idempotents of eRe.

Proof. The pi’s commute with e, hence the epi = epie ∈ eRe are orthogonal idempotents
such that ep1 + . . .+ epr = e. �

Lemma 4.2. Let R be an F -algebra and e, p ∈ R idempotents. Let g = 1− 2e, q = 1− p,
and S = pRp⊕ qRq. Assume gpg = q. Then R = S ⊕ gS and eSe = eRe ' pRp.

Note that S is a subring of R.

Proof. As e2 = e is equivalent to g2 = 1, we find that pRpg = p(Rg)gpg = pRq and
gqRq = gqg(gR)q = pRq ; similarly, qRqg = gpRp = qRp. Thus Sg = gS = pRq ⊕ qRp,
and the Pierce decomposition eRe = pRp ⊕ pRq ⊕ qRp ⊕ qRq shows that R = S ⊕ gS.
Thus eRe = eSe + egSe = eSe, since eg = ge = −e. Further, the relations gp = qg and
pg = gq yield epRpe = e(pg)R(gp)e = e(gq)R(qg)e = eqRqe, so eRe = eSe = epRpe.
They also yield 2pep = p − pgp = p, which, together with 2epe = epe + egqge = e, show
that the map

pRp −→ epRpe = eRe

prp 7−→ 2eprpe

is an F -algebra isomorphism. �

Now let A,B,C be central simple F -algebras such that B×C is a maximal subalgebra
of A. Here maximality means that degF B+degF C = degF A, or equivalently that B×C
contains a maximal étale subalgebra of A (see section 3).

Then eA((B × C)⊗F (B × C))eA is a subalgebra of eA(A⊗FA)eA ' λ2
FA.

Proposition 4.3. Let A,B,C be central simple F -algebras such that B×C is a maximal
subalgebra of A. There is a canonical F -algebra isomorphism

eA
(
(B × C)⊗F (B × C)

)
eA ' λ2

FB ×B⊗FC × λ2
FC.

Proof. Let p and q = 1− p be orthogonal idempotents such that B = pAp and C = qAq,
so B × C = pAp ⊕ qAq. Then {p ⊗ p , p ⊗ q + q ⊗ p , q ⊗ q} is a full set of orthogonal
idempotents of A⊗FA commuting with gA. Set

R = (p⊗ q + q ⊗ p)(A⊗FA)(p⊗ q + q ⊗ p)
and consider the subalgebra

T = (B⊗FB)⊕R ⊕ (C⊗FC)
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of A⊗FA. Then eATeA is a subalgebra of eA(A⊗FA)eA and lemma 4.1 shows that

eATeA = eA(B⊗FB)eA ⊕ eAReA ⊕ eA(C⊗FC)eA.

An easy calculation gives SdB(gA(p ⊗ p)) = (TrdA)|B = TrdB, therefore gB = gA(p ⊗ p).
It follows that eB = eA(p⊗ p), which yields

eA(B⊗FB)eA = eB(B⊗FB)eB ' λ2
FB.

Similarly, eA(C⊗FC)eA ' λ2
FC.

Note that p ⊗ q and q ⊗ p are complementary orthogonal idempotents in R such that
gA (p ⊗ q) gA = q ⊗ p. Consider the subring S = (p ⊗ q)R(p ⊗ q) ⊕ (q ⊗ p)R(q ⊗ p) of R.
We have

S = (p⊗q)(A⊗FA)(p⊗q)⊕ (q⊗p)(A⊗FA)(q⊗p) = B⊗FC × C⊗FB ,
so that

(B × C)⊗F (B × C) = (B⊗FB)⊕ S ⊕ (C⊗FC).

Now lemma 4.2 shows that eASeA = eAReA ' (p⊗ q)R(p⊗ q) = B⊗FC, from which the
result follows. �

Example 4.4. Let B = EndF (V ), C = EndF (W ) and A = EndF (V ⊕W ). We have
λ2
FA ' EndF (∧2

F (V ⊕W )), and the canonical isomorphism

∧2
F (V ⊕W ) ' ∧2

FV ⊕ (V ⊗FW )⊕ ∧2
FW

induces an F -algebra isomorphism

λ2
F

(
EndF (V )× EndF (W )

)
' EndF (∧2

FV )× EndF (V ⊗FW )× EndF (∧2
FW ).

Remark 4.5. If L1, L2 are maximal étale subalgebras of B,C respectively, then L =
L1 × L2 is a maximal étale subalgebra of A. Proposition 3.7 shows that λ2

FL identifies
with the maximal étale subalgebra eA(L⊗F L)eA of eA((B × C)⊗F (B × C))eA, and the
isomorphism of proposition 4.3 restricts to the one of proposition 3.4

eA(L⊗F L)eA ' λ2
FL1 × L1⊗F L2 × λ2

FL2 .

Under the assumptions of proposition 4.3, consider the Sandwich map for B × C
SdB×C : (B × C)⊗F (B × C) −→ EndF (B × C).

Then Ker SdB×C = B⊗F C × C⊗F B and Im SdB×C = EndF (B) × EndF (C). With the
notations of the proof of proposition 4.3, let π : A � B × C be the F -linear surjective
map a 7→ pap+ qaq ; we have π = SdA(p⊗ p+ q ⊗ q). Then the diagram

(B×C)⊗F (B×C)� _

��

SdB×C // EndF (B × C)

A⊗FA
∼

SdA

// EndF (A)

OO

commutes, where the vertical right-hand side map is f 7→ πfπ and the left-hand side one
is just inclusion. We have πTrdA π = TrdA. As in the proof of proposition 4.3, let

T = (B⊗FB)⊕ (p⊗q + q⊗p)(A⊗FA)(p⊗q + q⊗p)⊕ (C⊗FC).
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Then T is the subalgebra of A⊗FA generated by (B × C)⊗F (B × C) and gA. Consider
the subvector space of T

U = (B⊗FB)⊕ (p⊗q)(A⊗FA)(q⊗p)⊕ (q⊗p)(A⊗FA)(p⊗q)⊕ (C⊗FC).

Note that gA ∈ U , since (p⊗q)gA(q⊗p) = (p⊗q)gA and (q⊗p)gA(p⊗q) = (q⊗p)gA.

Lemma 4.6. The Sandwich map of A induces an isomorphism

U −→ EndF (B × C)

u 7−→ π SdA(u)π .

Proof. The above map induces B⊗F B ' EndF (B) and C⊗F C ' EndF (C). We have
(q⊗p)(A⊗FA)(p⊗q) = (C⊗FB)gA and SdA((c⊗b)gA)(a) = TrdA(ab)c for all a, b, c ∈ A.

The F -linear isomorphism C⊗FB
∼−→ HomF (B,C), c⊗b 7→ [x 7→ TrdB(xb)c ] shows that

SdA induces

(q⊗p)(A⊗FA)(p⊗q) ' HomF (B,C).

Similarly, SdA induces an isomorphism (p⊗q)(A⊗FA)(q⊗p) ' HomF (C,B). �

Let A be an F -algebra on which a group G acts by ring automorphisms. Then G acts
on A⊗F A and EndF (A) by σ(a ⊗ b) = σa ⊗ σb and (σf)(a) = σf(σ−1a), for all σ ∈ G,
a, b ∈ A, f ∈ EndF (A), and the Sandwich map SdA : A⊗FA→ EndF (A) is G-equivariant.

For a central simple F -algebra A, set A = F ⊗F A and G = Gal(F/F ). The Galois
group G acts by semilinear ring automorphisms on A through its natural action on F ,

and A
G

= A. As SdA : A⊗F A
∼−→ EndF (A) is G-equivariant and the reduced trace map

TrdA : A→ A commutes with the action of G, it follows that gA and eA are fixed by G.

Now let B,C be central simple F -algebras. Then G acts on B × C by acting on each
factor. Let V,W be F -vector spaces such that B ' EndF (V ) and C ' EndF (W ) as

F -algebras, and consider

E = EndF (V ⊕W ).

Then B × C is a maximal subalgebra of E. Set ḡ = gE and ē = eE ∈ E⊗FE.

Definition 4.7. Let B,C be central simple F -algebras. The exterior square of B × C
over F is

λ2
F (B × C) =

def
ē
(
(B × C)⊗F (B × C)

)
ē .

This definition is invariant under scalar extension : for a field extension L/F there is a
canonical L-algebra isomorphism L⊗F λ2

F (B × C) ' λ2
L((L⊗FB)× (L⊗FC)).

When B×C is a maximal subalgebra of a central simple F -algebra A, we have E ' A,
and λ2

F (B ×C) is canonically isomorphic to the subalgebra eA
(
(B ×C)⊗F (B ×C)

)
eA of

λ2
FA considered in proposition 4.3. Also, since G = Gal(F/F ) fixes eA , we have

λ2
F (B × C) =

(
λ2
F

(B × C)
)G
.

Proposition 4.8. Let B,C be central simple F -algebras. There is a canonical F -algebra
isomorphism

λ2
F (B × C) ' λ2

FB ×B⊗FC × λ2
FC .



14 MAJA VOLKOV

Proof. As in the proof of proposition 4.3, let T be the subalgebra of E⊗FE generated by

(B × C)⊗F (B × C) and ḡ. Recall from lemma 4.6 that SdE induces an isomorphism

U
∼−→ EndF (B × C)

where U is a subspace of T containing ḡ. The action of G on EndF (B ×C) thus uniquely

extends to an action on U making the above isomorphism G-equivariant. The restriction
of TrdE to B × C is the map (b, c) 7→ TrdB(b) + TrdC(c), that commutes with the action
of G since TrdB and TrdC do. It follows that G fixes ḡ and ē, which yields

λ2
F (B × C) =

(
λ2
F

(B × C)
)G
.

Now the canonical isomorphism of proposition 4.3

λ2
F

(B × C) ' λ2
F
B ×B⊗FC × λ

2
F
C

commutes with the action of G, and the result follows by taking G-fixed parts. �

Remark 4.9. The definitions and results of this section 4 easily generalise to a finite
product of central simple F -algebras as follows. For 1 ≤ i ≤ r let Ai be central simple
over F with Ai ' EndF (Vi). Set E = EndF (⊕1≤i≤rVi), and define

λ2
F

( ∏
1≤i≤r

Ai
)

=
def

ē
(( ∏

1≤i≤r
Ai
)
⊗F
( ∏

1≤i≤r
Ai
))
ē

where ē = eE . Then there is a canonical F -algebra isomorphism

λ2
F

( ∏
1≤i≤r

Ai
)
'
∏

1≤i≤r
λ2
FAi ×

∏
1≤i<j≤r

Ai⊗FAj .

When Li is a maximal étale subalgebra of Ai for each 1 ≤ i ≤ r, it is compatible with the
isomorphism of remark 3.5.

5. The norm algebra

Let F/K be a quadratic extension with Gal(F/K) = 〈σ〉 and A an F -algebra. The
twisted F -algebra Aσ is the set of elements aσ with a ∈ A together with the twisted F -
algebra structure aσ + bσ = (a+ b)σ, aσbσ = (ab)σ, and x ·aσ = (σ−1(x)a)σ for all a, b ∈ A
and x ∈ F . When V is an F -vector space, one defines in a similar fashion the twisted F -
vector space V σ and there is a canonical F -algebra isomorphism EndF (V )σ ' EndF (V σ).
Consider the switch map

sA : A⊗FAσ −→ A⊗FAσ

a⊗ bσ 7−→ b⊗ aσ.
It is a σ-semilinear automorphism of A⊗F Aσ, and the norm algebra NF/K(A) is the
sub-K-algebra fixed by sA. Again the same construction applies to F -vector spaces. The
K-algebra NF/K(A) enjoys the following properties, where all the isomorphisms involved
are canonical (see [Dr] §8 or [BI] §3.B):

(1) The inclusion induces an F -isomorphism F⊗KNF/K(A)
∼−→ A⊗FAσ.

(2) NF/K(A⊗FB) ' NF/K(A)⊗KNF/K(B) for F -algebras A,B.

(3) NF/K

(
EndF (V )

)
' EndK

(
NF/K(V )

)
where V is an F -vector space.

(4) When A is central simple of degree n over F , NF/K(A) is central simple of degree

n2 over K, and [NF/K(A)] ∈ Br(K) is the corestriction of [A ] ∈ Br(F ).
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(5) When A0 is a central simple K-algebra, NF/K(F⊗KA0) ' A0⊗KA0.

In particular both properties (3) and (4) imply that NF/K(F ) ' K.

Example 5.1. Let L/K be a cyclic extension of degree 2n containing F with Gal(L/K) =
〈ρ〉. Let τ = ρ2, a ∈ F×, and (L/F, a, τ) be the associated cyclic algebra as in example 1.1.
We have

NF/K(L/F, a, τ) ∼ (L/K,NF/K(a), ρ).

Let E be the subfield of L fixed by ρn and ρ̄ the image of ρ in Gal(E/K) ; then [E : K] = n
and Gal(E/K) = 〈ρ̄〉. When n is odd E and F are linearly disjoint over K, and we have

(L/K,NF/K(a), ρ) ' (F/K, 1, σ)⊗K (E/K,NF/K(a), ρ̄) 'M2

(
(E/K,NF/K(a), ρ̄)

)
.

Comparing degrees and Brauer classes we obtain

NF/K(L/F, a, τ) '

{
Mn

2

(
(L/K,NF/K(a), ρ)

)
when n is even

Mn

(
(E/K,NF/K(a), ρ̄)

)
when n is odd.

Lemma 5.2. Let A be an F -algebra and L/K a field extension such that L ∩ F = K.
There is a canonical L-algebra isomorphism

L⊗KNF/K(A) ' NLF/L(L⊗KA) .

Proof. The assumption L ∩ F = K implies that L⊗K F ' LF is a field, and we have
L⊗KA ' LF⊗FA. Further the restriction map ResLF/F : Gal(LF/L)→ Gal(F/K) is an
isomorphism. Let τ ∈ Gal(LF/L) be such that ResLF/F (τ) = σ. Then

θ : A⊗FAσ −→ (LF⊗FA)⊗L(LF⊗FA)τ

a⊗ bσ 7−→ (1⊗ a)⊗L(1⊗ b)τ

is an F -algebra embedding. Since θ commutes with the switch maps, that is θ ◦ sA =
sLF⊗FA ◦ θ, it induces a K-algebra embedding NF/K(A) ↪→ NLF/L(LF⊗F A). By scalar
extension we obtain an L-algebra embedding

L⊗KNF/K(A) ↪→ NLF/L(LF⊗FA)

which is bijective as both algebras have same degree over L. �

6. The exterior square over K

Let F/K be a quadratic field extension with Galois group G(F/K) = 〈σ〉. Consider the
multiplication map

µF : F⊗KF −→ F

x⊗ y 7−→ xy .

Recall from section 3 that the separability idempotent of F/K is the unique idempotent
εF ∈ F⊗KF such that µF induces an F -algebra isomorphism (F⊗KF )εF ' F . If (x1, x2)
is a K-basis for F and (x′1, x

′
2) is the dual basis with respect to TrF/K , then

εF = x1 ⊗ x′1 + x2 ⊗ x′2 .
Now consider the twisted multiplication map

µF, σ : F⊗KF −→ F

x⊗ y 7−→ xσ(y)
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and the twisted separability idempotent

εF, σ = x1 ⊗ σ(x′1) + x2 ⊗ σ(x′2) .

We have εF + εF, σ = x1 ⊗TrF/K(x′1) + x2 ⊗TrF/K(x′2) = 1 since xi and x′i are dual with
respect to TrF/K , hence εF, σ = eF by lemma 3.3. Thus εF and εF, σ are complementary
idempotents, so that F⊗KF = (F⊗KF )εF ⊕ (F⊗KF )εF, σ and µF, σ induces a K-algebra
isomorphism (F⊗KF )εF, σ ' F .

Lemma 6.1. Let F/K be a quadratic field extension with Galois group G(F/K) = 〈σ〉
and A an F -algebra. The map

F⊗KA
∼−→ A×Aσ

x⊗ a 7−→ (xa , x · aσ)

is an F -algebra isomorphism.

Proof. As εF and εF, σ are complementary central idempotents in F⊗KA, we have

F⊗KA = (F⊗KA)εF ⊕ (F⊗KA)εF, σ .

The result follows from the F -algebra isomorphisms (F⊗KA)εF
∼−→ A, (x ⊗ a)εF 7→ xa,

and (F⊗KA)εF, σ
∼−→ Aσ, (x⊗ a)εF, σ 7→ x · aσ. �

Let A be a central simple F -algebra. Then F⊗KA is the product of two central simple
F -algebras by lemma 6.1, so we may consider the F -algebra λ2

F (F⊗KA) of section 4. The
semilinear action of G(F/K) on F⊗KA extends naturally to λ2

F (F⊗KA). Indeed, with
the notations of definition 4.7, we have λ2

F (F⊗KA) = ē
(
(F⊗KA)⊗F (F⊗KA)

)
ē, on which

G(F/K) acts by fixing ē.

Definition 6.2. Let F/K be a quadratic extension with Galois group G(F/K) and A a
central simple F -algebra. The exterior square of A over K is

λ2
KA =

def

(
λ2
F (F⊗KA)

)G(F/K)
.

Thus λ2
KA is a semisimple K-algebra and F⊗Kλ2

KA ' λ2
F (F⊗KA) canonically.

Theorem 6.3. Let F/K be a quadratic field extension and A a central simple F -algebra.
There is a canonical K-algebra isomorphism

λ2
KA ' λ2

FA×NF/K(A).

Proof. Let G(F/K) = 〈σ〉 and ν : F⊗KA
∼−→ A×Aσ, x⊗a 7→ (xa , x ·aσ) be the F -algebra

isomorphism of lemma 6.1. Then the diagram

x⊗a_

��

F⊗KA

��

ν // A×Aσ

��

(a , bσ)
_

��
σ(x)⊗a F⊗KA ν

// A×Aσ (b , aσ)

commutes. Note that λ2
F (Aσ) = (λ2

FA)σ. Therefore the isomorphism of proposition 4.8

λ2
F (A×Aσ) ' λ2

FA×A⊗FAσ × (λ2
FA)σ
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carries the action of σ to (α, a⊗bσ, βσ) 7→ (β, b⊗aσ, ασ) on λ2
FA×A⊗FAσ × (λ2

FA)σ. The
subalgebra of λ2

FA× (λ2
FA)σ fixed by (α, βσ) 7→ (β, ασ) is canonically isomorphic to λ2

FA,
and the subalgebra of A⊗FAσ fixed by sA : a⊗bσ 7→ b⊗aσ is NF/K(A). Hence

λ2
KA '

(
λ2
F (A×Aσ)

)G(F/K) ' λ2
FA×NF/K(A).

�

Example 6.4. When A = EndF (V ) with V an F -vector space, theorem 6.3 together with
the properties of λ2

F and NF/K show that

λ2
K EndF (V ) ' EndF (∧2

FV ) × EndK
(
NF/K(V )

)
.

Example 6.5. When A0 is a central simple K-algebra, theorem 6.3 together with property
(5) of the norm algebra and lemma 1.2 show that

λ2
K(F⊗KA0) ' F⊗Kλ2

KA0 × A0⊗KA0.

Example 6.6. Let L/K be a cyclic extension containing F of degree 2n with Gal(L/K) =
〈ρ〉. Let τ = ρ2, a ∈ F×, and (L/F, a, τ) be the associated cyclic algebra. Let E be the
subfield of L fixed by ρn and ρ̄ the image of ρ in Gal(E/K). When n is even the field
E contains F and τ̄ = ρ̄2 generates Gal(E/F ). Theorem 6.3 together with examples 1.1
and 5.1 show that

λ2
K(L/F, a, τ) '

{
Mn−1

(
(E/F, a, τ̄)

)
× Mn

2

(
(L/K,NF/K(a), ρ)

)
when n is even

Mn−1
2

(
(L/F, a2, τ)

)
× Mn

(
(E/K,NF/K(a), ρ̄)

)
when n is odd.

Theorem 6.7. Let F/K be a quadratic extension and A a central simple F -algebra. Let
L/K be a field extension. There is a canonical L-algebra isomorphism

L⊗Kλ2
KA ' λ2

L(L⊗KA).

Proof. By scalar extension theorem 6.3 furnishes an L-algebra isomorphism

L⊗Kλ2
KA ' L⊗Kλ2

FA × L⊗KNF/K(A).

We now compute the L-algebra λ2
L(L⊗KA). Since F/K is quadratic we are led to consider

two situations : either F ∩L = K, in which case L⊗KF ' LF is a quadratic field extension
of L, or F ⊆ L, in which case L⊗KF ' L× L.

Assume F ∩L = K. Then L⊗KA ' LF⊗FA is central simple over LF and theorem 6.3
shows that

λ2
L(L⊗KA) ' λ2

LF (L⊗KA)×NLF/L(L⊗KA).

The result then follows from the canonical isomorphisms λ2
LF (L⊗KA) ' L⊗K λ2

FA of
lemma 1.2 and NLF/L(L⊗KA) ' L⊗KNF/K(A) of lemma 5.2.

Assume F ⊆ L. Then L⊗Kλ2
KA ' L⊗F (F⊗Kλ2

KA), therefore it suffices to prove the
statement when L = F . As λ2

F (Aσ) ' (λ2
FA)σ lemma 6.1 and proposition 4.8 yield

λ2
F (F⊗KA) ' λ2

F (A×Aσ) ' λ2
FA × A⊗FAσ × (λ2

FA)σ.

Now the result follows from the canonical isomorphisms λ2
FA × (λ2

FA)σ ' F⊗K λ2
FA of

lemma 6.1 and A⊗FAσ ' F⊗KNF/K(A) of property (1) in section 5. �
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