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Introduction

This paper deals with the cohomology of some quotient norm one algebraic tori defined
over Q. They arise from a class of finite extensions of Q subject to certain local conditions
at a given finite place and at the infinite one. These tori are anisotropic, and we compute
their cohomology as well as their Tamagawa number.

The algebraic Q-tori considered in this paper are introduced in section 1. Fix a prime
number p and let F p

CM(Q) be the class of finite extensions F of Q satisfying the following
local conditions at p and ∞ : F has complex multiplication and Qp⊗QF is a field with
complex multiplication too. Then complex conjugation induces an involution † on F . Now
let L/F be a nontrivial extension such that L and F are both in F p

CM(Q). They define the
Q-tori T = ResF/Q(Gm), T † = ResF †/Q(Gm), S = ResL/Q(Gm), and S† = ResL†/Q(Gm).
The norm maps x 7→ xx† on fields induce morphisms T → T † and S → S† on the associated
tori. Letting T1 and S1 be their respective kernel, the quotient norm one Q-torus we want
to consider is T1/S1. Corollary 1.2 shows that T1/S1 is Q-anisotropic.

In section 2 we compute the local cohomology of T1/S1 at p and at ∞ (propositions 2.2
and 2.3). Section 3 is devoted to the computation of its global cohomology. It involves
the kernels and cokernels of three fundamental morphisms arising from class field theory.
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2 MAJA VOLKOV

The first is the morphism ι : L†×/N†(L
×)→ F †×/N†(F

×) induced by inclusion. The two
others are deduced from the commutative diagram

Br(L)

ResF/L
��

Cor
L/L†// Br(L†)

Res
F†/L†

��
Br(F )

Cor
F/F†// Br(F †)

as the restrictions ρ : Ker CorL/L† → Ker CorF/F † and σ : Coker CorL/L† → Coker CorF/F †
of ResF/L and ResF †/L† respectively. We show in proposition 3.8 that there are short exact
sequences

1 // F1/L1
// H0(Q, T1/S1) // Ker ι // 1 ,

1 // Coker ι // H1(Q, T1/S1) // Ker ρ // 1 ,

and that H2(Q, T1/S1) ' Coker ρ . When r ≥ 2 we find H2r−1(Q, T1/S1) ' Cokerσ and
H2r(Q, T1/S1) = 1.

Section 4 deals with local and global aspects. Let C(T ) = T (A)/T (Q) be the adèle class
group over Q and CQ(T ) = T (AQ)/T (Q) be the one over Q. Proposition 4.2 shows that
Xr(Q, T1/S1) is trivial for all r. We have H0(Q, C(T1/S1)) = CQ(T1/S1) and the same
holds for T1 and S1 (lemma 4.3). Let ιp : L†×p /N†(L

×
p ) → F †×p /N†(F

×
p ) be the morphism

induced by inclusion in the local setting. Theorem 4.4 shows that CQ(T1/S1) has finite
invariant volume # Ker ιp . Further theorem 4.5 shows that there are short exact sequences

1 // CQ(T1)/CQ(S1) // CQ(T1/S1) // Ker ιp // 1 ,

1 // H1(Q, T1/S1) // H1
(
Q, T1/S1(A)

)
// Coker ιp // 1 ,

and that Hr(Q, T1/S1) ' Hr(Q, T1/S1(A)) for r ≥ 2. Gathering these results together in
corollary 4.6 we find that the Tamagawa number of T1/S1 is 1 when [F : L] is odd and
is 2 when [F : L] is even, and that H1(Q, T1/S1) has index 1 or 2 in H1(Q, T1/S1(A))
accordingly.

Notations

Fix an algebraic closure Q of Q and for each prime number ` an algebraic closure Q`

of Q`. For an extension K of Q contained in Q let AK be its adèle ring, IK = A×K its
idèle group, and CK = IK/K

× its idèle class group. When K = Q we simply write A, I,
and C. When K is a number field we let SK be the set of places of K, SfK the subset of
nonarchimedean ones, S∞K the archimedean ones. Write GK = Gal(Q/K) and G = GQ ;
for ` ∈ SfQ let G` = Gal(Q`/Q`).

For a topological abelian group A let A∨ = Homcts(A,Q/Z) be the group of continuous
characters of finite order of A and A∧ the completion of A with respect to the topology
defined by the open subgroups of finite index. For a positive integer n let An be the direct
sum of n copies of A. For positive integers n,m such that n divides m let

Diag : An ↪→ Am =
(
Am/n

)n
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be the n-fold diagonal morphism A ↪→ Am/n, a 7→ (a, . . . , a). Finally write KS(A) ⊆ A⊕A
for the kernel of the sum A ⊕ A → A, (a, b) 7→ a + b. Note that KS(A) is noncanonically
isomorphic to A.

1. Tori

Fix a prime p ∈ SfQ . We want to consider the class F p
CM(Q) of finite extensions F of Q

satisfying the following local conditions at p and ∞ :
(i) F is CM,
(ii) Fp =

def
Qp⊗QF is a field,

(iii) Fp is CM.
Let F ∈ F p

CM(Q) and let † be the involution on F given by complex conjugation. Condition
(iii) above means that the Qp-linear extension of † to Fp is nontrivial. Write Γ = 〈†〉 =

Gal(F/F †) ' Gal(Fp/F
†
p ). Let

N† : F× → F †×

be the norm map x 7→ xx† and put F1 = KerN† ⊂ F×. As no confusion should occur we
also write N† for the p-adic norm map F×p → F †×p and set Fp,1 = F1 ∩ F×p .

Now let L ∈ F p
CM(Q) be a subfield of F , L 6= F . This is equivalent to L being a †-stable

subfield of F such that L† 6= L and L†p 6= Lp = Qp ⊗Q L. The restriction map identifies
Γ with Gal(L/L†) ' Gal(Lp/L

†
p), and we still denote by N† the norm L× → L†× (resp.

L×p → L†×p ) with kernel L1 (resp. Lp,1). Thus we have the field extensions

F Fp

F † L and F †p Lp

L† L†p

Q Qp.

Note that this situation yields some constraints on the arithmetic of the extensions
involved. Namely if both Fp/F

†
p and Lp/L

†
p are unramified then the residue fields degree

f(Fp/Lp) = f(F †p/L
†
p) must be odd, because the residue field of L†p has a unique quadratic

extension in Fp ; if both Fp/F
†
p , Lp/L

†
p are ramified and p 6= 2 then the ramification index

e(Fp/Lp) = e(F †p/L
†
p) must be odd, because the maximal unramified extension of L†p has

a unique quadratic extension in Qp when p 6= 2.

We now define the Q-tori associated to the class F p
CM(Q). Let L,F ∈ F p

CM(Q) with
L ⊂ F and consider the following Q-tori

T =
def

ResF/Q(Gm), T † =
def

ResF †/Q(Gm), S =
def

ResL/Q(Gm), S† =
def

ResL†/Q(Gm).



4 MAJA VOLKOV

We have T (Q) = F×, T (Qp) = F×p , and similarly for the three others. Again write N† for
the morphisms T → T † and S → S† induced by the norm and set

T1 =
def

Ker
(
T

N†−−→ T †
)

and S1 =
def

Ker
(
S

N†−−→ S†
)
.

Thus T1 is a Q-torus with T1(Q) = F1, T1(Qp) = Fp,1, and similarly for S1. We want to
study the arithmetic of the quotient norm one Q-torus T1/S1. This will be achieved by
using the commutative diagram with exact rows ans columns

1

��

1

��

1

��
1 // S1 //

��

S
N† //

��

S† //

��

1

(?) 1 // T1 //

��

T
N† //

��

T † //

��

1

1 // T1/S1 //

��

T/S
N† //

��

T †/S† //

��

1.

1 1 1

Let T be a K-torus and X∗(T ) = Hom(T ,Gm) its Z[GK ]-module of characters. Recall
that the contravariant functor T 7→ X∗(T ) establishes an equivalence between the category
of algebraic tori over K and the category of finite free Z-modules with discrete action of
GK ([Pl-Ra] Thm.2.1). The torus T is said K-anisotropic if X∗(T )GK = 0.
Lemma 1.1. The torus T1 is Q-anisotropic.

Proof. Consider the algebraic F †-tori T0 = ResF/F †(Gm) and T (1)
0 = Ker(T0

N†−−→ Gm). We
have X∗(Gm) = Z, X∗(T0) = Z[Γ], and X∗(T0)GF† = Z(1 + γ) with γ = †, the generator
of Γ. The short exact sequence of F †-tori

1 // T
(1)
0

incl // T0
N† // Gm

// 1

yields a short exact sequence of Z[GF † ]-modules

0 // Z
X∗(N†) // Z[Γ]

proj // X∗
(
T
(1)
0

)
// 0

with X∗(N†)(1) = 1 + γ . Hence X∗
(
T
(1)
0

)
= Z[Γ]/Z(1 + γ) and from the vanishing of

H1(GF † ,Z) = Hom(GF † ,Z) it follows that X∗
(
T
(1)
0

)G
F† = 0. Now T = ResF †/Q(T0) and

applying the exact functor ResF †/Q to the above short exact sequence we find that T1 =

ResF †/Q T
(1)
0 . Thus X∗(T1) = Ind

G
F†
G

(
X∗
(
T
(1)
0

))
and X∗(T1)G = X∗

(
T
(1)
0

)G
F† = 0. �

Corollary 1.2. The torus T1/S1 is Q-anisotropic.

Proof. A quotient of an anisotropic torus is anisotropic : the projection T1 → T1/S1 yields
an embedding X∗(T1/S1) ↪→ X∗(T1) which injects X∗(T1/S1)G into X∗(T1)G = 0. �
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2. Local cohomology

We begin with the computation of the Qp-cohomology of the torus T1/S1. It involves
the kernel and cokernel of the morphism

ιp : L†×p /N†(L
×
p ) −→

incl
F †×p /N†(F

×
p )

induced by the inclusion of L†×p in F †×p . The source and target having order 2 by assumption
(and local class field theory), ιp is either an isomorphism or is trivial, and both its kernel
and cokernel are trivial or have order 2 accordingly.

Lemma 2.1. If [Fp : Lp] is odd then Ker ιp = Coker ιp = 1. If [Fp : Lp] is even then
Ker ιp = L†×p /N†(L

×
p ) and Coker ιp = F †×p /N†(F

×
p ).

Note that our asumptions imply that [Fp : Lp] = [F : L].

Proof. By local class field theory we have a commutative diagram

F †×p /N†(F
×
p )

rec
Fp/F

†
po

��

N
F
†
p/L
†
p // L†×p /N†(L

×
p )

rec
Lp/L

†
po

��

Gal(Fp/F
†
p )

ResFp/Lp

∼ // Gal(Lp/L
†
p).

By assumption the restriction ResFp/Lp
is an isomorphism so the norm N

F †p/L
†
p
as well. The

compositum N
F †p/L

†
p
◦ ιp : L†×p /N†(L

×
p ) → L†×p /N†(L

×
p ) is the map raising to the power

[F †p : L†p], hence ιp is an isomorphism if and only if [F †p : L†p] = [Fp : Lp] is odd. �

For an algebraic torus T over Qp and for all r ≥ 0 let

Hr(Qp, T ) =
def

Hr
cts
(
Gp, T (Qp)

)
.

We have H0(Qp, T ) = T (Qp). It is known that H1(Qp, T ) is finite ([Pl-Ra] Corollary of
Prop.6.9). For r ≥ 3 we have Hr(Qp, T ) = 1 because Gp has cohomological dimension 2
([Se] II.4.3,Cor. and I.3.1,Cor.).

Proposition 2.2. The commutative diagram (?) induces
(i) a short exact sequence

1 // Fp,1/Lp,1 // H0(Qp, T1/S1) // Ker ιp // 1,

(ii) an isomorphism H1(Qp, T1/S1) ' Coker ιp,
(iii) Hr(Qp, T1/S1) = 1 for r ≥ 2.

Proof. The torus T1 is Qp-anisotropic as T1(Qp) = Fp,1 is compact ([Pl-Ra] Thm.3.1),
hence the quotient T1/S1 is Qp-anisotropic as well (corollary 1.2). The local Nakayama-
Tate theorem ([Mi] I.2.4) then gives H2(Qp, T1/S1) ' H0

(
Qp, X

∗(T1/S1)
)∧∨

= 1. Of
course the same holds for S1 and T1.
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The short exact sequence 1→ T1 → T
N†−−→ T † → 1 yields the exact sequence

F×p
N† // F †×p // H1(Qp, T1) // H1(Qp, T ).

By Shapiro’s Lemma and Hilbert 90 we have H1(Qp, T ) ' H1(Fp,Gm) = 1, therefore
H1(Qp, T1) ' F †×p /N†(F

×
p ). Similarly H1(Qp, S1) ' L†×p /N†(L

×
p ). Now from the short

exact sequence 1 → S1 → T1 → T1/S1 → 1 and H2(Qp, S1) = 1 we obtain the exact
sequence

1 // Fp,1/Lp,1 // H0(Qp, T1/S1) // L†×p /N†(L
×
p )

ιp
��

F †×p /N†(F
×
p ) // H1(Qp, T1/S1) // 1

from which the statements on Hr(Qp, T1/S1) for r = 0, 1 follow. �

We now compute the R-cohomology of T1/S1. Let C1 be the subgroup of norm one
elements in C× and R×+ the subgroup of positive elements in R×.

Proposition 2.3. The commutative diagram (?) induces

(i) an isomorphism H0(R, T1/S1) ' Coker
(
C1

[L†:Q] Diag−−−→ C1
[F †:Q]

)
,

(ii) an isomorphism H1(R, T1/S1) ' Coker
((

R×/R×+
)[L†:Q] Diag−−−→

(
R×/R×+

)[F †:Q]
)
,

(iii) H2r(R, T1/S1) = 1 for all r ≥ 1,
(iv) isomorphisms H2r+1(R, T1/S1) ' Coker

((
1
2Z/Z

)[L†:Q] Diag−−−→
(
1
2Z/Z

)[F †:Q]
)
for all

r ≥ 1, via the local inv isomorphism Br(R) ' 1
2Z/Z.

Proof. Put n = [L† : Q] and m = [F † : Q]. Since L is totally imaginary and L† to-
tally real we have H0(R, S) ' (C×)n and H0(R, S†) ' (R×)n. Further for all r ≥ 1 we
have Hr(R, S) = 1, H2r−1(R, S†) = 1, and H2r(R, S†) ' Br(R)n '

(
1
2Z/Z

)n, the latter
isomorphism being the n-fold local inv. From the short exact sequence

1 // S1 // S
N† // S† // 1

and N†(C×) = R×+ we find that H0(R, S1) ' C1
n, H1(R, S1) '

(
R×/R×+

)n, and for r ≥ 1,
H2r(R, S1) = 1, H2r+1(R, S1) '

(
1
2Z/Z

)n. Similarly, the same holds with S1 and n
replaced by T1 and m. The result then follows from the short exact sequence

1 // S1 // T1 // T1/S1 // 1

and the injectivity of the map Diag. �

Corollary 2.4. There are noncanonical isomorphisms

H0(R, T1/S1) ' C[F †:Q]−[L†:Q]
1 , H2r+1(R, T1/S1) '

(
1
2Z/Z

)[F †:Q]−[L†:Q] for all r ≥ 1,

and H2r(R, T1/S1) = 1 for all r ≥ 1.

Proof. Obvious from proposition 2.3 and the isomorphism R×/R×+ ' 1
2Z/Z. �
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3. Global cohomology

We now compute the Q-cohomology of the torus T1/S1. It involves the kernels and
cokernels of three morphisms (see proposition 3.8), the first of which is

ι : L†×/N†(L
×) −→

incl
F †×/N†(F

×)

the morphism induced by the inclusion of L†× in F †×. For a place v ∈ SL† and an algebraic
extension K of L† set

SK(v) =
def
{w ∈ SK | w | v }.

We have a commutative diagram

(L†v ⊗L† L)×

Nv

��

� � // (L†v ⊗L† F )× =
⊕

w∈S
F†(v)

(F †w ⊗F † F )×

⊕w∈S
F†(v)

Nw

��

L†×v
� � // (L†v ⊗L† F †)× =

⊕
w∈S

F†(v)
F †×w

where the maps Nv, Nw are induced by N† and the horizontal ones by inclusions, hence
localising ι at v ∈ SL† yields a morphism

ιv : L†×v
/
Nv(L

†
v ⊗L† L)× −→

⊕
w∈S

F†(v)

F †×w
/
Nw(F †w ⊗F † F )×.

When v = p (the unique place lying above p) we recover the morphism ιp introduced in
section 2.

Lemma 3.1. The localisation maps induce isomorphisms

Ker ι '
⊕
v∈S

L†
v 6=p

Ker ιv and Coker ι '
⊕
v∈S

L†
v 6=p

Coker ιv.

Remark 3.2. Recall that ιp is either an isomorphism or is trivial according to the parity
of [Fp : Lp] = [F : L] (lemma 2.1). When [F : L] is odd then Ker ιp = Coker ιp = 1,
consequently Ker ι '

⊕
v∈S

L†
Ker ιv and Coker ι '

⊕
v∈S

L†
Coker ιv.

Proof. Since H1(L,Gm) = 1 by Hilbert 90 we have a short exact sequence of Γ-modules

1 // L× // IL // CL // 1.

As Γ is cyclic we have Ĥ−1(Γ, CL) = 1, and again by Hilbert 90 we have Ĥ1(Γ, L×) = 1.
Thus Tate cohomology yields a short exact sequence

1 // L†×/N†(L
×) // IL†/N†(IL) // CL†/N†(CL) // 1.

By class field theory both L†×p /N†(L
×
p ) and CL†/N†(CL) have order 2, and the former

embeds in the latter ([Ne] Prop.5.6). Thus

L†×p /N†(L
×
p ) ' CL†/N†(CL)
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which provides via the inclusion L†×p /N†(L
×
p ) ↪→ IL†/N†(IL) a section to the above short

exact sequence. Therefore we have an isomorphism

IL†/N†(IL) ' L†×/N†(L×)⊕ L†×p /N†(L
×
p ).

The same holds with L,L† replaced by F, F † and the isomorphisms involved are compatible
with the inclusions L ⊂ F , L† ⊂ F †. Hence

Ker
(
IL†/N†(IL)

incl−−→ IF †/N†(IF )
)

=
⊕
v∈S

L†

Ker ιv ' Ker ι⊕Ker ιp and

Coker
(
IL†/N†(IL)

incl−−→ IF †/N†(IF )
)

=
⊕
v∈S

L†

Coker ιv ' Coker ι⊕ Coker ιp

from which the result follows. �

For v ∈ SL† the L
†
v-algebra L†v⊗L† L is either a field or isomorphic to L†v×L†v according

to #SL(v) = 1 or 2 respectively. Define the following subsets of SL† and SF † :

SL†(L) =
def
{v ∈ SL† | L†v ⊗L† L ' L†v × L†v}

and SF †(F ) =
def
{w ∈ SF † | F †w ⊗F † F ' F †w × F †w}.

Our assumptions imply that the places lying above p or∞ do not belong to SL†(L), nor to
SF †(F ). Note that v ∈ SL†(L) (resp. w ∈ SF †(F )) if and only if L†×v

/
Nv(L

†
v ⊗L† L)× = 1

(resp. F †×w
/
Nw(F †w ⊗F † F )× = 1). We also set for each place v ∈ SL†

SF †(F, v) =
def

SF †(F ) ∩ SF †(v).

Thus we have

ιv : L†×v
/
Nv(L

†
v ⊗L† L)× −→

⊕
w∈S

F†(v)

w 6∈S
F†(F,v)

F †×w
/
Nw(F †w ⊗F † F )×

the right-hand side being 1 when SF †(F, v) = SF †(v).

Lemma 3.3. Let v ∈ SL† . When v ∈ SL†(L) we have Ker ιv = Coker ιv = 1. When
v 6∈ SL†(L) the local reciprocity maps together with the identification Γ ' Z/2Z induce
isomorphisms

Ker ιv ' Ker


Z/2Z −→

⊕
w∈S

F†(v)

w 6∈S
F†(F,v)

Z/2Z

1 7−→
(

[F †w : L†v] mod 2Z
)
w


and

Coker ιv ' Coker


Z/2Z −→

⊕
w∈S

F†(v)

w 6∈S
F†(F,v)

Z/2Z

1 7−→
(

[F †w : L†v] mod 2Z
)
w

 .
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Thus when v 6∈ SL†(L) and SF †(F, v) = SF †(v) we have Ker ιv = L†×v
/
Nv(L

†
v⊗L† L)× '

Z/2Z and Coker ιv = 1; when v 6∈ SL†(L) and SF †(F, v) 6= SF †(v) the kernel and cokernel
of ιv depend only on the parity of the local extension degrees [F †w : L†v] (for v lying above
p we recover the statement of lemma 2.1).

Proof. When v ∈ SL†(L) every w ∈ SF † lying above v belongs to SF †(F ), hence the source
and target of ιv are both trivial, so Ker ιv = Coker ιv = 1.

When v 6∈ SL†(L) assume that {w | v, w 6∈ SF †(F )} is not empty and let w be an element
thereof. By local class field theory we have a commutative diagram

L†×v /N†(L
×
v )

ιv,w //

[F †w:L†v ]

))

rec
Lv/L

†
vo

��

F †×w /N†(F
×
w )

N
F
†
w/L
†
v //

rec
Fw/F

†
wo

��

L†×v /N†(L
×
v )

rec
Lv/L

†
vo

��

Gal(Lv/L
†
v) // Gal(Fw/F

†
w)

ResFw/Lv

∼ // Gal(Lv/L
†
v)

where ιv,w is induced by the inclusion, so that ιv = (ιv,w)w|v. The result then follows from
the canonical identifications Z/2Z ' Γ ' Gal(Fw/F

†
w) ' Gal(Lv/L

†
v). �

We introduce the following subsets of SF † . Set

SF †(L) =
def
{w ∈ SF † | w|L† ∈ SL†(L)} =

⊔
v∈S

L†(L)

SF †(v).

Note that SF †(L) ⊆ SF †(F ). Also define the “odd” and “even” part of SF † relative to L†

S odd
F † =

def
{w ∈ SF † | [F †w : L†v] is odd, v = w|L†},

S even
F † =

def
{w ∈ SF † | [F †w : L†v] is even, v = w|L†}.

Of course we have SF † = S odd
F †
t S even

F †
. Note that v 6∈ SL†(L) implies SF †(F, v) ⊂ S even

F †
.

Further we introduce the subsets of SL†

S odd
L† =

def
{v ∈ SL† | SF †(v) ∩ S odd

F † 6= ∅ } and S even
L† =

def
{v ∈ SL† | SF †(v) ⊂ S even

F † }.

Corollary 3.4. The local reciprocity maps induce an isomorphism

Ker ι '
⊕

v 6∈S
L†(L)
v 6=p

v∈Seven
L†

Z/2Z

and there is a noncanonical isomorphism

Coker ι '
⊕

v 6∈S
L†(L)
v 6=p

v∈Sodd
L†

(
Z/2Z

)#S
F†(v)−#SF†(F,v)−1 ⊕

⊕
w 6∈S

F† (F )
w 6=p

w∈Seven
F†

Z/2Z .
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Proof. According to lemmas 3.1 and 3.3 the localisation maps yield isomorphisms

Ker ι '
⊕

v 6∈S
L†(L)
v 6=p

Ker ιv and Coker ι '
⊕

v 6∈S
L†(L)
v 6=p

Coker ιv .

Let v ∈ SL† , v 6∈ SL†(L). Then SF †(v)−SF †(F, v) ⊂ S even
F †

is equivalent to SF †(v) ⊂ S even
F †

and SF †(v) ∩ S odd
F †
6= ∅ implies SF †(F, v) 6= SF †(F ). Thus lemma 3.3 shows that{

Ker ιv ' Z/2Z and Coker ιv '
(
Z/2Z

)#S
F†(v)−#SF†(F,v) if SF †(v) ⊂ S even

F †

Ker ιv ' 0 and Coker ιv '
(
Z/2Z

)#S
F†(v)−#SF†(F,v)−1 if SF †(v) ∩ S odd

F †
6= ∅

where all the isomorphisms are induced by the localisation maps except for the last one
which is not canonical. The result follows by summing over the places v ∈ SL† such that
v 6∈ SL†(L) and v 6= p, and replacing the sum of #SF †(v) − #SF †(F, v) copies of Z/2Z
over those v such that SF †(v) ⊂ S even

F †
by the sum of Z/2Z over the w ∈ SF † such that

w 6∈ SF †(F ), w 6= p, and w ∈ S even
F †

. �

The two other morphisms involved in the Q-cohomology of T1/S1 are of similar nature
and we treat them simultanuously. They both arise from the commutative diagram

Br(L)

ResF/L
��

Cor
L/L†// Br(L†)

Res
F†/L†

��
Br(F )

Cor
F/F†// Br(F †)

as

ρ : Ker CorL/L†
ResF/L−−−−→ Ker CorF/F †

and σ : Coker CorL/L†
Res

F†/L†−−−−−→ Coker CorF/F † .

We have Ker ρ = Br(F/L) ∩ Ker CorL/L† . For an extension K ′/K of number fields and
v ∈ SK we define

Br(K ′, v) =
⊕

w∈SK′ (v)

Br(K ′w)

where as usual SK′(v) is the set of places of K ′ lying above v. We have Br(K, v) = Br(Kv)
and

⊕
w∈SK′

Br(K ′w) =
⊕

v∈SK Br(K ′, v). We also let

ResK′/K(v) :

{
Br(K, v) −→ Br(K ′, v)

α 7−→
(
ResK′w/Kv

(α)
)
w∈SK′(v)

and CorK′/K(v) :

{
Br(K ′, v) −→ Br(K, v)

(βw)w∈SK′(v) 7−→ ⊗w∈SK′ (v)CorK′w/Kv
(βw).
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For each v ∈ SL† we have Br(F, v) =
⊕

w∈S
F†(v)

Br(F,w) =
⊕

u∈SL(v) Br(F, u), and a
commutative diagram

Br(L, v)

ResF/L(v)

��

Cor
L/L†(v)// Br(L†, v)

Res
F†/L†(v)

��
Br(F, v)

Cor
F/F†(v)// Br(F †, v)

with CorF/F †(v) = ⊕w∈S
F†(v)

CorF/F †(w) and ResF/L(v) = ⊕u∈SL(v) ResF/L(u). Hence
localising ρ and σ at v ∈ SL† yields morphisms

ρv : Ker CorL/L†(v)
ResF/L(v)−−−−−−→ Ker CorF/F †(v)

and σv : Coker CorL/L†(v)
Res

F†/L† (v)−−−−−−−→ Coker CorF/F †(v).

Lemma 3.5. The local restriction maps induce isomorphisms

Ker ρ '
⊕
v∈S

L†

Ker ρv , Coker ρ '
⊕
v∈S

L†

Coker ρv

and Kerσ '
⊕
v∈S

L†

Kerσv , Cokerσ '
⊕
v∈S

L†

Cokerσv.

Proof. By class field theory we have a commutative diagram with exact rows

0 // Br(L)

Cor
L/L†

��

//
⊕

v∈S
L†

Br(L, v)

⊕vCor
L/L† (v)

��

invL // Q/Z // 0

0 // Br(L†) //
⊕

v∈S
L†

Br(L†, v)
inv

L† // Q/Z // 0

so Ker CorL/L† '
⊕

v∈S
L†

Ker CorL/L†(v) and Coker CorL/L† '
⊕

v∈S
L†

Coker CorL/L†(v).
The same holds with L,L† replaced by F, F †, and the result follows from the commutativity
of the diagrams

Ker CorL/L†
ρ //

o
��

Ker CorF/F †

o
��⊕

v∈S
L†

Ker CorL/L†(v)

⊕
vρv //
⊕

v∈S
L†

Ker CorF/F †(v)

and Coker CorL/L†
σ //

o
��

Coker CorF/F †

o
��⊕

v∈S
L†

Coker CorL/L†(v)

⊕
vσv //
⊕

v∈S
L†

Coker CorF/F †(v).

�

Lemma 3.6. Let v ∈ SL† .
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(i) When v ∈ SL†(L) the local inv maps induce isomorphisms

Ker ρv ' Ker

KS
(
Q/Z

)
−→

⊕
w∈S

F†(v)

KS
(
Q/Z

)
λ 7−→

(
[F †w : L†v]λ

)
w∈S

F†(v)


and

Coker ρv ' Coker

KS
(
Q/Z

)
−→

⊕
w∈S

F†(v)

KS
(
Q/Z

)
λ 7−→

(
[F †w : L†v]λ

)
w∈S

F†(v)

 .

When v 6∈ SL†(L) we have Ker ρv = 0 and the local inv maps induce an isomorphism

Coker ρv '
⊕

w∈S
F†(F,v)

KS
(
Q/Z

)
.

(ii) When v ∈ Sf
L†

we have Kerσv = Cokerσv = 0. When v ∈ S∞
L†

we have Kerσv = 0
and the local inv maps induce an isomorphism

Cokerσv ' Coker
(
1
2Z/Z

Diag−−−→
⊕

w∈S
F†(v)

1
2Z/Z

)
.

Proof. Let v ∈ SL† and invL†(v) = invv, invL(v) = ⊕u∈SL(v) invu. We have a commutative
diagram

Br(L, v)

invL(v)

��

Cor
L/L†(v)// Br(L†, v)

inv
L†(v)

��⊕
u∈SL(v)Q/Z

∑
u|v // Q/Z .

(i) When v ∈ SL†(L) ⊂ Sf
L†

the maps invL(v) and invL†(v) are isomorphisms thus

Ker CorL/L†(v) '
invL(v)

Ker

(
Q/Z⊕Q/Z −→ Q/Z

(λ, µ) 7−→ λ+ µ

)
= KS

(
Q/Z

)
.

When v 6∈ SL†(L) we have Ker CorL/L†(v) = 0. Similarly invF (v) = ⊕w∈S
F†(v)

invw induces
an isomorphism

Ker CorF/F †(v) '
invF (v)

⊕
w∈S

F†(F,v)

KS
(
Q/Z

)
the right-hand side being 0 if the set SF †(F, v) is empty (e.g. if v ∈ S∞

L†
). Hence the

statement is clear when v 6∈ SL†(L), and otherwise it follows from the commutativity of
the diagram

Ker CorL/L†(v)
ρv //

invL(v)o
��

Ker CorF/F †(v)

invF(v)o
��

KS
(
Q/Z

) ξv //
⊕

w∈S
F†(v)

KS
(
Q/Z

)
where ξv(λ) =

(
[F †w : L†v]λ

)
w∈S

F†(v)
for λ ∈ KS

(
Q/Z

)
.
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(ii) When v ∈ Sf
L†

we have Coker CorL/L†(v) = Coker CorF/F †(v) = 0, thus Kerσv =
Cokerσv = 0. When v ∈ S∞

L†
we have a commutative diagram

Coker CorL/L†(v)
σv //

inv
L†(v)o

��

Coker CorF/F †(v)

inv
F†(v)o

��
1
2Z/Z

Diag //
⊕

w∈S
F†(v)

1
2Z/Z

since F †w = L†v = R, and the result follows. �

Corollary 3.7. For v ∈ SL† let dv = gcd{ [F †w : L†v], w ∈ SF †(v) }.
(i) There are noncanonical isomorphisms

Ker ρ '
⊕

v∈S
L†(L)

1
dv
Z/Z and Coker ρ '

⊕
v∈S

L†(L)

(
Q/Z

)#S
F†(v)−1 ⊕

⊕
w∈S

F†(F )

w 6∈S
F†(L)

Q/Z .

(ii) Kerσ = 0 and there is a noncanonical isomorphism

Cokerσ '
(
1
2Z/Z

)[F †:Q]−[L†:Q]
.

Proof. (i) According to lemma 3.5 the local restriction maps yield isomorphisms

Ker ρ '
⊕
v∈S

L†

Ker ρv and Coker ρ '
⊕
v∈S

L†

Coker ρv .

Let v ∈ SL† and δv : Q/Z →
⊕

w∈S
F†(v)

Q/Z be the morphism λ 7→
(
[F †w : L†v]λ

)
w∈S

F†(v)
.

The kernel of δv is 1
dv
Z/Z. Further Coker δv = (Ker δ∨v )∨ is noncanonically isomorphic to

#SF †(v) − 1 copies of Q/Z since the kernel of the dual morphism δ∨v :
⊕

w∈S
F†(v)

Z → Z ,

(nw)w 7→
∑

w∈S
F†(v)

[F †w : L†v]nw is noncanonically isomorphic to #SF †(v)− 1 copies of Z.
Pick an isomorphism KS

(
Q/Z

)
' Q/Z. Then lemma 3.6(i) shows that{

Ker ρv ' 1
dv
Z/Z and Coker ρv '

(
Q/Z

)#S
F†(v)−1 if v ∈ SL†(L)

Ker ρv = 0 and Coker ρv '
(
Q/Z

)#S
F†(F,v) if v 6∈ SL†(L)

where all the isomorphisms are noncanonical. The result follows by summing over the
places v ∈ SL† and replacing the sum of #SF †(F, v) copies of Q/Z over those v such that
v 6∈ SL†(L) by the sum of Q/Z over the w ∈ SF † such that w 6∈ SF †(L).

(ii) According to lemmas 3.5 and 3.6(ii) we have Kerσ = 0 and the local restriction
maps yield an isomorphism

Cokerσ '
⊕
v∈S∞

L†

Cokerσv .

Let v ∈ S∞
L†
. We have #SF †(v) = [F † : L†] since F † is totally real, thus lemma 3.6(ii)

shows that there is a noncanonical isomorphism

Cokerσv '
(
1
2Z/Z

)[F †:L†]−1
.
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The result follows by summing over the places v ∈ S∞
L†

and writing #S∞
L†

(
[F † : L†]− 1

)
=

[L† : Q]
(
[F † : L†]− 1

)
= [F † : Q]− [L† : Q]. �

Proposition 3.8. The commutative diagram (?) induces

(i) a short exact sequence

1 // F1/L1
// H0(Q, T1/S1) // Ker ι // 1,

(ii) a short exact sequence

1 // Coker ι // H1(Q, T1/S1) // Ker ρ // 1,

(iii) an isomorphism H2(Q, T1/S1) ' Coker ρ,
(iv) isomorphisms H2r−1(Q, T1/S1) ' Cokerσ for all r ≥ 2,
(v) H2r(Q, T1/S1) = 1 for all r ≥ 2.

Proof. When r ≥ 3 localising at ∞ yields an isomorphism Hr(Q, T1/S1) ' Hr(R, T1/S1)
([Mi] I.4.21) and proposition 2.3 together with lemmas 3.5 and 3.6(ii) give the result.

We have H1(Q, T ) ' H1(Q,Gm) = 1 by Shapiro’s Lemma and Hilbert 90, and from
the short exact sequence

1 // T1 // T
N† // T † // 1

we find that H1(Q, T1) ' F †×/N†(F
×). We further have H1(Q, T †) = 1 and H3(Q, T ) '

H3(R, T ) ' H1(R, T ) = 1. Thus we also get the exact sequence

1 // H2(Q, T1) // H2(Q, T ) // H2(Q, T †) // H3(Q, T1) // 1.

The canonical isomorphisms H2(Q, T ) ' H2(F,Gm) ' Br(F ) and H2(Q, T †) ' Br(F †)
therefore induce isomorphisms H2(Q, T1) ' Ker CorF/F † and H3(Q, T1) ' Coker CorF/F † .
Similarly we find H1(Q, S1) ' L†×/N†(L

×), H2(Q, S1) ' Ker CorL/L† and H3(Q, S1) '
Coker CorL/L† . Now from the short exact sequence 1→ S1 → T1 → T1/S1 → 1 we obtain
the exact sequence

1 // F1/L1
// H0(Q, T1/S1) // L†×/N†(L

×)

ι

��
Ker CorL/L†

ρ

��

H1(Q, T1/S1)oo F †×/N†(F
×)oo

Ker CorF/F † // H2(Q, T1/S1) // Coker CorL/L†
σ // Coker CorF/F † .

As σ is injective (corollary 3.7(ii)) the statements onHr(Q, T1/S1) for r = 0, 1, 2 follow. �
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4. Local and global

For an algebraic torus T over Q we have Hr
(
Q, T (A)

)
=
⊕

`∈SQ
Hr(Q`, T ) when r ≥ 1,

and for all r ≥ 0 we let

Xr(Q, T ) =
def

Ker
(
Hr(Q, T )→ Hr

(
Q, T (A)

))
.

ClearlyX0(Q, T ) = 1. It is known thatX1(Q, T ) is finite ([Pl-Ra] Corollary to Prop.6.9),
and applying [Mi] I.4.20(a) to X∗(T ) we see that X2(Q, T ) is finite too. For r ≥ 3 we
have Hr

(
Q, T (A)

)
= Hr

(
R, T ) since G` has cohomological dimension 2 when ` 6=∞, and

the local restriction map Hr
(
Q, T ) → Hr

(
R, T ) is an isomorphism ([Mi] I.4.21). Thus

Xr(Q, T ) = 1 when r ≥ 3.

Remark 4.1. Let K be a finite Galois extension of Q and let

Xr(K/Q, T ) =
def

Ker
(
Hr(K/Q, T )→ Hr

(
K/Q, T (A)

))
.

Assume that K is a splitting field for T . Then H1(K, T ) = H1
(
K, T (A)

)
= 1 by

Hilbert 90, so the initial segment of the Hochschild-Serre exact sequence gives isomor-
phisms H1(K/Q, T ) ' H1(Q, T ) and H1

(
K/Q, T (A)

)
' H1

(
Q, T (A)

)
. Hence

X1(K/Q, T ) = X1(Q, T ).

Again by H1(K, T ) = H1
(
K, T (A)

)
= 1, Hochschild-Serre gives the commutative diagram

with exact rows

1 // H2(K/Q, T ) //

��

H2(Q, T ) //

��

H2(K, T )

��
1 // H2

(
K/Q, T (A)

)
// H2

(
Q, T (A)

)
// H2

(
K, T (A)

)
which yields the exact sequence

1 //X2(K/Q, T ) //X2(Q, T ) //X2(K, T ).

We have isomorphisms H2(K, T ) ' Br(K)d and H2
(
K, T (A)

)
'
⊕

v∈SK
Br(Kv)

d with
d = dim T , so by global class field theory X2(K, T ) = 1. Hence

X2(K/Q, T ) = X2(Q, T ).

Proposition 4.2. We have Xr(Q, T1/S1) = 1 for all r.

Proof. By remark 4.1 and [Pl-Ra] Prop.6.12 we have X2(Q, T1/S1) = 1 since T1/S1 is
Qp-anisotropic. The short exact sequence 1 → S1 → T1 → T1/S1 → 1 induces the
commutative diagram with exact rows

H1(Q, S1) //

��

H1(Q, T1) //

��

H1(Q, T1/S1) //

��

H2(Q, S1)

��
H1
(
Q, S1(A)

)
// H1

(
Q, T1(A)

)
// H1

(
Q, T1/S1(A)

)
// H2

(
Q, S1(A)

)
.
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As in the proof of proposition 3.8 we have H1(Q, T1) ' F †×/N†(F
×), H1

(
Q, T1(A)

)
'

T †(A)/N†T (A), and similarly for S1. Thus the above diagram yields

1 // Coker ι //

��

H1(Q, T1/S1) //

��

H2(Q, S1)

��
1 //

⊕
v∈S

L†
Coker ιv // H1

(
Q, T1/S1(A)

)
// H2

(
Q, S1(A)

)
.

As S1 is Qp-anisotropic we have X2(Q, S1) = 1, and the map Coker ι →
⊕

v∈S
L†

Coker ιv

is injective by lemma 3.1. Therefore X1(Q, T1/S1) = 1. �

For a Q-torus T let C(T ) = T (A)/T (Q) be its adèle class group over Q and CQ(T ) =
T (AQ)/T (Q) the one over Q.

Lemma 4.3. The commutative diagram (?) induces

(i) H0
(
Q, C(T1)

)
= CQ(T1) and H1

(
Q, C(T1)

)
' F †×p /N†(F

×
p ),

(ii) H0
(
Q, C(T1/S1)

)
= CQ(T1/S1) and H1

(
Q, C(T1/S1)

)
' Coker ιp.

Proof. The isomorphisms H1(Q, T1) ' F †×/N†(F
×) = Ĥ0(Γ, F×) and H1

(
Q, T1(A)

)
'

IF †/N†(IF ) = Ĥ0(Γ, IF ) together with Ĥ−1(Γ, CF ) = 1 show that X1(Q, T1) = 1. Hence
there is a short exact sequence

1 // T1(Q) // T1(AQ) // H0
(
Q, C(T1)

)
// 1

so H0
(
Q, C(T1)

)
= T1(AQ)/T1(Q) = CQ(T1). Similarly H0

(
Q, C(T1/S1)

)
= CQ(T1/S1)

since X1(Q, T1/S1) = 1 by proposition 4.2.

From 1→ C(T1)→ C(T )
N†−−→ C(T †)→ 1 and H1

(
Q, C(T )

)
= H1(F,C) = 1 we obtain

an isomorphism H1
(
Q, C(T1)

)
' CQ(T †)/N†CQ(T ) = CF †/N†(CF ), and as in the proof of

lemma 3.1 we have CF †/N†(CF ) ' F †×p /N†(F
×
p ). Similarly H1

(
Q, C(S1)

)
' L†×p /N†(L

×
p ),

so from 1→ C(S1)→ C(T1)→ C(T1/S1)→ 1 we deduce the exact sequence

L†×p /N†(L
×
p )

ιp // F †×p /N†(F
×
p ) // H1

(
Q, C(T1/S1)

)
// H2

(
Q, C(S1)

)
.

By the global Nakayama-Tate theorem H2
(
Q, C(S1)

)
' H0

(
Q, X∗(S1)

)∧∨ ([Mi] I.4.7)
and H0

(
Q, X∗(S1)

)
= 0 since S1 is Q-anisotropic (lemma 1.1), hence H2

(
Q, C(S1)

)
= 1.

Therefore H1
(
Q, C(T1/S1)

)
' Coker ιp. �

For a Q-torus T recall that there is a Haar measure τ on T (AQ) called the Tamagawa
measure (see [Pl-Ra] 3.5 and 5.3). When it exists, the invariant volume of CQ(T ) =
T (AQ)/T (Q) with respect to τ is called the Tamagawa number of T and is denoted τ(T ).

Theorem 4.4. The rational class group CQ(T1/S1) is compact and has finite invariant
volume

τ(T1/S1) = # Ker ιp .
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Proof. Since T1/S1 is Q-anisotropic (corollary 1.2) CQ(T1/S1) is compact and has finite
invariant volume ([Pl-Ra] Thm.5.5). Ono’s theorem [On] gives the formula

τ(T1/S1) =
#H1

(
Q, X∗(T1/S1)

)
#X1(Q, T1/S1)

.

There are isomorphisms H1
(
Q, X∗(T1/S1)

)
' H1

(
Q, C(T1/S1)

)∨ ' Coker ιp
∨ by the

global Nakayama-Tate theorem and lemma 4.3(ii), and X1(Q, T1/S1) = 1 by proposi-
tion 4.2. Hence τ(T1/S1) = # Coker ιp = # Ker ιp. �

Theorem 4.5. The commutative diagram (?) induces

(i) a short exact sequence

1 // CQ(T1)/CQ(S1) // CQ(T1/S1) // Ker ιp // 1,

(ii) a short exact sequence

1 // H1(Q, T1/S1) // H1
(
Q, T1/S1(A)

)
// Coker ιp // 1,

(iii) isomorphisms Hr(Q, T1/S1) ' Hr
(
Q, T1/S1(A)

)
for all r ≥ 2.

Proof. From the short exact sequence 1 → C(S1) → C(T1) → C(T1/S1) → 1 and
lemma 4.3(i) we deduce the exact sequence

1 // CQ(S1) // CQ(T1) // CQ(T1/S1) // L†×p /N†(L
×
p )

ιp // F †×p /N†(F
×
p )

from which (i) follows.
By the Poitou-Tate theorem as in [Mi] I.4.20, for r ≥ 3 the localisation maps yield

isomorphisms Hr(Q, T1/S1) ' Hr
(
Q, T1/S1(A)

)
= Hr(R, T1/S1), and we have an exact

sequence

H1
(
Q, X∗(T1/S1)

)∨
��

H1
(
Q, T1/S1(A)

)
oo H1(Q, T1/S1)oo

H2(Q, T1/S1) // H2
(
Q, T1/S1(A)

)
// H0

(
Q, X∗(T1/S1)

)∨ // 1.

Proposition 4.2 shows that X1(Q, T1/S1) = X2(Q, T1/S1) = 1, the global Nakayama-
Tate theorem and lemma 4.3(ii) that H1

(
Q, X∗(T1/S1)

)∨ ' Coker ιp, and corollary 1.2
that H0

(
Q, X∗(T1/S1)

)
= 0. The statements in (ii) and (iii) follow. �

Corollary 4.6. We have{
τ(T1/S1) = 1 and H1(Q, T1/S1) ' H1

(
Q, T1/S1(A)

)
when [F : L] is odd,

τ(T1/S1) = 2 and #
(
H1
(
Q, T1/S1(A)

)/
H1(Q, T1/S1)

)
= 2 when [F : L] is even.

Proof. Combine theorems 4.4 and 4.5 with lemma 2.1. �
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