THE COHOMOLOGY OF SOME QUOTIENT NORM ONE TORI DEFINED OVER \mathbb{Q}

MAJA VOLKOV

Abstract

We compute the cohomology of certain quotient norm one algebraic tori defined over \mathbb{Q}.

2010 Mathematics Subject Classification: 11E72, 20G30.

Contents

Introduction 1
Notations 2

1. Tori 3
2. Local cohomology 5
3. Global cohomology 7
4. Local and global 15
References 18

Introduction

This paper deals with the cohomology of some quotient norm one algebraic tori defined over \mathbb{Q}. They arise from a class of finite extensions of \mathbb{Q} subject to certain local conditions at a given finite place and at the infinite one. These tori are anisotropic, and we compute their cohomology as well as their Tamagawa number.

The algebraic \mathbb{Q}-tori considered in this paper are introduced in section 1. Fix a prime number p and let $\mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$ be the class of finite extensions F of \mathbb{Q} satisfying the following local conditions at p and $\infty: F$ has complex multiplication and $\mathbb{Q}_{p} \otimes_{\mathbb{Q}} F$ is a field with complex multiplication too. Then complex conjugation induces an involution \dagger on F. Now let L / F be a nontrivial extension such that L and F are both in $\mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$. They define the \mathbb{Q}-tori $T=\operatorname{Res}_{F / \mathbb{Q}}\left(\mathbb{G}_{m}\right), T^{\dagger}=\operatorname{Res}_{F^{\dagger} / \mathbb{Q}}\left(\mathbb{G}_{m}\right), S=\operatorname{Res}_{L / \mathbb{Q}}\left(\mathbb{G}_{m}\right)$, and $S^{\dagger}=\operatorname{Res}_{L^{\dagger} / \mathbb{Q}}\left(\mathbb{G}_{m}\right)$. The norm maps $x \mapsto x x^{\dagger}$ on fields induce morphisms $T \rightarrow T^{\dagger}$ and $S \rightarrow S^{\dagger}$ on the associated tori. Letting T_{1} and S_{1} be their respective kernel, the quotient norm one \mathbb{Q}-torus we want to consider is T_{1} / S_{1}. Corollary 1.2 shows that T_{1} / S_{1} is \mathbb{Q}-anisotropic.

In section 2 we compute the local cohomology of T_{1} / S_{1} at p and at ∞ (propositions 2.2 and 2.3). Section 3 is devoted to the computation of its global cohomology. It involves the kernels and cokernels of three fundamental morphisms arising from class field theory.

The first is the morphism $\iota: L^{\dagger \times} / N_{\dagger}\left(L^{\times}\right) \rightarrow F^{\dagger \times} / N_{\dagger}\left(F^{\times}\right)$induced by inclusion. The two others are deduced from the commutative diagram

as the restrictions $\rho: \operatorname{Ker~Cor}_{L / L^{\dagger}} \rightarrow \operatorname{Ker}_{\operatorname{Cor}_{F / F^{\dagger}}}$ and $\sigma: \operatorname{Coker} \operatorname{Cor}_{L / L^{\dagger}} \rightarrow \operatorname{Coker}^{\operatorname{Cor}}{ }_{F / F^{\dagger}}$ of $\operatorname{Res}_{F / L}$ and $\operatorname{Res}_{F^{\dagger} L^{\dagger}}$ respectively. We show in proposition 3.8 that there are short exact sequences

$$
\begin{gathered}
1 \longrightarrow F_{1} / L_{1} \longrightarrow H^{0}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \iota \longrightarrow 1 \\
1 \longrightarrow \operatorname{Coker} \iota \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \rho \longrightarrow 1
\end{gathered}
$$

and that $H^{2}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq \operatorname{Coker} \rho$. When $r \geq 2$ we find $H^{2 r-1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq \operatorname{Coker} \sigma$ and $H^{2 r}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$.

Section 4 deals with local and global aspects. Let $C(T)=T(\mathbb{A}) / T(\overline{\mathbb{Q}})$ be the adèle class group over $\overline{\mathbb{Q}}$ and $C_{\mathbb{Q}}(T)=T\left(\mathbb{A}_{\mathbb{Q}}\right) / T(\mathbb{Q})$ be the one over \mathbb{Q}. Proposition 4.2 shows that $\amalg^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right)$ is trivial for all r. We have $H^{0}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right)=C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ and the same holds for T_{1} and S_{1} (lemma 4.3). Let $\iota_{p}: L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \rightarrow F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)$be the morphism induced by inclusion in the local setting. Theorem 4.4 shows that $C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ has finite invariant volume \# $\operatorname{Ker} \iota_{p}$. Further theorem 4.5 shows that there are short exact sequences

$$
\begin{gathered}
1 \longrightarrow C_{\mathbb{Q}}\left(T_{1}\right) / C_{\mathbb{Q}}\left(S_{1}\right) \longrightarrow C_{\mathbb{Q}}\left(T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \iota_{p} \longrightarrow 1, \\
1 \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) \longrightarrow \operatorname{Coker} \iota_{p} \longrightarrow 1,
\end{gathered}
$$

and that $H^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq H^{r}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right)$ for $r \geq 2$. Gathering these results together in corollary 4.6 we find that the Tamagawa number of T_{1} / S_{1} is 1 when $[F: L]$ is odd and is 2 when $[F: L]$ is even, and that $H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)$ has index 1 or 2 in $H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right)$ accordingly.

Notations

Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and for each prime number ℓ an algebraic closure $\overline{\mathbb{Q}}_{\ell}$ of \mathbb{Q}. For an extension K of \mathbb{Q} contained in $\overline{\mathbb{Q}}$ let \mathbb{A}_{K} be its adèle ring, $I_{K}=\mathbb{A}_{K}^{\times}$its idèle group, and $C_{K}=I_{K} / K^{\times}$its idèle class group. When $K=\overline{\mathbb{Q}}$ we simply write \mathbb{A}, I, and C. When K is a number field we let S_{K} be the set of places of K, S_{K}^{f} the subset of nonarchimedean ones, S_{K}^{∞} the archimedean ones. Write $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ and $G=G_{\mathbb{Q}}$; for $\ell \in S_{\mathbb{Q}}^{f}$ let $G_{\ell}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{\ell} / \mathbb{Q}_{\ell}\right)$.

For a topological abelian group A let $A^{\vee}=\operatorname{Hom}_{\text {cts }}(A, \mathbb{Q} / \mathbb{Z})$ be the group of continuous characters of finite order of A and A^{\wedge} the completion of A with respect to the topology defined by the open subgroups of finite index. For a positive integer n let A^{n} be the direct sum of n copies of A. For positive integers n, m such that n divides m let

$$
\text { Diag : } A^{n} \hookrightarrow A^{m}=\left(A^{m / n}\right)^{n}
$$

be the n-fold diagonal morphism $A \hookrightarrow A^{m / n}, a \mapsto(a, \ldots, a)$. Finally write $\operatorname{KS}(A) \subseteq A \oplus A$ for the kernel of the sum $A \oplus A \rightarrow A,(a, b) \mapsto a+b$. Note that $\operatorname{KS}(A)$ is noncanonically isomorphic to A.

1. Tori

Fix a prime $p \in S_{\mathbb{Q}}^{f}$. We want to consider the class $\mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$ of finite extensions F of \mathbb{Q} satisfying the following local conditions at p and ∞ :
(i) F is CM ,
(ii) $F_{p}=\mathbb{Q}_{p} \otimes_{\mathbb{Q}} F$ is a field,
(iii) F_{p} is CM .

Let $F \in \mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$ and let \dagger be the involution on F given by complex conjugation. Condition (iii) above means that the \mathbb{Q}_{p}-linear extension of \dagger to F_{p} is nontrivial. Write $\Gamma=\langle\dagger\rangle=$ $\operatorname{Gal}\left(F / F^{\dagger}\right) \simeq \operatorname{Gal}\left(F_{p} / F_{p}^{\dagger}\right)$. Let

$$
N_{\dagger}: F^{\times} \rightarrow F^{\dagger \times}
$$

be the norm map $x \mapsto x x^{\dagger}$ and put $F_{1}=\operatorname{Ker} N_{\dagger} \subset F^{\times}$. As no confusion should occur we also write N_{\dagger} for the p-adic norm map $F_{p}^{\times} \rightarrow F_{p}^{\dagger \times}$ and set $F_{p, 1}=F_{1} \cap F_{p}^{\times}$.

Now let $L \in \mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$ be a subfield of $F, L \neq F$. This is equivalent to L being a \dagger-stable subfield of F such that $L^{\dagger} \neq L$ and $L_{p}^{\dagger} \neq L_{p}=\mathbb{Q}_{p} \otimes_{\mathbb{Q}} L$. The restriction map identifies Γ with $\operatorname{Gal}\left(L / L^{\dagger}\right) \simeq \operatorname{Gal}\left(L_{p} / L_{p}^{\dagger}\right)$, and we still denote by N_{\dagger} the norm $L^{\times} \rightarrow L^{\dagger \times}$ (resp. $L_{p}^{\times} \rightarrow L_{p}^{\dagger \times}$) with kernel L_{1} (resp. $L_{p, 1}$). Thus we have the field extensions

Note that this situation yields some constraints on the arithmetic of the extensions involved. Namely if both F_{p} / F_{p}^{\dagger} and L_{p} / L_{p}^{\dagger} are unramified then the residue fields degree $f\left(F_{p} / L_{p}\right)=f\left(F_{p}^{\dagger} / L_{p}^{\dagger}\right)$ must be odd, because the residue field of L_{p}^{\dagger} has a unique quadratic extension in $\overline{\mathbb{F}}_{p}$; if both $F_{p} / F_{p}^{\dagger}, L_{p} / L_{p}^{\dagger}$ are ramified and $p \neq 2$ then the ramification index $e\left(F_{p} / L_{p}\right)=e\left(F_{p}^{\dagger} / L_{p}^{\dagger}\right)$ must be odd, because the maximal unramified extension of L_{p}^{\dagger} has a unique quadratic extension in $\overline{\mathbb{Q}}_{p}$ when $p \neq 2$.

We now define the \mathbb{Q}-tori associated to the class $\mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$. Let $L, F \in \mathcal{F}_{\mathrm{CM}}^{p}(\mathbb{Q})$ with $L \subset F$ and consider the following \mathbb{Q}-tori

$$
T \underset{\text { def }}{=} \operatorname{Res}_{F / \mathbb{Q}}\left(\mathbb{G}_{m}\right), \quad T^{\dagger} \underset{\text { def }}{=} \operatorname{Res}_{F^{\dagger} / \mathbb{Q}}\left(\mathbb{G}_{m}\right), \quad S \underset{\text { def }}{=} \operatorname{Res}_{L / \mathbb{Q}}\left(\mathbb{G}_{m}\right), \quad S^{\dagger} \underset{\text { def }}{=} \operatorname{Res}_{L^{\dagger} / \mathbb{Q}}\left(\mathbb{G}_{m}\right)
$$

We have $T(\mathbb{Q})=F^{\times}, T\left(\mathbb{Q}_{p}\right)=F_{p}^{\times}$, and similarly for the three others. Again write N_{\dagger} for the morphisms $T \rightarrow T^{\dagger}$ and $S \rightarrow S^{\dagger}$ induced by the norm and set

$$
T_{1} \underset{\text { def }}{=} \operatorname{Ker}\left(T \xrightarrow{N_{\dagger}} T^{\dagger}\right) \quad \text { and } \quad S_{1} \underset{\text { def }}{=} \operatorname{Ker}\left(S \xrightarrow{N_{\dagger}} S^{\dagger}\right) .
$$

Thus T_{1} is a \mathbb{Q}-torus with $T_{1}(\mathbb{Q})=F_{1}, T_{1}\left(\mathbb{Q}_{p}\right)=F_{p, 1}$, and similarly for S_{1}. We want to study the arithmetic of the quotient norm one \mathbb{Q}-torus T_{1} / S_{1}. This will be achieved by using the commutative diagram with exact rows ans columns

Let \mathcal{T} be a K-torus and $X^{*}(\mathcal{T})=\operatorname{Hom}\left(\mathcal{T}, \mathbb{G}_{m}\right)$ its $\mathbb{Z}\left[G_{K}\right]$-module of characters. Recall that the contravariant functor $\mathcal{T} \mapsto X^{*}(\mathcal{T})$ establishes an equivalence between the category of algebraic tori over K and the category of finite free \mathbb{Z}-modules with discrete action of $G_{K}([\mathrm{Pl}-\mathrm{Ra}] \mathrm{Thm} .2 .1)$. The torus \mathcal{T} is said K-anisotropic if $X^{*}(\mathcal{T})^{G_{K}}=0$.
Lemma 1.1. The torus T_{1} is \mathbb{Q}-anisotropic.
Proof. Consider the algebraic F^{\dagger}-tori $T_{0}=\operatorname{Res}_{F / F^{\dagger}}\left(\mathbb{G}_{m}\right)$ and $T_{0}^{(1)}=\operatorname{Ker}\left(T_{0} \xrightarrow{N_{\dagger}} \mathbb{G}_{m}\right)$. We have $X^{*}\left(\mathbb{G}_{m}\right)=\mathbb{Z}, X^{*}\left(T_{0}\right)=\mathbb{Z}[\Gamma]$, and $X^{*}\left(T_{0}\right)^{G_{F^{\dagger}}}=\mathbb{Z}(1+\gamma)$ with $\gamma=\dagger$, the generator of Γ. The short exact sequence of F^{\dagger}-tori

$$
1 \longrightarrow T_{0}^{(1)} \xrightarrow{\mathrm{incl}} T_{0} \xrightarrow{N_{\dagger}} \mathbb{G}_{m} \longrightarrow 1
$$

yields a short exact sequence of $\mathbb{Z}\left[G_{F^{\dagger}}\right]$-modules

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{X^{*}\left(N_{\uparrow}\right)} \mathbb{Z}[\Gamma] \xrightarrow{\text { proj }} X^{*}\left(T_{0}^{(1)}\right) \longrightarrow 0
$$

with $X^{*}\left(N_{\dagger}\right)(1)=1+\gamma$. Hence $X^{*}\left(T_{0}^{(1)}\right)=\mathbb{Z}[\Gamma] / \mathbb{Z}(1+\gamma)$ and from the vanishing of $H^{1}\left(G_{F^{\dagger}}, \mathbb{Z}\right)=\operatorname{Hom}\left(G_{F^{\dagger}}, \mathbb{Z}\right)$ it follows that $X^{*}\left(T_{0}^{(1)}\right)^{G_{F^{\dagger}}}=0$. Now $T=\operatorname{Res}_{F^{\dagger} / \mathbb{Q}}\left(T_{0}\right)$ and applying the exact functor $\operatorname{Res}_{F^{\dagger} / \mathbb{Q}}$ to the above short exact sequence we find that $T_{1}=$ $\operatorname{Res}_{F^{\dagger} / \mathbb{Q}} T_{0}^{(1)}$. Thus $X^{*}\left(T_{1}\right)=\operatorname{Ind}_{G}^{G_{F^{\dagger}}}\left(X^{*}\left(T_{0}^{(1)}\right)\right)$ and $X^{*}\left(T_{1}\right)^{G}=X^{*}\left(T_{0}^{(1)}\right)^{G_{F^{\dagger}}}=0$.
Corollary 1.2. The torus T_{1} / S_{1} is \mathbb{Q}-anisotropic.
Proof. A quotient of an anisotropic torus is anisotropic: the projection $T_{1} \rightarrow T_{1} / S_{1}$ yields an embedding $X^{*}\left(T_{1} / S_{1}\right) \hookrightarrow X^{*}\left(T_{1}\right)$ which injects $X^{*}\left(T_{1} / S_{1}\right)^{G}$ into $X^{*}\left(T_{1}\right)^{G}=0$.

2. LOCAL COHOMOLOGY

We begin with the computation of the \mathbb{Q}_{p}-cohomology of the torus T_{1} / S_{1}. It involves the kernel and cokernel of the morphism

$$
\iota_{p}: L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \underset{\mathrm{incl}}{\longrightarrow} F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)
$$

induced by the inclusion of $L_{p}^{\dagger \times}$ in $F_{p}^{\dagger \times}$. The source and target having order 2 by assumption (and local class field theory), ι_{p} is either an isomorphism or is trivial, and both its kernel and cokernel are trivial or have order 2 accordingly.

Lemma 2.1. If $\left[F_{p}: L_{p}\right]$ is odd then $\operatorname{Ker} \iota_{p}=\operatorname{Coker} \iota_{p}=1$. If $\left[F_{p}: L_{p}\right]$ is even then $\operatorname{Ker} \iota_{p}=L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)$and Coker $\iota_{p}=F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)$.

Note that our asumptions imply that $\left[F_{p}: L_{p}\right]=[F: L]$.
Proof. By local class field theory we have a commutative diagram

$$
\begin{aligned}
& F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right) \xrightarrow{N_{F_{p}^{\dagger} / L_{p}^{\dagger}}} L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \\
& \imath \mid{ }^{\mathrm{rec}_{F_{p} / F_{p}^{\dagger}}} \quad ~ \quad \|^{\text {rec }_{L_{p}} / L_{p}^{\dagger}} \\
& \operatorname{Gal}\left(F_{p} / F_{p}^{\dagger}\right) \xrightarrow[\operatorname{Res}_{F_{p} / L_{p}}]{\sim} \operatorname{Gal}\left(L_{p} / L_{p}^{\dagger}\right) .
\end{aligned}
$$

By assumption the restriction $\operatorname{Res}_{F_{p} / L_{p}}$ is an isomorphism so the norm $N_{F_{p}^{\dagger} / L_{p}^{\dagger}}$ as well. The compositum $N_{F_{p}^{\dagger} / L_{p}^{\dagger}} \circ \iota_{p}: L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \rightarrow L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)$is the map raising to the power $\left[F_{p}^{\dagger}: L_{p}^{\dagger}\right]$, hence ι_{p} is an isomorphism if and only if $\left[F_{p}^{\dagger}: L_{p}^{\dagger}\right]=\left[F_{p}: L_{p}\right]$ is odd.

For an algebraic torus \mathcal{T} over \mathbb{Q}_{p} and for all $r \geq 0$ let

$$
H^{r}\left(\mathbb{Q}_{p}, \mathcal{T}\right) \underset{\text { def }}{=} H_{\mathrm{cts}}^{r}\left(G_{p}, \mathcal{T}\left(\overline{\mathbb{Q}}_{p}\right)\right) .
$$

We have $H^{0}\left(\mathbb{Q}_{p}, \mathcal{T}\right)=\mathcal{T}\left(\mathbb{Q}_{p}\right)$. It is known that $H^{1}\left(\mathbb{Q}_{p}, \mathcal{T}\right)$ is finite ([Pl-Ra] Corollary of Prop.6.9). For $r \geq 3$ we have $H^{r}\left(\mathbb{Q}_{p}, \mathcal{T}\right)=1$ because G_{p} has cohomological dimension 2 ([Se] II.4.3,Cor. and I.3.1,Cor.).
Proposition 2.2. The commutative diagram (\star) induces
(i) a short exact sequence

$$
1 \longrightarrow F_{p, 1} / L_{p, 1} \longrightarrow H^{0}\left(\mathbb{Q}_{p}, T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \iota_{p} \longrightarrow 1,
$$

(ii) an isomorphism $H^{1}\left(\mathbb{Q}_{p}, T_{1} / S_{1}\right) \simeq \operatorname{Coker} \iota_{p}$,
(iii) $H^{r}\left(\mathbb{Q}_{p}, T_{1} / S_{1}\right)=1$ for $r \geq 2$.

Proof. The torus T_{1} is \mathbb{Q}_{p}-anisotropic as $T_{1}\left(\mathbb{Q}_{p}\right)=F_{p, 1}$ is compact ([Pl-Ra] Thm.3.1), hence the quotient T_{1} / S_{1} is \mathbb{Q}_{p}-anisotropic as well (corollary 1.2). The local NakayamaTate theorem ([Mi] I.2.4) then gives $H^{2}\left(\mathbb{Q}_{p}, T_{1} / S_{1}\right) \simeq H^{0}\left(\mathbb{Q}_{p}, X^{*}\left(T_{1} / S_{1}\right)\right)^{\wedge \vee}=1$. Of course the same holds for S_{1} and T_{1}.

The short exact sequence $1 \rightarrow T_{1} \rightarrow T \xrightarrow{N_{\dagger}} T^{\dagger} \rightarrow 1$ yields the exact sequence

$$
F_{p}^{\times} \xrightarrow{N_{\dagger}} F_{p}^{\dagger \times} \longrightarrow H^{1}\left(\mathbb{Q}_{p}, T_{1}\right) \longrightarrow H^{1}\left(\mathbb{Q}_{p}, T\right) .
$$

By Shapiro's Lemma and Hilbert 90 we have $H^{1}\left(\mathbb{Q}_{p}, T\right) \simeq H^{1}\left(F_{p}, \mathbb{G}_{m}\right)=1$, therefore $H^{1}\left(\mathbb{Q}_{p}, T_{1}\right) \simeq F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)$. Similarly $H^{1}\left(\mathbb{Q}_{p}, S_{1}\right) \simeq L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)$. Now from the short exact sequence $1 \rightarrow S_{1} \rightarrow T_{1} \rightarrow T_{1} / S_{1} \rightarrow 1$ and $H^{2}\left(\mathbb{Q}_{p}, S_{1}\right)=1$ we obtain the exact sequence

from which the statements on $H^{r}\left(\mathbb{Q}_{p}, T_{1} / S_{1}\right)$ for $r=0,1$ follow.
We now compute the \mathbb{R}-cohomology of T_{1} / S_{1}. Let \mathbb{C}_{1} be the subgroup of norm one elements in \mathbb{C}^{\times}and \mathbb{R}_{+}^{\times}the subgroup of positive elements in \mathbb{R}^{\times}.

Proposition 2.3. The commutative diagram (\star) induces
(i) an isomorphism $H^{0}\left(\mathbb{R}, T_{1} / S_{1}\right) \simeq \operatorname{Coker}\left(\mathbb{C}_{1}{ }^{\left[L^{\dagger}: \mathbb{Q}\right]} \xrightarrow{\text { Diag }} \mathbb{C}_{1}{ }^{\left[F^{\dagger}: \mathbb{Q}\right]}\right)$,
(ii) an isomorphism $H^{1}\left(\mathbb{R}, T_{1} / S_{1}\right) \simeq \operatorname{Coker}\left(\left(\mathbb{R}^{\times} / \mathbb{R}_{+}^{\times}\right)^{\left[L^{\dagger}: \mathbb{Q}\right]} \xrightarrow{\text { Diag }}\left(\mathbb{R}^{\times} / \mathbb{R}_{+}^{\times}\right)^{\left[F^{\dagger}: \mathbb{Q}\right]}\right)$,
(iii) $H^{2 r}\left(\mathbb{R}, T_{1} / S_{1}\right)=1$ for all $r \geq 1$,
(iv) isomorphisms $H^{2 r+1}\left(\mathbb{R}, T_{1} / S_{1}\right) \simeq \operatorname{Coker}\left(\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{\left[L^{\dagger}: \mathbb{Q}\right]} \xrightarrow{\text { Diag }}\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{\left[F^{\dagger}: \mathbb{Q}\right]}\right)$ for all $r \geq 1$, via the local inv isomorphism $\operatorname{Br}(\mathbb{R}) \simeq \frac{1}{2} \mathbb{Z} / \mathbb{Z}$.
Proof. Put $n=\left[L^{\dagger}: \mathbb{Q}\right]$ and $m=\left[F^{\dagger}: \mathbb{Q}\right]$. Since L is totally imaginary and L^{\dagger} totally real we have $H^{0}(\mathbb{R}, S) \simeq\left(\mathbb{C}^{\times}\right)^{n}$ and $H^{0}\left(\mathbb{R}, S^{\dagger}\right) \simeq\left(\mathbb{R}^{\times}\right)^{n}$. Further for all $r \geq 1$ we have $H^{r}(\mathbb{R}, S)=1, H^{2 r-1}\left(\mathbb{R}, S^{\dagger}\right)=1$, and $H^{2 r}\left(\mathbb{R}, S^{\dagger}\right) \simeq \operatorname{Br}(\mathbb{R})^{n} \simeq\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{n}$, the latter isomorphism being the n-fold local inv. From the short exact sequence

$$
1 \longrightarrow S_{1} \longrightarrow S \xrightarrow{N_{\dagger}} S^{\dagger} \longrightarrow 1
$$

and $N_{+}\left(\mathbb{C}^{\times}\right)=\mathbb{R}_{+}^{\times}$we find that $H^{0}\left(\mathbb{R}, S_{1}\right) \simeq \mathbb{C}_{1}{ }^{n}, H^{1}\left(\mathbb{R}, S_{1}\right) \simeq\left(\mathbb{R}^{\times} / \mathbb{R}_{+}^{\times}\right)^{n}$, and for $r \geq 1$, $H^{2 r}\left(\mathbb{R}, S_{1}\right)=1, H^{2 r+1}\left(\mathbb{R}, S_{1}\right) \simeq\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{n}$. Similarly, the same holds with S_{1} and n replaced by T_{1} and m. The result then follows from the short exact sequence

$$
1 \longrightarrow S_{1} \longrightarrow T_{1} \longrightarrow T_{1} / S_{1} \longrightarrow 1
$$

and the injectivity of the map Diag.
Corollary 2.4. There are noncanonical isomorphisms

$$
H^{0}\left(\mathbb{R}, T_{1} / S_{1}\right) \simeq \mathbb{C}_{1}^{\left[F^{\dagger}: \mathbb{Q}\right]-\left[L^{\dagger}: \mathbb{Q}\right]}, \quad H^{2 r+1}\left(\mathbb{R}, T_{1} / S_{1}\right) \simeq\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{\left[F^{\dagger}: \mathbb{Q}\right]-\left[L^{\dagger}: \mathbb{Q}\right]} \text { for all } r \geq 1
$$

and $H^{2 r}\left(\mathbb{R}, T_{1} / S_{1}\right)=1$ for all $r \geq 1$.
Proof. Obvious from proposition 2.3 and the isomorphism $\mathbb{R}^{\times} / \mathbb{R}_{+}^{\times} \simeq \frac{1}{2} \mathbb{Z} / \mathbb{Z}$.

3. Global cohomology

We now compute the \mathbb{Q}-cohomology of the torus T_{1} / S_{1}. It involves the kernels and cokernels of three morphisms (see proposition 3.8), the first of which is

$$
\iota: L^{\dagger \times} / N_{\dagger}\left(L^{\times}\right) \underset{\text { incl }}{\longrightarrow} F^{\dagger \times} / N_{\dagger}\left(F^{\times}\right)
$$

the morphism induced by the inclusion of $L^{\dagger \times}$ in $F^{\dagger \times}$. For a place $v \in S_{L^{\dagger}}$ and an algebraic extension K of L^{\dagger} set

$$
S_{K}(v) \underset{\text { def }}{=}\left\{w \in S_{K}|w| v\right\}
$$

We have a commutative diagram

where the maps N_{v}, N_{w} are induced by N_{\dagger} and the horizontal ones by inclusions, hence localising ι at $v \in S_{L^{\dagger}}$ yields a morphism

$$
\iota_{v}: L_{v}^{\dagger \times} / N_{v}\left(L_{v}^{\dagger} \otimes_{L^{\dagger}} L\right)^{\times} \longrightarrow \bigoplus_{w \in S_{F^{\dagger}}(v)} F_{w}^{\dagger \times} / N_{w}\left(F_{w}^{\dagger} \otimes_{F^{\dagger}} F\right)^{\times} .
$$

When $v=p$ (the unique place lying above p) we recover the morphism ι_{p} introduced in section 2.

Lemma 3.1. The localisation maps induce isomorphisms

$$
\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \in S_{L^{\dagger}} \\ v \neq p}} \operatorname{Ker} \iota_{v} \quad \text { and } \quad \operatorname{Coker} \iota \simeq \bigoplus_{\substack{v \in S_{L^{\dagger}} \\ v \neq p}} \operatorname{Coker} \iota_{v} .
$$

Remark 3.2. Recall that ι_{p} is either an isomorphism or is trivial according to the parity of $\left[F_{p}: L_{p}\right]=[F: L]$ (lemma 2.1). When $[F: L]$ is odd then $\operatorname{Ker} \iota_{p}=\operatorname{Coker} \iota_{p}=1$, consequently $\operatorname{Ker} \iota \simeq \bigoplus_{v \in S_{L \dagger}} \operatorname{Ker} \iota_{v}$ and $\operatorname{Coker} \iota \simeq \bigoplus_{v \in S_{L \dagger}} \operatorname{Coker} \iota_{v}$.

Proof. Since $H^{1}\left(L, \mathbb{G}_{m}\right)=1$ by Hilbert 90 we have a short exact sequence of Γ-modules

$$
1 \longrightarrow L^{\times} \longrightarrow I_{L} \longrightarrow C_{L} \longrightarrow 1 .
$$

As Γ is cyclic we have $\hat{H}^{-1}\left(\Gamma, C_{L}\right)=1$, and again by Hilbert 90 we have $\hat{H}^{1}\left(\Gamma, L^{\times}\right)=1$. Thus Tate cohomology yields a short exact sequence

$$
1 \longrightarrow L^{\dagger \times} / N_{\dagger}\left(L^{\times}\right) \longrightarrow I_{L^{\dagger}} / N_{\dagger}\left(I_{L}\right) \longrightarrow C_{L^{\dagger}} / N_{\dagger}\left(C_{L}\right) \longrightarrow 1 .
$$

By class field theory both $L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)$and $C_{L^{\dagger}} / N_{\dagger}\left(C_{L}\right)$ have order 2, and the former embeds in the latter ([Ne] Prop.5.6). Thus

$$
L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \simeq C_{L^{\dagger}} / N_{\dagger}\left(C_{L}\right)
$$

which provides via the inclusion $L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \hookrightarrow I_{L^{\dagger}} / N_{\dagger}\left(I_{L}\right)$ a section to the above short exact sequence. Therefore we have an isomorphism

$$
I_{L^{\dagger}} / N_{\dagger}\left(I_{L}\right) \simeq L^{\dagger \times} / N_{\dagger}\left(L^{\times}\right) \oplus L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)
$$

The same holds with L, L^{\dagger} replaced by F, F^{\dagger} and the isomorphisms involved are compatible with the inclusions $L \subset F, L^{\dagger} \subset F^{\dagger}$. Hence

$$
\begin{aligned}
& \operatorname{Ker}\left(I_{L^{\dagger}} / N_{\dagger}\left(I_{L}\right) \xrightarrow{\operatorname{incl}} I_{F^{\dagger}} / N_{\dagger}\left(I_{F}\right)\right)=\bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \iota_{v} \simeq \operatorname{Ker} \iota \oplus \operatorname{Ker} \iota_{p} \quad \text { and } \\
& \operatorname{Coker}\left(I_{L^{\dagger}} / N_{\dagger}\left(I_{L}\right) \xrightarrow{\operatorname{incl}} I_{F^{\dagger}} / N_{\dagger}\left(I_{F}\right)\right)=\bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \iota_{v} \simeq \operatorname{Coker} \iota \oplus \operatorname{Coker} \iota_{p}
\end{aligned}
$$

from which the result follows.
For $v \in S_{L^{\dagger}}$ the L_{v}^{\dagger}-algebra $L_{v}^{\dagger} \otimes_{L^{\dagger}} L$ is either a field or isomorphic to $L_{v}^{\dagger} \times L_{v}^{\dagger}$ according to $\# S_{L}(v)=1$ or 2 respectively. Define the following subsets of $S_{L^{\dagger}}$ and $S_{F^{\dagger}}$:

$$
\begin{array}{ll}
& S_{L^{\dagger}}(L) \underset{\text { def }}{=}\left\{v \in S_{L^{\dagger}} \mid L_{v}^{\dagger} \otimes_{L^{\dagger}} L \simeq L_{v}^{\dagger} \times L_{v}^{\dagger}\right\} \\
\text { and } & S_{F^{\dagger}}(F) \underset{\text { def }}{=}\left\{w \in S_{F^{\dagger}} \mid F_{w}^{\dagger} \otimes_{F^{\dagger}} F \simeq F_{w}^{\dagger} \times F_{w}^{\dagger}\right\} .
\end{array}
$$

Our assumptions imply that the places lying above p or ∞ do not belong to $S_{L^{\dagger}}(L)$, nor to $S_{F^{\dagger}}(F)$. Note that $v \in S_{L^{\dagger}}(L)$ (resp. $\left.w \in S_{F^{\dagger}}(F)\right)$ if and only if $L_{v}^{\dagger \times} / N_{v}\left(L_{v}^{\dagger} \otimes_{L^{\dagger}} L\right)^{\times}=1$ (resp. $F_{w}^{\dagger \times} / N_{w}\left(F_{w}^{\dagger} \otimes_{F^{\dagger}} F\right)^{\times}=1$). We also set for each place $v \in S_{L^{\dagger}}$

$$
S_{F^{\dagger}}(F, v) \underset{\text { def }}{=} S_{F^{\dagger}}(F) \cap S_{F^{\dagger}}(v) .
$$

Thus we have

$$
\iota_{v}: L_{v}^{\dagger \times} / N_{v}\left(L_{v}^{\dagger} \otimes_{L^{\dagger}} L\right)^{\times} \longrightarrow \bigoplus_{\substack{w \in S_{F} \dagger(v) \\ w \notin S_{F^{\dagger}}(F, v)}} F_{w}^{\dagger \times} / N_{w}\left(F_{w}^{\dagger} \otimes_{F^{\dagger}} F\right)^{\times}
$$

the right-hand side being 1 when $S_{F^{\dagger}}(F, v)=S_{F^{\dagger}}(v)$.
Lemma 3.3. Let $v \in S_{L^{\dagger}}$. When $v \in S_{L^{\dagger}}(L)$ we have $\operatorname{Ker} \iota_{v}=\operatorname{Coker} \iota_{v}=1$. When $v \notin S_{L^{\dagger}}(L)$ the local reciprocity maps together with the identification $\Gamma \simeq \mathbb{Z} / 2 \mathbb{Z}$ induce isomorphisms

$$
\operatorname{Ker} t_{v} \simeq \operatorname{Ker}\left(\begin{array}{ccc}
\mathbb{Z} / 2 \mathbb{Z} & \longrightarrow & \bigoplus_{\substack{w \in S_{F^{\dagger}}(v) \\
w \notin S_{F^{\dagger}}(F, v)}} \mathbb{Z} / 2 \mathbb{Z} \\
& & \longmapsto \\
1 & \left.\left(F_{w}^{\dagger}: L_{v}^{\dagger}\right] \bmod 2 \mathbb{Z}\right)_{w}
\end{array}\right)
$$

and

$$
\operatorname{Coker} \iota_{v} \simeq \operatorname{Coker}\left(\begin{array}{ccc}
\mathbb{Z} / 2 \mathbb{Z} & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Z} / 2 \mathbb{Z} \\
& & \left(\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \bmod 2 \mathbb{Z}\right)_{w}
\end{array}\right)
$$

Thus when $v \notin S_{L^{\dagger}}(L)$ and $S_{F^{\dagger}}(F, v)=S_{F^{\dagger}}(v)$ we have Ker $\iota_{v}=L_{v}^{\dagger \times} / N_{v}\left(L_{v}^{\dagger} \otimes_{L^{\dagger}} L\right)^{\times} \simeq$ $\mathbb{Z} / 2 \mathbb{Z}$ and Coker $\iota_{v}=1$; when $v \notin S_{L^{\dagger}}(L)$ and $S_{F^{\dagger}}(F, v) \neq S_{F^{\dagger}}(v)$ the kernel and cokernel of ι_{v} depend only on the parity of the local extension degrees $\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right]$ (for v lying above p we recover the statement of lemma 2.1).

Proof. When $v \in S_{L^{\dagger}}(L)$ every $w \in S_{F^{\dagger}}$ lying above v belongs to $S_{F^{\dagger}}(F)$, hence the source and target of ι_{v} are both trivial, so Ker $\iota_{v}=\operatorname{Coker} \iota_{v}=1$.

When $v \notin S_{L^{\dagger}}(L)$ assume that $\left\{w \mid v, w \notin S_{F^{\dagger}}(F)\right\}$ is not empty and let w be an element thereof. By local class field theory we have a commutative diagram

where $\iota_{v, w}$ is induced by the inclusion, so that $\iota_{v}=\left(\iota_{v, w}\right)_{w \mid v}$. The result then follows from the canonical identifications $\mathbb{Z} / 2 \mathbb{Z} \simeq \Gamma \simeq \operatorname{Gal}\left(F_{w} / F_{w}^{\dagger}\right) \simeq \operatorname{Gal}\left(L_{v} / L_{v}^{\dagger}\right)$.

We introduce the following subsets of $S_{F^{\dagger}}$. Set

$$
S_{F^{\dagger}}(L) \underset{\text { def }}{=}\left\{w \in S_{F^{\dagger}} \mid w_{\mid L^{\dagger}} \in S_{L^{\dagger}}(L)\right\}=\bigsqcup_{v \in S_{L^{\dagger}}(L)} S_{F^{\dagger}}(v)
$$

Note that $S_{F^{\dagger}}(L) \subseteq S_{F^{\dagger}}(F)$. Also define the "odd" and "even" part of $S_{F^{\dagger}}$ relative to L^{\dagger}

$$
\begin{aligned}
& S_{F^{\dagger}}^{\text {odd }} \underset{\text { def }}{=}\left\{w \in S_{F^{\dagger}} \mid\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \text { is odd, } v=w_{\mid L^{\dagger}}\right\}, \\
& S_{F^{\dagger}}^{\text {even }} \underset{\text { def }}{=}\left\{w \in S_{F^{\dagger}} \mid\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \text { is even, } v=w_{\mid L^{\dagger}}\right\} .
\end{aligned}
$$

Of course we have $S_{F^{\dagger}}=S_{F^{\dagger}}^{\text {odd }} \sqcup S_{F^{\dagger}}^{\text {even }}$. Note that $v \notin S_{L^{\dagger}}(L)$ implies $S_{F^{\dagger}}(F, v) \subset S_{F^{\dagger}}^{\text {even }}$. Further we introduce the subsets of $S_{L^{\dagger}}$

$$
S_{L^{\dagger}}^{\text {odd }}=\underset{\text { def }}{=}\left\{v \in S_{L^{\dagger}} \mid S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\text {odd }} \neq \varnothing\right\} \quad \text { and } \quad S_{L^{\dagger}}^{\text {even }} \underset{\text { def }}{=}\left\{v \in S_{L^{\dagger}} \mid S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text {even }}\right\}
$$

Corollary 3.4. The local reciprocity maps induce an isomorphism

$$
\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \notin S_{L^{\dagger}}(L) \\ v \neq p \\ v \in S_{L^{\dagger}}^{\text {even }}}} \mathbb{Z} / 2 \mathbb{Z}
$$

and there is a noncanonical isomorphism

$$
\text { Coker } \iota \simeq \bigoplus_{\substack{v \notin S_{L+}(L) \\ v \neq p \\ v \in S_{L \dagger}^{\text {odd }}}}(\mathbb{Z} / 2 \mathbb{Z})^{\# S_{F^{\dagger}}(v)-\# S_{F^{\dagger}}(F, v)-1} \oplus \bigoplus_{\substack{w \notin S_{F^{\dagger}}(F) \\ w \neq p \\ w \in S_{F}^{\text {even }}}} \mathbb{Z} / 2 \mathbb{Z}
$$

Proof. According to lemmas 3.1 and 3.3 the localisation maps yield isomorphisms

$$
\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \notin S_{L}+(L) \\ v \neq p}} \operatorname{Ker} \iota_{v} \quad \text { and } \quad \operatorname{Coker} \iota \simeq \bigoplus_{\substack{v \notin S_{\llcorner } \neq(L) \\ v \neq p}} \operatorname{Coker} \iota_{v} .
$$

Let $v \in S_{L^{\dagger}}, v \notin S_{L^{\dagger}}(L)$. Then $S_{F^{\dagger}}(v)-S_{F^{\dagger}}(F, v) \subset S_{F^{\dagger}}^{\text {even }}$ is equivalent to $S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text {even }}$ and $S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\text {odd }} \neq \varnothing$ implies $S_{F^{\dagger}}(F, v) \neq S_{F^{\dagger}}(F)$. Thus lemma 3.3 shows that

$$
\begin{cases}\operatorname{Ker} \iota_{v} \simeq \mathbb{Z} / 2 \mathbb{Z} \text { and Coker } \iota_{v} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\# S_{F^{\dagger}}(v)-\# S_{F^{\dagger}}(F, v)} & \text { if } S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text {even }} \\ \operatorname{Ker} \iota_{v} \simeq 0 \text { and Coker } \iota_{v} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\# S_{F^{\dagger}}(v)-\# S_{F^{\dagger}}(F, v)-1} & \text { if } S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\text {odd }} \neq \varnothing\end{cases}
$$

where all the isomorphisms are induced by the localisation maps except for the last one which is not canonical. The result follows by summing over the places $v \in S_{L^{\dagger}}$ such that $v \notin S_{L^{\dagger}}(L)$ and $v \neq p$, and replacing the sum of $\# S_{F^{\dagger}}(v)-\# S_{F^{\dagger}}(F, v)$ copies of $\mathbb{Z} / 2 \mathbb{Z}$ over those v such that $S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text {even }}$ by the sum of $\mathbb{Z} / 2 \mathbb{Z}$ over the $w \in S_{F^{\dagger}}$ such that $w \notin S_{F^{\dagger}}(F), w \neq p$, and $w \in S_{F^{\dagger}}^{\text {even }}$.

The two other morphisms involved in the \mathbb{Q}-cohomology of T_{1} / S_{1} are of similar nature and we treat them simultanuously. They both arise from the commutative diagram

as

$$
\begin{gathered}
\rho: \operatorname{Ker}_{\operatorname{Cor}_{L / L^{\dagger}}} \xrightarrow{\operatorname{Res}_{F / L}} \operatorname{Ker}_{\operatorname{Cor}_{F / F^{\dagger}}} \\
\text { and } \quad \sigma: \operatorname{Coker}_{\operatorname{Cor}}^{L / L^{\dagger}} \\
\operatorname{Res}_{F^{\dagger} / L^{\dagger}} \\
\operatorname{Coker}^{\operatorname{Cor}} \\
F / F^{\dagger}
\end{gathered} .
$$

We have $\operatorname{Ker} \rho=\operatorname{Br}(F / L) \cap \operatorname{Ker}_{\operatorname{Cor}}^{L / L^{\dagger}}$. For an extension K^{\prime} / K of number fields and $v \in S_{K}$ we define

$$
\operatorname{Br}\left(K^{\prime}, v\right)=\bigoplus_{w \in S_{K^{\prime}}(v)} \operatorname{Br}\left(K_{w}^{\prime}\right)
$$

where as usual $S_{K^{\prime}}(v)$ is the set of places of K^{\prime} lying above v. We have $\operatorname{Br}(K, v)=\operatorname{Br}\left(K_{v}\right)$ and $\bigoplus_{w \in S_{K^{\prime}}} \operatorname{Br}\left(K_{w}^{\prime}\right)=\bigoplus_{v \in S_{K}} \operatorname{Br}\left(K^{\prime}, v\right)$. We also let

$$
\begin{aligned}
\operatorname{Res}_{K^{\prime} / K}(v):\left\{\begin{array}{lll}
\operatorname{Br}(K, v) & \longrightarrow & \operatorname{Br}\left(K^{\prime}, v\right) \\
\alpha & \longmapsto & \left(\operatorname{Res}_{K_{w} / K_{v}}^{\prime}(\alpha)\right)_{w \in S_{K^{\prime}}(v)}
\end{array}\right. \\
\text { and } \operatorname{Cor}_{K^{\prime} / K}(v):\left\{\begin{array}{lll}
\operatorname{Br}\left(K^{\prime}, v\right) & \longrightarrow & \operatorname{Br}(K, v) \\
\left(\beta_{w}\right)_{w \in S_{K^{\prime}}(v)} & \longmapsto & \otimes_{w \in S_{K^{\prime}}(v)} \operatorname{Cor}_{K_{w}^{\prime} / K_{v}}\left(\beta_{w}\right) .
\end{array}\right.
\end{aligned}
$$

For each $v \in S_{L^{\dagger}}$ we have $\operatorname{Br}(F, v)=\bigoplus_{w \in S_{F \dagger}(v)} \operatorname{Br}(F, w)=\bigoplus_{u \in S_{L}(v)} \operatorname{Br}(F, u)$, and a commutative diagram

$$
\begin{gathered}
\operatorname{Br}(L, v) \xrightarrow{\operatorname{Cor}_{L / L}^{\dagger}(v)} \operatorname{Br}\left(L^{\dagger}, v\right) \\
\operatorname{Res}_{F / L}(v) \downarrow \downarrow \underset{\downarrow}{ }{ }^{\operatorname{Cor}_{F / F}{ }^{\dagger}(v)} \mid \operatorname{Res}_{F^{\dagger} / L \dagger}(v) \\
\operatorname{Br}(F, v) \xrightarrow{ } \operatorname{Br}\left(F^{\dagger}, v\right)
\end{gathered}
$$

with $\operatorname{Cor}_{F / F^{\dagger}}(v)=\oplus_{w \in S_{F^{\dagger}}(v)} \operatorname{Cor}_{F / F^{\dagger}}(w)$ and $\operatorname{Res}_{F / L}(v)=\oplus_{u \in S_{L}(v)} \operatorname{Res}_{F / L}(u)$. Hence localising ρ and σ at $v \in S_{L^{\dagger}}$ yields morphisms

$$
\rho_{v}: \operatorname{Ker}_{\operatorname{Cor}}^{L / L^{\dagger}} \text { (v)} \xrightarrow{\operatorname{Res}_{F / L}(v)} \operatorname{Ker~}_{\operatorname{Cor}}^{F / F^{\dagger}}(v)
$$

and $\quad \sigma_{v}: \operatorname{Coker} \operatorname{Cor}_{L / L^{\dagger}}(v) \xrightarrow{\operatorname{Res}_{F^{\dagger} / \hbar^{\dagger}}(v)} \operatorname{Coker}^{\operatorname{Cor}}{ }_{F / F^{\dagger}}(v)$.
Lemma 3.5. The local restriction maps induce isomorphisms

$$
\begin{aligned}
& \operatorname{Ker} \rho \\
& \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \rho_{v}, \quad \text { Coker } \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \rho_{v} \\
& \text { and } \quad \operatorname{Ker} \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \sigma_{v}, \quad \operatorname{Coker} \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \sigma_{v} .
\end{aligned}
$$

Proof. By class field theory we have a commutative diagram with exact rows

so $\operatorname{Ker}^{\operatorname{Cor}}{ }_{L / L^{\dagger}} \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker~}_{\operatorname{Cor}}^{L / L^{\dagger}}(v)$ and $\operatorname{Coker} \operatorname{Cor}_{L / L^{\dagger}} \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker}^{\operatorname{Cor}}{ }_{L / L^{\dagger}}(v)$. The same holds with L, L^{\dagger} replaced by F, F^{\dagger}, and the result follows from the commutativity of the diagrams

and

Lemma 3.6. Let $v \in S_{L^{\dagger}}$.
(i) When $v \in S_{L^{\dagger}}(L)$ the local inv maps induce isomorphisms

$$
\operatorname{Ker} \rho_{v} \simeq \operatorname{Ker}\left(\begin{array}{ccc}
\operatorname{KS}(\mathbb{Q} / \mathbb{Z}) & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{KS}(\mathbb{Q} / \mathbb{Z}) \\
\lambda & \longmapsto & \left(\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \lambda\right)_{w \in S_{F^{\dagger}}(v)}
\end{array}\right)
$$

and

$$
\text { Coker } \rho_{v} \simeq \operatorname{Coker}\left(\begin{array}{ccc}
\mathrm{KS}(\mathbb{Q} / \mathbb{Z}) & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{KS}(\mathbb{Q} / \mathbb{Z}) \\
\lambda & \longmapsto & \left(\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \lambda\right)_{w \in S_{F^{\dagger}}(v)}
\end{array}\right)
$$

When $v \notin S_{L^{\dagger}}(L)$ we have Ker $\rho_{v}=0$ and the local inv maps induce an isomorphism

$$
\text { Coker } \rho_{v} \simeq \bigoplus_{w \in S_{F^{\dagger}}(F, v)} \operatorname{KS}(\mathbb{Q} / \mathbb{Z})
$$

(ii) When $v \in S_{L^{\dagger}}^{f}$ we have $\operatorname{Ker} \sigma_{v}=\operatorname{Coker} \sigma_{v}=0$. When $v \in S_{L^{\dagger}}^{\infty}$ we have $\operatorname{Ker} \sigma_{v}=0$ and the local inv maps induce an isomorphism

$$
\operatorname{Coker} \sigma_{v} \simeq \operatorname{Coker}\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z} \xrightarrow{\text { Diag }} \bigoplus_{w \in S_{F^{\dagger}}(v)} \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right) .
$$

Proof. Let $v \in S_{L^{\dagger}} \operatorname{and}_{\operatorname{inv}}^{L^{\dagger}}(v)=\operatorname{inv}_{v}, \operatorname{inv}_{L}(v)=\oplus_{u \in S_{L}(v)} \operatorname{inv}_{u}$. We have a commutative diagram

$$
\begin{gathered}
\operatorname{Br}(L, v) \xrightarrow{\operatorname{Cor}_{L / L}{ }^{\dagger}(v)} \operatorname{Br}\left(L^{\dagger}, v\right) \\
\quad \mid \operatorname{inv}_{L}(v) \\
\oplus_{u \in S_{L}(v)} \mathbb{Q} / \mathbb{Z} \xrightarrow{\sum_{u \mid v}} \mathbb{\|} / \operatorname{inv}_{L^{\dagger} \dagger(v)} / \mathbb{Z} .
\end{gathered}
$$

(i) When $v \in S_{L^{\dagger}}(L) \subset S_{L^{\dagger}}^{f}$ the maps $\operatorname{inv}_{L}(v)$ and $\operatorname{inv}_{L^{\dagger}}(v)$ are isomorphisms thus

$$
\operatorname{Ker} \operatorname{Cor}_{L / L^{\dagger}}(v) \underset{\operatorname{inv}_{L}(v)}{\simeq} \operatorname{Ker}\left(\begin{array}{ccc}
\mathbb{Q} / \mathbb{Z} \oplus \mathbb{Q} / \mathbb{Z} & \longrightarrow & \mathbb{Q} / \mathbb{Z} \\
(\lambda, \mu) & \longmapsto & \lambda+\mu
\end{array}\right)=\operatorname{KS}(\mathbb{Q} / \mathbb{Z}) .
$$

When $v \notin S_{L^{\dagger}}(L)$ we have $\operatorname{Ker~}_{\operatorname{Cor}}^{L / L^{\dagger}}(v)=0$. Similarly $\operatorname{inv}_{F}(v)=\oplus_{w \in S_{F^{\dagger}}(v)} \operatorname{inv}_{w}$ induces an isomorphism

$$
\operatorname{Ker}_{\operatorname{Cor}}^{F / F^{\dagger}}(v) \underset{\operatorname{inv}(v)}{\simeq} \bigoplus_{w \in S_{F^{\dagger}}(F, v)} \operatorname{KS}(\mathbb{Q} / \mathbb{Z})
$$

the right-hand side being 0 if the set $S_{F^{\dagger}}(F, v)$ is empty (e.g. if $v \in S_{L^{\dagger}}^{\infty}$). Hence the statement is clear when $v \notin S_{L^{\dagger}}(L)$, and otherwise it follows from the commutativity of the diagram

where $\xi_{v}(\lambda)=\left(\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \lambda\right)_{w \in S_{F^{\dagger}}(v)}$ for $\lambda \in \operatorname{KS}(\mathbb{Q} / \mathbb{Z})$.
(ii) When $v \in S_{L^{\dagger}}^{f}$ we have $\operatorname{Coker} \operatorname{Cor}_{L / L^{\dagger}}(v)=\operatorname{Coker} \operatorname{Cor}_{F / F^{\dagger}}(v)=0$, thus $\operatorname{Ker} \sigma_{v}=$ $\operatorname{Coker} \sigma_{v}=0$. When $v \in S_{L^{\dagger}}^{\infty}$ we have a commutative diagram

since $F_{w}^{\dagger}=L_{v}^{\dagger}=\mathbb{R}$, and the result follows.
Corollary 3.7. For $v \in S_{L^{\dagger}}$ let $d_{v}=\operatorname{gcd}\left\{\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right], w \in S_{F^{\dagger}}(v)\right\}$.
(i) There are noncanonical isomorphisms

$$
\operatorname{Ker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}(L)} \frac{1}{d_{v}} \mathbb{Z} / \mathbb{Z} \quad \text { and } \quad \operatorname{Coker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}(L)}(\mathbb{Q} / \mathbb{Z})^{\# S_{F^{\dagger}}(v)-1} \oplus \bigoplus_{\substack{w \in S_{F^{\dagger}}(F) \\ w \notin S_{F^{\dagger}}(L)}} \mathbb{Q} / \mathbb{Z} .
$$

(ii) $\operatorname{Ker} \sigma=0$ and there is a noncanonical isomorphism

$$
\operatorname{Coker} \sigma \simeq\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{\left[F^{\dagger}: \mathbb{Q}\right]-\left[L^{\dagger}: \mathbb{Q}\right]}
$$

Proof. (i) According to lemma 3.5 the local restriction maps yield isomorphisms

$$
\operatorname{Ker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \rho_{v} \quad \text { and } \quad \operatorname{Coker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \rho_{v}
$$

Let $v \in S_{L^{\dagger}}$ and $\delta_{v}: \mathbb{Q} / \mathbb{Z} \rightarrow \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Q} / \mathbb{Z}$ be the morphism $\lambda \mapsto\left(\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] \lambda\right)_{w \in S_{F^{\dagger}}(v)}$. The kernel of δ_{v} is $\frac{1}{d_{v}} \mathbb{Z} / \mathbb{Z}$. Further Coker $\delta_{v}=\left(\operatorname{Ker} \delta_{v}^{\vee}\right)^{\vee}$ is noncanonically isomorphic to $\# S_{F^{\dagger}}(v)-1$ copies of \mathbb{Q} / \mathbb{Z} since the kernel of the dual morphism $\delta_{v}^{\vee}: \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Z} \rightarrow \mathbb{Z}$, $\left(n_{w}\right)_{w} \mapsto \sum_{w \in S_{F^{\dagger}}(v)}\left[F_{w}^{\dagger}: L_{v}^{\dagger}\right] n_{w}$ is noncanonically isomorphic to $\# S_{F^{\dagger}}(v)-1$ copies of \mathbb{Z}. Pick an isomorphism $\operatorname{KS}(\mathbb{Q} / \mathbb{Z}) \simeq \mathbb{Q} / \mathbb{Z}$. Then lemma 3.6(i) shows that

$$
\begin{cases}\operatorname{Ker} \rho_{v} \simeq \frac{1}{d_{v}} \mathbb{Z} / \mathbb{Z} \text { and Coker } \rho_{v} \simeq(\mathbb{Q} / \mathbb{Z})^{\# S_{F^{\dagger}}(v)-1} & \text { if } v \in S_{L^{\dagger}}(L) \\ \operatorname{Ker} \rho_{v}=0 \text { and Coker } \rho_{v} \simeq(\mathbb{Q} / \mathbb{Z})^{\# S_{F^{\dagger}}(F, v)} & \text { if } v \notin S_{I^{\dagger}}(L)\end{cases}
$$

where all the isomorphisms are noncanonical. The result follows by summing over the places $v \in S_{L^{\dagger}}$ and replacing the sum of $\# S_{F^{\dagger}}(F, v)$ copies of \mathbb{Q} / \mathbb{Z} over those v such that $v \notin S_{L^{\dagger}}(L)$ by the sum of \mathbb{Q} / \mathbb{Z} over the $w \in S_{F^{\dagger}}$ such that $w \notin S_{F^{\dagger}}(L)$.
(ii) According to lemmas 3.5 and 3.6(ii) we have $\operatorname{Ker} \sigma=0$ and the local restriction maps yield an isomorphism

$$
\text { Coker } \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}^{\infty}} \text { Coker } \sigma_{v}
$$

Let $v \in S_{L^{\dagger}}^{\infty}$. We have $\# S_{F^{\dagger}}(v)=\left[F^{\dagger}: L^{\dagger}\right]$ since F^{\dagger} is totally real, thus lemma 3.6(ii) shows that there is a noncanonical isomorphism

$$
\text { Coker } \sigma_{v} \simeq\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{\left[F^{\dagger}: L^{\dagger}\right]-1}
$$

The result follows by summing over the places $v \in S_{L^{\dagger}}^{\infty}$ and writing $\# S_{L^{\dagger}}^{\infty}\left(\left[F^{\dagger}: L^{\dagger}\right]-1\right)=$ $\left[L^{\dagger}: \mathbb{Q}\right]\left(\left[F^{\dagger}: L^{\dagger}\right]-1\right)=\left[F^{\dagger}: \mathbb{Q}\right]-\left[L^{\dagger}: \mathbb{Q}\right]$.

Proposition 3.8. The commutative diagram (\star) induces
(i) a short exact sequence

$$
1 \longrightarrow F_{1} / L_{1} \longrightarrow H^{0}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \iota \longrightarrow 1,
$$

(ii) a short exact sequence

$$
1 \longrightarrow \operatorname{Coker} \iota \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \rho \longrightarrow 1,
$$

(iii) an isomorphism $H^{2}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq \operatorname{Coker} \rho$,
(iv) isomorphisms $H^{2 r-1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq \operatorname{Coker} \sigma$ for all $r \geq 2$,
(v) $H^{2 r}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$ for all $r \geq 2$.

Proof. When $r \geq 3$ localising at ∞ yields an isomorphism $H^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq H^{r}\left(\mathbb{R}, T_{1} / S_{1}\right)$ ([Mi] I.4.21) and proposition 2.3 together with lemmas 3.5 and 3.6 (ii) give the result.

We have $H^{1}(\mathbb{Q}, T) \simeq H^{1}\left(\mathbb{Q}, \mathbb{G}_{m}\right)=1$ by Shapiro's Lemma and Hilbert 90 , and from the short exact sequence

$$
1 \longrightarrow T_{1} \longrightarrow T \xrightarrow{N_{\dagger}} T^{\dagger} \longrightarrow 1
$$

we find that $H^{1}\left(\mathbb{Q}, T_{1}\right) \simeq F^{\dagger \times} / N_{\dagger}\left(F^{\times}\right)$. We further have $H^{1}\left(\mathbb{Q}, T^{\dagger}\right)=1$ and $H^{3}(\mathbb{Q}, T) \simeq$ $H^{3}(\mathbb{R}, T) \simeq H^{1}(\mathbb{R}, T)=1$. Thus we also get the exact sequence

$$
1 \longrightarrow H^{2}\left(\mathbb{Q}, T_{1}\right) \longrightarrow H^{2}(\mathbb{Q}, T) \longrightarrow H^{2}\left(\mathbb{Q}, T^{\dagger}\right) \longrightarrow H^{3}\left(\mathbb{Q}, T_{1}\right) \longrightarrow 1 .
$$

The canonical isomorphisms $H^{2}(\mathbb{Q}, T) \simeq H^{2}\left(F, \mathbb{G}_{m}\right) \simeq \operatorname{Br}(F)$ and $H^{2}\left(\mathbb{Q}, T^{\dagger}\right) \simeq \operatorname{Br}\left(F^{\dagger}\right)$ therefore induce isomorphisms $H^{2}\left(\mathbb{Q}, T_{1}\right) \simeq \operatorname{Ker}_{\operatorname{Cor}}^{F / F^{\dagger}}$ and $H^{3}\left(\mathbb{Q}, T_{1}\right) \simeq \operatorname{Coker} \operatorname{Cor}_{F / F^{\dagger}}$. Similarly we find $H^{1}\left(\mathbb{Q}, S_{1}\right) \simeq L^{\dagger \times} / N_{\dagger}\left(L^{\times}\right), H^{2}\left(\mathbb{Q}, S_{1}\right) \simeq \operatorname{Ker}_{\operatorname{Cor}_{L / L^{\dagger}}}$ and $H^{3}\left(\mathbb{Q}, S_{1}\right) \simeq$ Coker $\operatorname{Cor}_{L / L^{\dagger}}$. Now from the short exact sequence $1 \rightarrow S_{1} \rightarrow T_{1} \rightarrow T_{1} / S_{1} \rightarrow 1$ we obtain the exact sequence

As σ is injective (corollary 3.7(ii)) the statements on $H^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right)$ for $r=0,1,2$ follow.

4. LOCAL AND GLOBAL

For an algebraic torus \mathcal{T} over \mathbb{Q} we have $H^{r}(\mathbb{Q}, \mathcal{T}(\mathbb{A}))=\bigoplus_{\ell \in S_{\mathbb{Q}}} H^{r}\left(\mathbb{Q}_{\ell}, \mathcal{T}\right)$ when $r \geq 1$, and for all $r \geq 0$ we let

$$
\amalg^{r}(\mathbb{Q}, \mathcal{T}) \underset{\text { def }}{=} \operatorname{Ker}\left(H^{r}(\mathbb{Q}, \mathcal{T}) \rightarrow H^{r}(\mathbb{Q}, \mathcal{T}(\mathbb{A}))\right)
$$

Clearly $\Pi^{0}(\mathbb{Q}, \mathcal{T})=1$. It is known that $\amalg^{1}(\mathbb{Q}, \mathcal{T})$ is finite ([Pl-Ra] Corollary to Prop.6.9), and applying [Mi] I.4.20(a) to $X^{*}(\mathcal{T})$ we see that $\amalg^{2}(\mathbb{Q}, \mathcal{T})$ is finite too. For $r \geq 3$ we have $H^{r}(\mathbb{Q}, \mathcal{T}(\mathbb{A}))=H^{r}(\mathbb{R}, \mathcal{T})$ since G_{ℓ} has cohomological dimension 2 when $\ell \neq \infty$, and the local restriction map $H^{r}(\mathbb{Q}, \mathcal{T}) \rightarrow H^{r}(\mathbb{R}, \mathcal{T})$ is an isomorphism ([Mi] I.4.21). Thus $\amalg^{r}(\mathbb{Q}, \mathcal{T})=1$ when $r \geq 3$.
Remark 4.1. Let K be a finite Galois extension of \mathbb{Q} and let

$$
\amalg^{r}(K / \mathbb{Q}, \mathcal{T}) \underset{\text { def }}{=} \operatorname{Ker}\left(H^{r}(K / \mathbb{Q}, \mathcal{T}) \rightarrow H^{r}(K / \mathbb{Q}, \mathcal{T}(\mathbb{A}))\right)
$$

Assume that K is a splitting field for \mathcal{T}. Then $H^{1}(K, \mathcal{T})=H^{1}(K, \mathcal{T}(\mathbb{A}))=1$ by Hilbert 90, so the initial segment of the Hochschild-Serre exact sequence gives isomorphisms $H^{1}(K / \mathbb{Q}, \mathcal{T}) \simeq H^{1}(\mathbb{Q}, \mathcal{T})$ and $H^{1}(K / \mathbb{Q}, \mathcal{T}(\mathbb{A})) \simeq H^{1}(\mathbb{Q}, \mathcal{T}(\mathbb{A}))$. Hence

$$
Ш^{1}(K / \mathbb{Q}, \mathcal{T})=Ш^{1}(\mathbb{Q}, \mathcal{T})
$$

Again by $H^{1}(K, \mathcal{T})=H^{1}(K, \mathcal{T}(\mathbb{A}))=1$, Hochschild-Serre gives the commutative diagram with exact rows

which yields the exact sequence

$$
1 \longrightarrow \amalg^{2}(K / \mathbb{Q}, \mathcal{T}) \longrightarrow \amalg^{2}(\mathbb{Q}, \mathcal{T}) \longrightarrow \amalg^{2}(K, \mathcal{T})
$$

We have isomorphisms $H^{2}(K, \mathcal{T}) \simeq \operatorname{Br}(K)^{d}$ and $H^{2}(K, \mathcal{T}(\mathbb{A})) \simeq \bigoplus_{v \in S_{K}} \operatorname{Br}\left(K_{v}\right)^{d}$ with $d=\operatorname{dim} \mathcal{T}$, so by global class field theory $\amalg^{2}(K, \mathcal{T})=1$. Hence

$$
\amalg^{2}(K / \mathbb{Q}, \mathcal{T})=Ш^{2}(\mathbb{Q}, \mathcal{T})
$$

Proposition 4.2. We have $\amalg^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$ for all r.
Proof. By remark 4.1 and [Pl-Ra] Prop.6.12 we have $\amalg^{2}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$ since T_{1} / S_{1} is \mathbb{Q}_{p}-anisotropic. The short exact sequence $1 \rightarrow S_{1} \rightarrow T_{1} \rightarrow T_{1} / S_{1} \rightarrow 1$ induces the commutative diagram with exact rows

As in the proof of proposition 3.8 we have $H^{1}\left(\mathbb{Q}, T_{1}\right) \simeq F^{\dagger \times} / N_{\dagger}\left(F^{\times}\right), H^{1}\left(\mathbb{Q}, T_{1}(\mathbb{A})\right) \simeq$ $T^{\dagger}(\mathbb{A}) / N_{\dagger} T(\mathbb{A})$, and similarly for S_{1}. Thus the above diagram yields

As S_{1} is \mathbb{Q}_{p}-anisotropic we have $Ш^{2}\left(\mathbb{Q}, S_{1}\right)=1$, and the map Coker $\iota \rightarrow \bigoplus_{v \in S_{L} \dagger}$ Coker ι_{v} is injective by lemma 3.1. Therefore $\amalg^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$.

For a \mathbb{Q}-torus \mathcal{T} let $C(\mathcal{T})=\mathcal{T}(\mathbb{A}) / \mathcal{T}(\overline{\mathbb{Q}})$ be its adèle class group over $\overline{\mathbb{Q}}$ and $C_{\mathbb{Q}}(\mathcal{T})=$ $\mathcal{T}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathcal{T}(\mathbb{Q})$ the one over \mathbb{Q}.
Lemma 4.3. The commutative diagram (\star) induces
(i) $H^{0}\left(\mathbb{Q}, C\left(T_{1}\right)\right)=C_{\mathbb{Q}}\left(T_{1}\right)$ and $H^{1}\left(\mathbb{Q}, C\left(T_{1}\right)\right) \simeq F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)$,
(ii) $H^{0}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right)=C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ and $H^{1}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right) \simeq \operatorname{Coker} \iota_{p}$.

Proof. The isomorphisms $H^{1}\left(\mathbb{Q}, T_{1}\right) \simeq F^{\dagger \times} / N_{\dagger}\left(F^{\times}\right)=\hat{H}^{0}\left(\Gamma, F^{\times}\right)$and $H^{1}\left(\mathbb{Q}, T_{1}(\mathbb{A})\right) \simeq$ $I_{F^{\dagger}} / N_{\dagger}\left(I_{F}\right)=\hat{H}^{0}\left(\Gamma, I_{F}\right)$ together with $\hat{H}^{-1}\left(\Gamma, C_{F}\right)=1$ show that $\amalg^{1}\left(\mathbb{Q}, T_{1}\right)=1$. Hence there is a short exact sequence

$$
1 \longrightarrow T_{1}(\mathbb{Q}) \longrightarrow T_{1}\left(\mathbb{A}_{\mathbb{Q}}\right) \longrightarrow H^{0}\left(\mathbb{Q}, C\left(T_{1}\right)\right) \longrightarrow 1
$$

so $H^{0}\left(\mathbb{Q}, C\left(T_{1}\right)\right)=T_{1}\left(\mathbb{A}_{\mathbb{Q}}\right) / T_{1}(\mathbb{Q})=C_{\mathbb{Q}}\left(T_{1}\right)$. Similarly $H^{0}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right)=C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ since $\Pi^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$ by proposition 4.2.

From $1 \rightarrow C\left(T_{1}\right) \rightarrow C(T) \xrightarrow{N_{\dagger}} C\left(T^{\dagger}\right) \rightarrow 1$ and $H^{1}(\mathbb{Q}, C(T))=H^{1}(F, C)=1$ we obtain an isomorphism $H^{1}\left(\mathbb{Q}, C\left(T_{1}\right)\right) \simeq C_{\mathbb{Q}}\left(T^{\dagger}\right) / N_{\dagger} C_{\mathbb{Q}}(T)=C_{F^{\dagger}} / N_{\dagger}\left(C_{F}\right)$, and as in the proof of lemma 3.1 we have $C_{F^{\dagger}} / N_{\dagger}\left(C_{F}\right) \simeq F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)$. Similarly $H^{1}\left(\mathbb{Q}, C\left(S_{1}\right)\right) \simeq L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right)$, so from $1 \rightarrow C\left(S_{1}\right) \rightarrow C\left(T_{1}\right) \rightarrow C\left(T_{1} / S_{1}\right) \rightarrow 1$ we deduce the exact sequence

$$
L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \xrightarrow{\iota_{p}} F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right) \longrightarrow H^{1}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right) \longrightarrow H^{2}\left(\mathbb{Q}, C\left(S_{1}\right)\right) .
$$

By the global Nakayama-Tate theorem $H^{2}\left(\mathbb{Q}, C\left(S_{1}\right)\right) \simeq H^{0}\left(\mathbb{Q}, X^{*}\left(S_{1}\right)\right)^{\wedge \vee}([$ Mi] I.4.7 $)$ and $H^{0}\left(\mathbb{Q}, X^{*}\left(S_{1}\right)\right)=0$ since S_{1} is \mathbb{Q}-anisotropic (lemma 1.1), hence $H^{2}\left(\mathbb{Q}, C\left(S_{1}\right)\right)=1$. Therefore $H^{1}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right) \simeq \operatorname{Coker} \iota_{p}$.

For a \mathbb{Q}-torus \mathcal{T} recall that there is a Haar measure τ on $\mathcal{T}\left(\mathbb{A}_{\mathbb{Q}}\right)$ called the Tamagawa measure (see [Pl-Ra] 3.5 and 5.3). When it exists, the invariant volume of $C_{\mathbb{Q}}(\mathcal{T})=$ $\mathcal{T}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathcal{T}(\mathbb{Q})$ with respect to τ is called the Tamagawa number of \mathcal{T} and is denoted $\tau(\mathcal{T})$.
Theorem 4.4. The rational class group $C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ is compact and has finite invariant volume

$$
\tau\left(T_{1} / S_{1}\right)=\# \operatorname{Ker} \iota_{p}
$$

Proof. Since T_{1} / S_{1} is \mathbb{Q}-anisotropic (corollary 1.2) $C_{\mathbb{Q}}\left(T_{1} / S_{1}\right)$ is compact and has finite invariant volume ([Pl-Ra] Thm.5.5). Ono's theorem [On] gives the formula

$$
\tau\left(T_{1} / S_{1}\right)=\frac{\# H^{1}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right)}{\# \amalg^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)}
$$

There are isomorphisms $H^{1}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right) \simeq H^{1}\left(\mathbb{Q}, C\left(T_{1} / S_{1}\right)\right)^{\vee} \simeq$ Coker $\iota_{p}{ }^{\vee}$ by the global Nakayama-Tate theorem and lemma $4.3(\mathrm{ii})$, and $\amalg^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$ by proposition 4.2. Hence $\tau\left(T_{1} / S_{1}\right)=\#$ Coker $\iota_{p}=\# \operatorname{Ker} \iota_{p}$.

Theorem 4.5. The commutative diagram (\star) induces
(i) a short exact sequence

$$
1 \longrightarrow C_{\mathbb{Q}}\left(T_{1}\right) / C_{\mathbb{Q}}\left(S_{1}\right) \longrightarrow C_{\mathbb{Q}}\left(T_{1} / S_{1}\right) \longrightarrow \operatorname{Ker} \iota_{p} \longrightarrow 1,
$$

(ii) a short exact sequence

$$
1 \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) \longrightarrow \operatorname{Coker} \iota_{p} \longrightarrow 1,
$$

(iii) isomorphisms $H^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq H^{r}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right)$ for all $r \geq 2$.

Proof. From the short exact sequence $1 \rightarrow C\left(S_{1}\right) \rightarrow C\left(T_{1}\right) \rightarrow C\left(T_{1} / S_{1}\right) \rightarrow 1$ and lemma 4.3(i) we deduce the exact sequence

$$
1 \longrightarrow C_{\mathbb{Q}}\left(S_{1}\right) \longrightarrow C_{\mathbb{Q}}\left(T_{1}\right) \longrightarrow C_{\mathbb{Q}}\left(T_{1} / S_{1}\right) \longrightarrow L_{p}^{\dagger \times} / N_{\dagger}\left(L_{p}^{\times}\right) \xrightarrow{\iota_{p}} F_{p}^{\dagger \times} / N_{\dagger}\left(F_{p}^{\times}\right)
$$

from which (i) follows.
By the Poitou-Tate theorem as in [Mi] I.4.20, for $r \geq 3$ the localisation maps yield isomorphisms $H^{r}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq H^{r}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right)=H^{r}\left(\mathbb{R}, T_{1} / S_{1}\right)$, and we have an exact sequence

$$
\begin{aligned}
& H^{1}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right)^{\vee} \longleftarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) \longleftarrow H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \\
& \downarrow \\
& H^{2}\left(\mathbb{Q}, T_{1} / S_{1}\right) \longrightarrow H^{2}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) \longrightarrow H^{0}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right)^{\vee} \longrightarrow 1 .
\end{aligned}
$$

Proposition 4.2 shows that $\amalg^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)=Ш^{2}\left(\mathbb{Q}, T_{1} / S_{1}\right)=1$, the global NakayamaTate theorem and lemma 4.3(ii) that $H^{1}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right)^{\vee} \simeq$ Coker ι_{p}, and corollary 1.2 that $H^{0}\left(\mathbb{Q}, X^{*}\left(T_{1} / S_{1}\right)\right)=0$. The statements in (ii) and (iii) follow.

Corollary 4.6. We have

$$
\begin{cases}\tau\left(T_{1} / S_{1}\right)=1 \text { and } H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right) \simeq H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) & \text { when }[F: L] \text { is odd, } \\ \tau\left(T_{1} / S_{1}\right)=2 \text { and } \#\left(H^{1}\left(\mathbb{Q}, T_{1} / S_{1}(\mathbb{A})\right) / H^{1}\left(\mathbb{Q}, T_{1} / S_{1}\right)\right)=2 & \text { when }[F: L] \text { is even. }\end{cases}
$$

Proof. Combine theorems 4.4 and 4.5 with lemma 2.1.

References

[Mi] J.S. Milne, Arithmetic Duality Theorems (2nd edition), available at http://www.jmilne.org/math/ (2004).
[Ne] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften 322, Springer Verlag (1999).
[NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften 323, Springer Verlag (2000).
[On] T. Ono, On the Tamagawa number of algebraic tori, Ann. of Math. 781 (1963), 47-73.
[Pl-Ra] V.P. Platonov, A.I. Rapinchuk, Algebraic groups and number theory, Pure and applied mathematics 139, Academic Press (1994).
[Se] J.-P. Serre, Cohomologie Galoisienne (5th edition), Lecture Notes in Mathematics 5, Springer Verlag (1994).

Université de Mons, Département de Mathématique, Place du Parc 20, 7000 Mons, BelGIUM.

E-mail address: maja.volkov@umons.ac.be

