THE EXTERIOR SQUARE OF A SIMPLE ALGEBRA

MAJA VOLKOV

ABSTRACT. We construct the exterior square over K of a simple algebra central over a
quadratic extension F' of K, and prove that it is isomorphic to the direct product of its
exterior square over F' with its norm from F to K.
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INTRODUCTION

Let K be a characteristic zero field. Exterior powers of finite dimensional K-algebras
are constructed for two fundamental classes of these : central simple K-algebras (see [BI]
§10.A) and étale K-algebras (see [Sa] §1). This raises the question of extending these
constructions to semisimple algebras. In this paper we consider the particular case of the
exterior square of a simple algebra central over a quadratic extension of K. We construct
and describe our object using the theory of idempotents and Galois descent. Along the
way we are led to consider exterior squares of direct products of central simple algebras.

Let F'/K be a quadratic field extension and A a central simple F-algebra. The exterior
square of A over F' is introduced in section 1. It is the central simple F-algebra

)\%A if EndA®FA((A®FA)(1 — gA))

where g4 € A®p A is the Goldman element of A related to the reduced trace map of A.
In section 2 we compute the exterior square of the tensor product of two central simple
F-algebras (proposition 2.2), which enables us to highlight the unsual behaviour of A%
with respect to simple subalgebras (proposition 2.4).
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The exterior square of an étale algebra L/F is introduced in section 3. Following [Sa],
it is the étale F-algebra

ML = Tm (Sym% L EndF(/\%L))

where Sym% L is the subalgebra of symmetric elements in L& L naturally acting on the
F-vector space /\%L. We compute its associated Galois set of characters in proposition 3.2
and describe its behaviour with respect to direct products in proposition 3.4. When L is a
maximal étale subalgebra of a central simple F-algebra A, that is when dimp L = degp A,
we show in proposition 3.7 that )\%L identifies with a maximal étale subalgebra of )\%A,
thus relating both constructions.

In section 4 we define and compute the exterior square over F' of the direct product of
two central simple F-algebras B and C'. We first consider the case when D = B x C'is
a maximal subalgebra of a central simple F-algebra A, that is when degp B + degp C =
degp A, and describe in proposition 4.3 the natural image of D®p D in A%A. In the
general case, scalar extension to an algebraic closure I canonically embeds D into a split
central simple F-algebra of degree degy B + degy C, and we define A% D to be the image
of D&pD in the exterior square over F of that split algebra (see definition 4.7). We then
show in proposition 4.8 that there is a canonical F-algebra isomorphism

M.(BxC) ~ M.BxBoprC x\AC.

We then proceed to construct the exterior square over K of a central simple F-algebra.
In section 5 we review some basic facts on norm (or corestriction) algebras. Here we only
consider norms from F' to K which significantly simplifies their description since F/K is
quadratic. In section 6 we define )\%A for a central simple F-algebra A by combining the
results of section 4 with Galois descent. We first note that F® g A is canonically isomorphic
to the product of two central simple F-algebras (lemma 6.1), so that we may consider the
F-algebra A\%4(F®x A) of definition 4.7. The Galois group G(F/K) acts naturally on the
latter, and we set (definition 6.2)

XA = (\Z(Fag A)) )
It is a semisimple K-algebra such that F®g A2 A ~ A4 (F®g A). Our main result is
that this algebra is canonically isomorphic to the direct product of two familiar algebras
attached to A, the one being central simple over F' and the other over K.

Theorem.(6.3) Let F/K be a quadratic field extension and A a central simple F-algebra.
There is a canonical K-algebra isomorphism

As an illustration we compute the exterior square over K of certain cyclic F-algebras
in example 6.6. We finally show that our construction commutes with scalar extension.

Theorem.(6.7) Let F//K be a quadratic extension and A a central simple F-algebra. Let
L/K be a field extension. There is a canonical L-algebra isomorphism

LOgAAA ~ X2 (LogA).
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1. THE EXTERIOR SQUARE

Let A be a central simple F-algebra of degree n over F. The F-algebra isomorphism
A®p A°® ~ Endp(A) of the Artin-Whaples Theorem induces an F-linear isomorphism,
called the Sandwich map,

Sdy : ARpA = EndF(A)

A— A

a®bH{
¢ +— ach.

Viewing the reduced trace map Trds : A — F as an F-linear endomorphism of A via the
canonical embedding F' < A, the element g4 € A®p A such that Sda(ga) = Trd4 is the
Goldman element of A. It satisfies the following properties (see [BI] §3.A):

(i) g3 =1.

(ii) For all a,b € A, ga(a®b) = (b® a)ga.

(iii) When A = Endp(V) with V' a vector space over F, the canonical isomorphism
Endp(V)®@rEndp(V) ~ Endp(V®pV) sends g4 to the F-linear automorphism of
V®prpV given by u @ v — v ® u.

In the split case, let V* = Homp(V, F') be the dual vector space, (e;)1<i<n an F-basis

for V, and (e})1<i<n the dual basis (that is, e(e;) = d;; for all 4, j). Under the canonical
isomorphism Endp(V) ~ V®@pV* the Goldman element is

ga= Y (a®e)@(;0e) € (VapV)op(VerV™).
1<4,5<n
The exterior square of A over F' is

A2 A = Endagpa((A®rA)(1—ga)).

For A = F the Goldman element is trivial and A%F = 0. For n > 2 the algebra A% A is

central simple over F', of degree (g) = "("2_1) , and Brauer equivalent to AQ pA. When A =

Endp(V) with V' an F-vector space, the canonical identification Endp(V)®pEndp(V) ~
Endp(V®pV) induces an isomorphism

A Endp(V) ~ Endp(A%V).

Example 1.1. Let L/F be a cyclic extension of degree n with Gal(L/F) = (), and
a € F*. The cyclic algebra (L/F,a, ) is central simple over F', of degree n, and its index
is the order of a in F* /Ny, p(L>). Writing ~ for Brauer equivalence, we have

Mo(L/F,a,7) ~ (L/F,a,7)®p(L/F,a,7) ~ M,((L/F,a* 7)).

When n is even, let E be the subfield of L fixed by 7/2 and 7 the image of 7 in Gal(E/F).
Then [E : F| =n/2, Gal(E/F) = (T), and

(L/F,a*,7) ~ M>((E/F,a,7)).

Comparing degrees and Brauer classes we obtain

M,_1((E/F,a,7)) when n is even
2 ~ s &y
Ap(L/F,a,7) = {Mn;l ((L/F,a? 7)) when n is odd.
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Lemma 1.2. Let A be a central simple F-algebra and L/F a field extension. There is a
canonical L-algebra isomorphism L@pA%A ~ X2 (Lo A).

Proof. Follows from the invariance of Trd 4 under scalar extension. O

The symmetric square of A over F'is
S%A d:ef EndA®FA((A®FA)(1 + QA))'

It is a central simple F-algebra of degree w Brauer equivalent to A@pr A. When
A = Endp(V) the canonical identification Endp(V)®@pEndp (V) ~ Endp(V®@p V) induces

an isomorphism s% Endp(V) ~ Endp(S%V).

The exterior and symmetric square may be described using the theory of idempotents
(see [La] §21). Recall that if R is a ring and e € R is an idempotent, then eRe is a ring
with identity e, that is simple when R is. Consider the elements
1
2

Then e4 and f4 = 1 — e4 are orthogonal idempotents, and multiplication on the right
induces F'-algebra isomorphisms

ea(A@pA)es ~ A2A and fa(AQpA)fa ~ s2A.

1
ea=5(1—ga) and fa=-(1+94) €ARFA.

def 2

2. TENSOR PRODUCTS

Let A be a central simple F-algebra and ea, fa =1 —es € A®p A the idempotents
introduced in section 1. We have the Pierce decomposition ( [La] §21)

ARpA =es(AQrA)es D ea(ARFA)fa® fa(ARrA)es @ fa(ARFA)fa.
Multiplication on the right yields e4(AQpA)fa ~ HomA®FA((A®FA)eA, (A®FA)fA) and
fa(ApA)es ~ HOInA®FA((A®FA)fA, (A@FA)BA). Set

AshA = Homug q4 ((A®rA)ea, (AQrpA)fa)
and
S)\%A d:ef HomA®FA((A®FA)fA y (A®FA)€A).

In the split case the identification Endp(V)Q@pEndp(V) ~ Endp(V®pV) induces isomor-
phisms As% Endp(V) ~ Homp(A%V, S2V) and sA\% Endp(V) ~ Homp(S2V,A%V). We
write the Pierce decomposition in the matrix form

< A2A AS%A)

eA(A®FA)eA eA(A®FA)fA>
fa(ARrpA)es fa(A®RFA)fa sSALA s2A

as it is more suggestive regarding the algebra structure.

can

A@FA = (

Lemma 2.1. Let A, B be central simple algebras over F' with respective Goldman elements
ga and gp. The canonical isomorphism (AQrB) r (AQprB) ~ (AQrA)®r(B®F B)
identifies the Goldman element of AQr B with g4 ® ¢B.

Proof. The canonical isomorphism (A®QpB) @ (AQpB) ~ (AQpA)Qp(B®rB) identifies
Trd g .p with Trd4 ® Trdp via the Sandwich maps. Il
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Proposition 2.2. Let A, B be central simple F'-algebras. There is a canonical F-algebra
isomorphism

A2 (A@pB) ~ ( N2 A@pshB AS%A@FS)\%B>

S)\%A@F)\S%B S%A@F)\%B
Proof. Let £ : (A®pA)@p(BRpB) = (A®rB)®p(A®FrB) be the canonical isomorphism
(a®d)® (b)) (a®b)® (' @V). Then ¢! induces an isomorphism
Mp(A®FB) ~ € easn) (A®r A)@r (BoF B))E (easn)-
By lemma 2.1 we have £(g4 ® g5) = gasp, therefore
1

2(1—9A®93)=€A®f3+fA®eB

¢ 'eazn) =

where eq4 ® fp and fa4 ® ep are orthogonal idempotents. It follows that )\%(A ®p B) is
isomorphic to

((eA(A®A)€A) ® (fB(B®B)fB) (€A(A®A)fA) ® (fB(B®B)eB)>
(fa(A®A)es)@(eg(BRB)fB) (fa(A®A)fa)®(ep(B@B)ep)

which yields the result. O

Example 2.3. When A = Endp(V) and B = Endp(W) with V, W vector spaces over F,
we have

A% (Endp(V)®@pEndp(W)) ~ A% (Endp(V@rW)) ~ Endp (AL (VorW)).
The canonical decomposition
AN(VRFW) ~ ALVRpSEW @ SEVepALW
identifies Endp (A%(V@pW)) with

Endp(ALV@SZW) Homp (ALV @SEW, S2VQALW)
Homp (S2V@ALW, ALV ©.S2IW) Endp (S2V&@ALW) :
which in turn is isomorphic to
Endp(A%V)@Endp(S2W) Homp(A%V, S2V)@Homp (SEW, A2W)
Homp(S2V, A%2V)@Homp (A%LW, SEW) Endp(S%V)®Endgr(A%W)

in accordance with proposition 2.2.

Let A be a central simple F-algebra and B C A a subalgebra. Then BrB C AQrA
is a subalgebra stable by conjugation by g4. It follows that e4(B®pB)ey is a subalgebra
of ea(A®pA)es ~ \%(A).

Proposition 2.4. Let A be a central simple F-algebra and B C A a proper simple subal-
gebra central over F'. Then eyx(BRpB)eg ~ )\%B X SQFB.

Proof. Let C' = C4(B) be the centraliser of B in A. By the Double Centraliser Theorem,
C is central simple over F' and the map p : BQprC — A, b® ¢ — bc is an F-algebra
isomorphism. Let £ : (B®rB)®p(C®rC) - (BerC)®r (B®prC) be the canonical
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isomorphism (b® V) ® (c®d)— (b®c)® (V@) and v : BRpB — (BRrpB)@p(CorC)
be the map 8 — B ® 1. The diagram

B®FB( incl A®FA

I o

(BRrB)op(CoprC) % (BerpC)®p(BeprC)

commutes, and (u® p)(epgc) = ea since Trdpgc = Trd 4 op. Therefore the isomorphism
(p® p) o € identifies €L (epge) L(BorB) ¢ epgo) with ea(B®pB)es. Proposition 2.2
shows that £ !(epge) (BRpB)@p (C@pC))E epge) identifies with

<§6B(B®B)633®Efc(c®0)fc eB(B®B)fB;®EfC(C®C)€C
When B # A we have degp C' > 2 hence \%C # 0, from which it follows that

[B(B@B)ep)®(ec(C®C)fc) (fB(B®B)fp)®(ec(C®C)ec
¢ Yepgo) U (BRrB) ¢ (epac) ~ ep(BRrBep x fp(BorB)fp.

O

Example 2.5. Let B = Endp(V) and A = Endp(V@ W) where V, W are F-vector spaces.
Example 2.3 shows that es(B®pB)ea ~ Endp(A%V) x Endp(S2V) when dimp W > 2.

3. ETALE ALGEBRAS

Let L be an étale F-algebra. Let Sym%L be the subalgebra of L®p L consisting of
elements fixed by the automorphism sz, : x ® y — y ® x, that is, the subalgebra generated
by the z®y+y®ax with x,y € L. Since multiplication by elements in Sym% L stabilises the
sub-vector space of antisymmetric elements in L& g L, it induces an F-algebra morphism

Uy : Sym% L — Endr(A%L).
The exterior square of L over F' is defined in [Sa] §1 as
ML = Im¥y.
This object is denoted Eo(L/F') in [Sa], and our notation is justified by proposition 3.7

below. It is an étale F-algebra of dimension (g), where n = dimp L. Let e, € Sym% L be
the unique idempotent such that ¥ induces an isomorphism

Uy : (Sym% L)er, = \%L.

In the split case L ~ F' x ... x F' (n times), let {e1,...,e,} be a full set of orthogonal
idempotents of L, that is, orthogonal idempotents such that e; + ...+ e, = 1. Then

er = Z (€i®€j+€j®€i)-
1<i<j<n

Similarly, multiplication by Sym% L stabilises the sub-vector space of symmetric elements
in L&®p L, this time inducing an F-algebra isomorphism

@y : Sym% L = Endp(S%L).
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Thus, as expected, we define the symmetric square of L over F to be
s%LL = Im ®;, ~ Sym?% L.

It is an étale F-algebra of dimension ("erl)

These constructions are compatible with scalar extension : if E/F is a field extension,
there are canonical E-algebra isomorphisms

E@psiL~ so(EQpL) and FE®@pAiL ~ ) 4 (E®pL).

Let G = Gal(F/F) be the absolute Galois group of F. Recall that the functor L +
X (L) = Homp_e(L, F) sets an anti-equivalence between the category of étale F-algebras
and the category of finite continuous G-sets, a quasi-inverse being X + Maps(X, F)¢ =
Mapsq (X, F). We have #X (L) = dimp L. The étale F-algebra L is split if and only if G
acts trivially on X (L) and it is a field if and only if G acts transitively on X (L). There
are canonical identifications

X(L1 X LQ) = X(Ll) U X(Lg) and X(L1®FL2) = X(Ll) X X(LQ),

where G acts on X (L1) x X(L2) by g(&1,&2) = (961,982). If E/F is an algebraic field
extension and Resp,r is the restriction of the Galois action to the absolute Galois group
of E, with obvious notations we have Xp(E®pL) = Resg/p(XFp(L)).

Lemma 3.1. Let I" be a finite group of automorphisms of the étale F-algebra L, and let
LY be the étale subalgebra of elements fized by T'. Then X (LY) = X(L)/X(I).

Note that X (I') is a finite subgroup of Autg(X (L)), and X (L)/X(I") is the quotient
G-set consisting of orbits in X (L) under the action of X (I'). Of course, the inclusion
L' < L induces the surjection X (L) — X (L"), & e

Proof. The canonical isomorphism L — Mapsg(X (L), F) sends L' to the set of G-
maps X (L) — F that are constant on X(I')-orbits, which is canonically isomorphic to
Mapsg(X(L)/X(I'), F). Therefore X (L") is canonically isomorphic to X (L)/X(I'). O

We now apply lemma 3.1 to L&pr L and 'y, = (sz,), where sy, : 2 ® y — y ® x is the
switch map. Under the identification X(L®p L) = X (L) x X (L), the G-automorphism
X(SL) is given by (5?77) = (7775)

Let A(L) = {(&,€); £ € X(L)} be the diagonal of X (L) x X(L). Then A(L) is G-stable
and fixed by sy. Therefore A(L) embeds in the quotient (X (L) x X(L))/X(I'z), and we
identify it with its image.

Proposition 3.2. Let L be an étale F-algebra. We have canonical identifications
X(spL) = (X(L) x X(L))/X(Tr) and X(\pL)=X(s3.L)\ A(L).

Proof. The left-hand side identification follows from lemma 3.1 since s4L = (L®p L)'L.
Let ¥ : S%L —» )\%L be the surjective morphism induced by ¥; under S%L ~ Sym% L.
Then X (1) embeds X (\%L) into X(s%L) by v+ v o01. Let us show that the image of
X (1) does not meet A(L). This implies that X (¢)) is bijective since
n(n+1 nn—1
#(x(sp\ Aw) = "D M0 i),
where n = dimp L.
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The canonical isomorphism Sym% L/(1 —er) Sym% L ~ (Sym?% L)ey, together with Wy, :
(Sym% L)er, = A%L show that Im X (¢) = {y € X(s2L) | v(er) = 1}. Let £ € X(L). In
order to compute (&,£)(er) we may assume that L is split. If {e,...,e,} is a full set of
orthogonal idempotents of L, we have

(5,{:)(6[,) = Z 2§(€i€j) =0.
1<i<j<n

Therefore Im X (1)) does not meet A(L) and X () is bijective. O

Consider the multiplication map
ur: L®pL — L
TRYH—2y.

The separability idempotent ¢, is the unique element of L& pL satisfying pz(er) = 1 and
er(z®y) =cp(y®x) for all z,y € L, see [BI] §18.A. The canonical isomorphism

LepL = Mapsq(X(L)x X (L), F)

sends €7, to the characteristic function of the diagonal A(L). Thus, ( nep)=1if&=n
and is zero otherwise, where (£,7) : L&pr L — F is given by (£,n)(z ® y) = £(x)n(y).
Consider the nondegenerate symmetric bilinear form L x L — F, (x,y) = Trp,p(zy),

where
Trp, /F Z 5
EeX(L

Pick an F-basis (z1,...,2,) for L, and let (z],...,2],) be the dual basis with respect to
Trz p,that is, such that Try, F(zzz;) = 0;. Then the separability idempotent is

€L = Z % ® 2.
1<i<n
Lemma 3.3. Let L be an étale F-algebra. We have e, + e, = 1.

Proof. We may assume that L is split. Let {e1,...,e,} be a full set of orthogonal idem-
potents of L. Then X (L) = {e],..., e}, where e : L — F'is given by e} (e;) = 6; ;. We
have 1 —ef, = Zlgkgn er ® ey, hence

(ezvej)(l_eL): Z ( )®€ Zézk@)é k—dz]

1<k<n 1<k<n

Thus the canonical isomorphism L®pr L — Maps(X(L)x X (L), F) sends 1 — e, to the
characteristic function of A(L). Therefore 1 — ey, = ¢y. O

Proposition 3.4. Let L1 and Lo be étale F-algebras. There are canonical isomorphisms
S%(Ll X LQ) ~ S%Ll X [1®pLo X S%LQ

and
M (Ly x Ly) ~ A%Ly x Li®p Ly X A2 Lo.
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Proof. Let L = Ly x Ly. We compute X (s%L) and X (A\%L) using proposition 3.2. We
have X (L) = X (L;) U X(L2), so X(L®rpL) = X(L) x X(L) identifies with
[X(L1) x X(L1)] U [(X(L1) x X (L2)) U (X (L2) x X(L1))] U [X(L2) x X(La)].

The bracketed G-sets are stable by the action of the switch map s;. Its restriction to
(X(Ll) X X(LQ)) (| (X(LQ) X X(Ll)) sends (fl, 62) S X(Ll) X X(LQ) to (52, 61) S X(Lg) X
X (Ly). Therefore the quotient G-set is isomorphic to X(L1) x X(L2) = X (L1 ®Fp Lo).
Hence

X(spL) ~ X (spLy x Li®p Ly x shLa),
from which the first isomorphism follows.

We have X(A4L) = X(s%L) \ A(L). Since A(L) = A(L1) U A(Ls) does not meet
X (L1) x X (L), we find that X(A\%L) identifies with
(X(s3L1) \ A(L)) U (X(L1) x X(L2)) U (X(s3L2) \ A(L2)).

Hence

X(A\pL) ~ X (A\%Ly x Li®p Ly x AL L),
from which the second isomorphism follows. ]

Remark 3.5. The isomorphisms of proposition 3.4 easily generalises to a finite product
of étale F-algebras. For instance

A%( HLi) ~ [[ 3L x [] LiorL;.

1<i<r 1<i<r 1<i<j<r

Let A be a central simple F-algebra and L an étale subalgebra of A. We say that L is
a maximal étale subalgebra of A when dimp L = degp A. It is easy to see that an étale
subalgebra L C A is maximal if and only if the restriction of Trd4 to L is Try p.

Recall from section 1 that )\%A ~ e (A®pA)ey, where 2e4 = 1 — g4 and g4 is the
Goldman element of A. Let Sym2 A be the subalgebra of symmetric elements in A®p A,
that is, the subalgebra fixed by conjugation by ga. Thus ga,ea € Sym%ﬂ A. Further the
relation 2e4(a ®@bles = (a@b+b®@a)esa =es(a®@b+b® a) for a,b € A shows that

MA~e (ARpA)es = (Sym% A)ey = es(Sym% A).

Lemma 3.6. Let A be a central simple F'-algebra and L a maximal étale subalgebra of A.
We have efeq = eqer, = e€4.

Proof. Lemma 3.3 shows that e, = 1 — €1, where ¢, is the separability idempotent of L.
As 2ey = 1—g4, we need to check that e, g4 = gacr, = er. Let (21,...,2,) be an F-basis
for L and (21, ...,2,) be the dual basis with respect to Try,/p. Then

rTn
/ /
gAEL gA :gA( Z Zi®zi)g.4 = Z 2 ®zi = €L,
1<i<n 1<i<n

thus e commutes with g4. It is enough to check the equality e;, g4 = €1, in the split
case. Since L is maximal, we may assume that L = F' X ... X F' (degp A times) and that
A =Endp(L). Under the identification AQp A ~ Endp(L®p L) we have

(erga)z®@y) =cL(y®@z) =cr(z®y)
for all z,y € L. Hence €1, g4 = €. [l
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Proposition 3.7. Let A be a central simple F-algebra and L a maximal étale subalgebra
of A. There is a canonical F-algebra isomorphism

es(L®pL)ey ~ 4L,

Thus )\%L is a maximal étale subalgebra of )\%A. Note that the result does not hold when
L is not maximal in A : take L = F and A with degp A > 2, then es(FRpF)eq = Fey ~ F
whereas /\%F =0.

Proof. We have es(L ®p L)es = (Sym% A)ea and ALL ~ (Sym% L)er. The relations
erea =eger, = ey of lemma 3.6 show that multiplication by e4 defines a map

(SymZF Lye;, — (Sysz Aea
ser —> seq.

It is an F-algebra morphism since Sym% L C Sym% A lie in the commutant of e, and it is
clearly surjective. Injectivity may be checked in the split case : if {e1,...,e,} is a full set
of orthogonal idempotents of L and s = Y, cpc, Sks(ex ® er + e @ e) € Sym% L with

spe € F', then sey = 0 if and only if s, 0 = 0 for all 1 <k < ¢ < n, which is equivalent to
ser, = 0. O

Remark 3.8. Proposition 3.7 shows that the isomorphism class of )\%L does not depend
on the central simple F-algebra in which it is maximally embedded. In particular one
may pick A = Endp (L), in which case one recovers the original construction of )\%L given

in [Sal.

Remark 3.9. Let A be a central simple F-algebra and L a maximal étale subalgebra of
A. Just as for A (see section 1), there is a Sandwich map for L

SdL : L®FL — EndF(L)

We have Sd;, = mpopur, where ur, : LQpL — L, x®y — xy is the multiplication map and
my, : L < Endp(L) is the canonical embedding sending « € L to the multiplication by x
in Endp(L). Thus ImSdy, ~ L, and KerSd;, = Keruy, = (1 —ep)(L®pL) = er(L®FpL)
by lemma 3.3.

By maximality of L in A, the restriction map Resy : Endp(A) - Homp(L, A) sends
Trda to Trpp. The following diagram commutes

LopL — e Endp(L)
HOmF(L, A)
TResL
ARpA = EndF(A)
Sd a

where all the vertical maps are canonical. One recovers Endp(L) with the help of this
diagram through g4 and the map Res;oSdy : it induces an isomorphism

(L@FL)gA ~ Endp(L).
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Indeed, for z,y € L and a € A, we have

Sda((z ® y)ga)(a) = Trda(ay)z,
thus Sda((z ® y)ga) restricts on L to the map L — L, z = Try/p(2y)x. Now the above
isomorphism follows from the nondegeneracy of the bilinear form Try,/r, which yields the
isomorphism L&pL = Endp(L), 2 @y — [z — Try p(zy)z].

4. DIRECT PRODUCTS
We begin with two elementary lemmas on idempotents.

Lemma 4.1. Let R be a ring, e € R an idempotent, and g =1 — 2e. If {p1,...,pr} is a
full set of orthogonal idempotents of R commuting with g, then {ep1,...,ep,} is a full set
of orthogonal idempotents of eRe.

Proof. The p;’s commute with e, hence the ep; = ep;e € eRe are orthogonal idempotents
such that epy + ...+ ep, = e. O

Lemma 4.2. Let R be an F'-algebra and e,p € R idempotents. Let g=1—2e, q=1—0p,
and S = pRp ® qRq. Assume gpg = q. Then R=5 ® g5 and eSe = eRe >~ pRp.

Note that S is a subring of R.

Proof. As ¢? = e is equivalent to g?> = 1, we find that pRpg = p(Rg)gpg = pRq and
99Rq = gqg(gR)q = pRq ; similarly, ¢Rqg = gpRp = qRp. Thus Sg = gS = pRq ® qRp,
and the Pierce decomposition eRe = pRp @ pRq ® qRp & qRq shows that R = 5 @ ¢S.
Thus eRe = eSe + egSe = eSe, since eg = ge = —e. Further, the relations gp = qg and
pg = gq yield epRpe = e(pg)R(gp)e = e(g9q)R(qg9)e = eqRqe, so eRe = eSe = epRpe.
They also yield 2pep = p — pgp = p, which, together with 2epe = epe + egqge = e, show
that the map

pRp — epRpe = eRe

prp — 2eprpe
is an F'-algebra isomorphism. O

Now let A, B, C be central simple F-algebras such that B x C' is a maximal subalgebra
of A. Here maximality means that degp B+ degp C = degp A, or equivalently that B x C'
contains a maximal étale subalgebra of A (see section 3).

Then es((B x C)®@p(B x C))ey is a subalgebra of es(A®p A)es ~ AL A.

Proposition 4.3. Let A, B,C be central simple F-algebras such that B x C' is a maximal
subalgebra of A. There is a canonical F-algebra isomorphism

ea((Bx C)®p(B x C))ea ~ \pB x BopC x \3.C.
Proof. Let p and ¢ = 1 — p be orthogonal idempotents such that B = pAp and C' = ¢Aq,

so Bx C = pAp ® qAq. Then {p@p,pRq+q®p, q® q} is a full set of orthogonal
idempotents of AQr A commuting with g4. Set

R=(p®q¢+qep)(ARrA)(p®q+q@p)
and consider the subalgebra
T=(BorB)® R @ (CorC)
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of AQpA. Then eqTey is a subalgebra of e4(A®p A)es and lemma 4.1 shows that
eaTeps =es(BpBlega @ egRey ®es(CopCey.
An easy calculation gives Sdp(ga(p ® p)) = (Trda)|p = Trdp, therefore g = ga(p ® p).
It follows that ep = e4(p ® p), which yields
es(BopBles = eg(BRpB)ep ~ \4B.

Similarly, ea(C®rC)eq ~ A4C.

Note that p ® ¢ and ¢ ® p are complementary orthogonal idempotents in R such that
ga(p®q)ga = q® p. Consider the subring S = (p® ¢)R(p ® q) & (¢ ® p)R(q ® p) of R.
We have

S = (peq)(A®rA)(p®q) ® (¢®p)(A®F A)(q®p) = BRFC x CRF B,
so that
(BxC)®p(BxC)=(BrB)® S & (CorC).
Now lemma 4.2 shows that e4Ses = eaRea ~ (p®Rq)R(p® q) = BopC, from which the
result follows. O

Example 4.4. Let B = Endp(V), C = Endp(W) and A = Endp(VeW). We have
M. A ~ Endp(A%(V@W)), and the canonical isomorphism

AN(VEW) ~ ALV @ (VRpW) @ AZW
induces an F-algebra isomorphism
A% (Endp(V) x Endp(W)) ~ Endp(ALV) x Endp(V@rW) x Endp(ATW).

Remark 4.5. If L, L, are maximal étale subalgebras of B, respectively, then L =
L, x Ly is a maximal étale subalgebra of A. Proposition 3.7 shows that )\%L identifies
with the maximal étale subalgebra es(L®@p L)es of es((B x C)®@p (B x C))ea, and the
isomorphism of proposition 4.3 restricts to the one of proposition 3.4

ea(L®pL)es ~ MaLy X L1®@pLy X A%Lo.

Under the assumptions of proposition 4.3, consider the Sandwich map for B x C
Sdpxc : (B x C)®p(B x C) — Endp(B x C).

Then KerSdpyxc = BOpC x C®pB and Im Sdgyo = EndF(B) X EndF(C). With the
notations of the proof of proposition 4.3, let 7 : A — B x C be the F-linear surjective
map a — pap + qaq ; we have 71 = Sda(p ® p + ¢ ® q). Then the diagram

(BxC)@p(BxC) < Endp(B x C)

| |

ARpA = EndF(A)
Sd a

commutes, where the vertical right-hand side map is f — 7 f7 and the left-hand side one
is just inclusion. We have m Trd4 m = Trd4. As in the proof of proposition 4.3, let

T = (BerB)® (peq+ q@p)(A@rA)(pRq + q®p) ® (CRFC).
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Then T is the subalgebra of A®p A generated by (B x C)®p (B x C) and g4. Consider
the subvector space of T'

U= (BarB) @ (peq)(A®rA)(¢®p) ® (¢®p)(A®rA)(p®q) & (CRFC).
Note that g4 € U, since (p®q)ga(q®p) = (p®q)ga and (¢®@p)ga(p®q) = (¢®p)ga.
Lemma 4.6. The Sandwich map of A induces an isomorphism

U— EndF(B X C)
ur— mSda(u) .

Proof. The above map induces B&r B ~ Endp(B) and C®pC ~ Endp(C). We have
(q@p)(A®rA)(p®q) = (C®FB)ga and Sda((c®b)ga)(a) = Trda(ab)c for all a,b,c € A.
The F-linear isomorphism C®p B — Homp(B,C), c®b + [z + Trdg(zb)c] shows that
Sd 4 induces

(q@p)(A®F A)(pRq) ~ Homp(B,C).
Similarly, Sd4 induces an isomorphism (p®¢q)(A @rA)(¢®p) ~ Homp(C, B). O

Let A be an F-algebra on which a group G acts by ring automorphisms. Then G acts
on A®pA and Endp(A4) by o(a®b) = ca ® ob and (o f)(a) = of(cta), for all 0 € G,
a,be A, f € Endp(A), and the Sandwich map Sd4 : A®pA — Endp(A) is G-equivariant.

For a central simple F-algebra A, set A = F®rA and G = Gal(F/F). The Galois
group G acts by semilinear ring automorphisms on A through its natural action on F,
and A9 = A. As Sd : A®7A = End#(A) is G-equivariant and the reduced trace map
Trd : A — A commutes with the action of G, it follows that g7 and ey are fixed by G.

Now let B, C be central simple F-algebras. Then G acts on B x éi)y acting on each
factor. Let V,W be F-vector spaces such that B ~ Endx(V) and C ~ Endz(W) as
F-algebras, and consider

E = End(V o W).
Then B x C is a maximal subalgebra of E. Set § = g and € = ep € EQzE.

Definition 4.7. Let B,C be central simple F-algebras. The exterior square of B x C
over F'is

M(B x C) = e((BxC)@r(BxC))e.

def
This definition is invariant under scalar extension : for a field extension L/F there is a
canonical L-algebra isomorphism L&pA%(B x C) ~ X2 ((Le@pB) x (LapC)).
When B x C' is a maximal subalgebra of a central simple F-algebra A, we have E ~ A,
and A\%(B x C) is canonically isomorphic to the subalgebra e ((B x C)®p(B x C))ea of
A% A considered in proposition 4.3. Also, since G = Gal(F/F) fixes e, we have

M(Bx C) = (Z4(B x 0))°.

Proposition 4.8. Let B,C be central simple F-algebras. There is a canonical F-algebra
isomorphism
M.(BxC) ~ M.BxBeprC x\.C.
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Proof. As in the proof of proposition 4.3, let T be the subalgebra of E @7 L generated by
(B x C)®%(B x C) and g. Recall from lemma 4.6 that Sdg induces an isomorphism

where U is a subspace of T containing g. The action of G on EndF(E x C) thus uniquely
extends to an action on U making the above isomorphism G-equivariant. The restriction

of Trd to B x C is the map (b, c) — Trdz(b) + Trdg(c), that commutes with the action
of G since Trdz and Trdg do. It follows that G fixes g and e, which yields

= o 7\ C
AF(B x C)=(A(BxC))".
Now the canonical isomorphism of proposition 4.3
MA(BxC) ~ MBxBepC x \2C
commutes with the action of GG, and the result follows by taking G-fixed parts. 0

Remark 4.9. The definitions and results of this section 4 easily generalise to a finite
product of central simple F-algebras as follows. For 1 < i < r let A; be central simple
over F' with A; ~ End(V;). Set E' = Endi(®1<i<,V;), and define

Xe(TT 40 = e((TT a)er( I 40))e
1<i<r 1<i<r 1<i<r
where € = eg. Then there is a canonical F-algebra isomorphism
1<i<r 1<i<r 1<i<j<r

When L; is a maximal étale subalgebra of A; for each 1 <1 < r, it is compatible with the
isomorphism of remark 3.5.

5. THE NORM ALGEBRA

Let F/K be a quadratic extension with Gal(F/K) = (o) and A an F-algebra. The
twisted F-algebra A is the set of elements a” with a € A together with the twisted F-
algebra structure a® +b° = (a+b)?, a°b’ = (ab)?, and z-a° = (0~ !(z)a)? for all a,b € A
and x € I'. When V is an F-vector space, one defines in a similar fashion the twisted F-
vector space V7 and there is a canonical F-algebra isomorphism Endz (V)7 ~ Endp(V?).
Consider the switch map

sS4 ARpA? — ARpA°
a®@b” — b®a’.

It is a o-semilinear automorphism of A®p A%, and the norm algebra Np/x(A) is the
sub-K-algebra fixed by s4. Again the same construction applies to F-vector spaces. The
K-algebra Np, i (A) enjoys the following properties, where all the isomorphisms involved
are canonical (see [Dr] §8 or [BI] §3.B):

(1) The inclusion induces an F-isomorphism F®g Np/(A) — A®pA°.

(2) Np/g(A®FB) ~ Np g (A)®@K Np/g(B) for F-algebras A, B.

(3) Np/k (Endp(V)) ~ Endg (Np/k(V)) where V is an F-vector space.

(4) When A is central simple of degree n over I, Np/ i (A) is central simple of degree

n? over K, and [Np/x(A)] € Br(K) is the corestriction of [A] € Br(F).
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(5) When Ag is a central simple K-algebra, Np/x(F®x Ag) ~ Ao® Ao.
In particular both properties (3) and (4) imply that Np/x(F) ~ K.
Example 5.1. Let L/K be a cyclic extension of degree 2n containing F' with Gal(L/K) =

{p). Let 7 = p?, a € F*, and (L/F,a,T) be the associated cyclic algebra as in example 1.1.
We have

NF/K(L/F7 a, T) ~ (L/K7 NF/K(CL)7/))

Let E be the subfield of L fixed by p™ and p the image of p in Gal(E/K) ; then [E : K] =n
and Gal(E/K) = (p). When n is odd E and F are linearly disjoint over K, and we have
(L/K, Npjic(a), p) =~ (F/K,1,0)@ (E/K, Npyc(a), p) ~ M ((E/K, Npyxc(a), 7).

Comparing degrees and Brauer classes we obtain
Mn ((L/K,Np/k(a),p)) when n is even

N L F7 ) =~
r/(L/F,a,7) {Mn((E/K,NF/K(a))P)) when n is odd.

Lemma 5.2. Let A be an F-algebra and L/K a field extension such that LN F = K.
There is a canonical L-algebra isomorphism

Lok Np/k(A) ~ Nppjn(L®kA).

Proof. The assumption L N F = K implies that Ly F' ~ LF is a field, and we have
Lok A~ LF®pA. Fuarther the restriction map Respp/p : Gal(LF/L) — Gal(F/K) is an
isomorphism. Let 7 € Gal(LF/L) be such that Res;p/p(7) = 0. Then

0: A®pA° — (LFRrA)®r(LF®pA)"
a®b’ — (1®a)®L(1®0b)"

is an F'-algebra embedding. Since § commutes with the switch maps, that is 8 o s4 =
sLFepA © 0, it induces a K-algebra embedding Np) g (A) < Npp/(LF®pA). By scalar
extension we obtain an L-algebra embedding

L@k Npjr(A) = Nppy(LF®pA)

which is bijective as both algebras have same degree over L. O

6. THE EXTERIOR SQUARE OVER K

Let F/K be a quadratic field extension with Galois group G(F/K) = (o). Consider the
multiplication map
pr: FOrEF — F

TRQY+— TY.
Recall from section 3 that the separability idempotent of F'/K is the unique idempotent
er € FRgF such that up induces an F-algebra isomorphism (FQx F)ep ~ F. If (x1,x2)
is a K-basis for F' and (21, 25) is the dual basis with respect to Trp/k, then
EF =171 Q) + 12 TY .
Now consider the twisted multiplication map
HF o FogF — F
@y +— zo(y)
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and the twisted separability idempotent
EFo =21 Qo(x)) + 23 ® 0()).

We have er +eF,o = 11 @ Trp/g(2]) + 22 ® Trp/k (25) = 1 since x; and ] are dual with
respect to Trp)j, hence ep » = ep by lemma 3.3. Thus ep and €5, are complementary
idempotents, so that FQgF = (FQgF)ep & (FOgF)erp » and pup, , induces a K-algebra
isomorphism (F®g F)ep o ~ F.

Lemma 6.1. Let F/K be a quadratic field extension with Galois group G(F/K) = (o)
and A an F-algebra. The map

FogA -5 Ax A°
r®a— (ra, x-a%)
1s an F-algebra isomorphism.
Proof. As er and €, are complementary central idempotents in F'®x A, we have
FogA=(ForgAer & (FRQrgA)er -
The result follows from the F-algebra isomorphisms (F® A)ep — A, (z ® a)ep + za,
and (FRgA)er, & = A0, (x®a)ep,o — x-a’. O

Let A be a central simple F-algebra. Then F®x A is the product of two central simple
F-algebras by lemma 6.1, so we may consider the F-algebra )\%(F ®pA) of section 4. The
semilinear action of G(F/K) on F®x A extends naturally to A4 (F®x A). Indeed, with
the notations of definition 4.7, we have \3.(F®gA) = e((Fog A)@p(F®KA))e, on which
G(F/K) acts by fixing e.

Definition 6.2. Let F//K be a quadratic extension with Galois group G(F/K) and A a
central simple F-algebra. The exterior square of A over K is

MeA = (Np(Fa4)) 7,

ot
Thus A% A is a semisimple K-algebra and F®x A% A ~ M4 (F®k A) canonically.

Theorem 6.3. Let F/K be a quadratic field extension and A a central simple F-algebra.
There is a canonical K-algebra isomorphism

Proof. Let G(F/K) = (o) and v : FRgA = Ax A°, 2®@a + (xa, v-a°) be the F-algebra
isomorphism of lemma 6.1. Then the diagram

rRa ForA—"=Ax A° (a,b”)
o(x)®a FogA—=AxA° (b,a”%)

commutes. Note that A% (A7) = (A%.A)?. Therefore the isomorphism of proposition 4.8
M(A X A%) ~ A2A x AQp A% x (\%LA)
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carries the action of o to (o, a®b?, 8) + (B,b®a%,a%) on ALA x A®pA? x (A\LA)?. The
subalgebra of A% A x (A4 A)° fixed by (a, 87) + (3, a7) is canonically isomorphic to A% A,
and the subalgebra of A®p A7 fixed by s4 : a®b” — b®a’ is Np/(A). Hence

ALA = (AB(A x A) U o A2 A 5 Ny (A).
Il

Example 6.4. When A = Endp (V) with V an F-vector space, theorem 6.3 together with
the properties of )\% and Np/r show that

A Endp(V) ~ Endp(A2V) x Endg (Np/r(V)).

Example 6.5. When Aj is a central simple K-algebra, theorem 6.3 together with property
(5) of the norm algebra and lemma 1.2 show that

)\%{(F@KA(Q ~ F®K)\%<A0 X A0®KAO.

Example 6.6. Let L/K be a cyclic extension containing F' of degree 2n with Gal(L/K) =
(p). Let 7 = p% a € F*, and (L/F,a,T) be the associated cyclic algebra. Let E be the
subfield of L fixed by p™ and p the image of p in Gal(E/K). When n is even the field
E contains F and 7 = p? generates Gal(E/F). Theorem 6.3 together with examples 1.1

and 5.1 show that
N2 (L/F.a,7) = {Mnl((E/F,a,T')) X M%((L/K, Np/k(a),p)) when n is even

Man((L/F, a?,7)) x M,((E/K, Npk(a),p)) when n is odd.

Theorem 6.7. Let F//K be a quadratic extension and A a central simple F-algebra. Let
L/K be a field extension. There is a canonical L-algebra isomorphism

Lo A ~ X2 (LeogA).
Proof. By scalar extension theorem 6.3 furnishes an L-algebra isomorphism
L®K)\%(A ~ L@K)\%:A X L®KNF/K(A).

We now compute the L-algebra A\ (L@ A). Since F/K is quadratic we are led to consider
two situations : either FFNL = K, in which case L& F' ~ LF is a quadratic field extension
of L, or F' C L, in which case Ly F ~ L x L.

Assume FNL = K. Then LA ~ LF®pA is central simple over LF and theorem 6.3
shows that

M(L®KA) ~ A p(LOk A) X Npp/(L®K A).

The result then follows from the canonical isomorphisms A2 (L®k A) ~ L@k ALA of
lemma 1.2 and Npp/r(L®k A) ~ L&k Np/k(A) of lemma 5.2.

Assume F' C L. Then LQg /\%(A ~ Lop(FoK )\%(A), therefore it suffices to prove the
statement when L = F. As A%(A%) ~ (A4 A4)° lemma 6.1 and proposition 4.8 yield

M(FRgA) ~ NA(Ax A%) ~ N2A x A@pA% x (A\LA)°.

Now the result follows from the canonical isomorphisms A\%A x (ALA)° ~ F@x %A of
lemma 6.1 and A®p A7 ~ F®k Npi(A) of property (1) in section 5. O
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