THE COHOMOLOGY OF SOME QUOTIENT NORM ONE TORI DEFINED OVER $\mathbb Q$

MAJA VOLKOV

ABSTRACT. We compute the cohomology of certain quotient norm one algebraic tori defined over \mathbb{Q} .

2010 Mathematics Subject Classification: 11E72, 20G30.

CONTENTS

Introduction	1
Notations	2
1. Tori	3
2. Local cohomology	5
3. Global cohomology	7
4. Local and global	15
References	18

INTRODUCTION

This paper deals with the cohomology of some quotient norm one algebraic tori defined over \mathbb{Q} . They arise from a class of finite extensions of \mathbb{Q} subject to certain local conditions at a given finite place and at the infinite one. These tori are anisotropic, and we compute their cohomology as well as their Tamagawa number.

The algebraic \mathbb{Q} -tori considered in this paper are introduced in section 1. Fix a prime number p and let $\mathcal{F}^p_{CM}(\mathbb{Q})$ be the class of finite extensions F of \mathbb{Q} satisfying the following local conditions at p and ∞ : F has complex multiplication and $\mathbb{Q}_p \otimes_{\mathbb{Q}} F$ is a field with complex multiplication too. Then complex conjugation induces an involution \dagger on F. Now let L/F be a nontrivial extension such that L and F are both in $\mathcal{F}^p_{CM}(\mathbb{Q})$. They define the \mathbb{Q} -tori $T = \operatorname{Res}_{F/\mathbb{Q}}(\mathbb{G}_m), T^{\dagger} = \operatorname{Res}_{F^{\dagger}/\mathbb{Q}}(\mathbb{G}_m), S = \operatorname{Res}_{L/\mathbb{Q}}(\mathbb{G}_m), \text{ and } S^{\dagger} = \operatorname{Res}_{L^{\dagger}/\mathbb{Q}}(\mathbb{G}_m)$. The norm maps $x \mapsto xx^{\dagger}$ on fields induce morphisms $T \to T^{\dagger}$ and $S \to S^{\dagger}$ on the associated tori. Letting T_1 and S_1 be their respective kernel, the quotient norm one \mathbb{Q} -torus we want to consider is T_1/S_1 . Corollary 1.2 shows that T_1/S_1 is \mathbb{Q} -anisotropic.

In section 2 we compute the local cohomology of T_1/S_1 at p and at ∞ (propositions 2.2 and 2.3). Section 3 is devoted to the computation of its global cohomology. It involves the kernels and cokernels of three fundamental morphisms arising from class field theory.

The first is the morphism $\iota : L^{\dagger \times}/N_{\dagger}(L^{\times}) \to F^{\dagger \times}/N_{\dagger}(F^{\times})$ induced by inclusion. The two others are deduced from the commutative diagram

$$\begin{array}{c} \operatorname{Br}(L) \xrightarrow{\operatorname{Cor}_{L/L^{\dagger}}} \operatorname{Br}(L^{\dagger}) \\ \xrightarrow{\operatorname{Res}_{F/L}} \bigvee & \bigvee_{F \in F^{\dagger/L^{\dagger}}} \operatorname{Br}(F) \xrightarrow{\operatorname{Cor}_{F/F^{\dagger}}} \operatorname{Br}(F^{\dagger}) \end{array}$$

as the restrictions ρ : Ker $\operatorname{Cor}_{L/L^{\dagger}} \to \operatorname{Ker} \operatorname{Cor}_{F/F^{\dagger}}$ and σ : Coker $\operatorname{Cor}_{L/L^{\dagger}} \to \operatorname{Coker} \operatorname{Cor}_{F/F^{\dagger}}$ of $\operatorname{Res}_{F/L}$ and $\operatorname{Res}_{F^{\dagger}/L^{\dagger}}$ respectively. We show in proposition 3.8 that there are short exact sequences

$$1 \longrightarrow F_1/L_1 \longrightarrow H^0(\mathbb{Q}, T_1/S_1) \longrightarrow \operatorname{Ker} \iota \longrightarrow 1,$$

$$1 \longrightarrow \operatorname{Coker} \iota \longrightarrow H^1(\mathbb{Q}, T_1/S_1) \longrightarrow \operatorname{Ker} \rho \longrightarrow 1,$$

and that $H^2(\mathbb{Q}, T_1/S_1) \simeq \operatorname{Coker} \rho$. When $r \geq 2$ we find $H^{2r-1}(\mathbb{Q}, T_1/S_1) \simeq \operatorname{Coker} \sigma$ and $H^{2r}(\mathbb{Q}, T_1/S_1) = 1$.

Section 4 deals with local and global aspects. Let $C(T) = T(\mathbb{A})/T(\overline{\mathbb{Q}})$ be the adèle class group over $\overline{\mathbb{Q}}$ and $C_{\mathbb{Q}}(T) = T(\mathbb{A}_{\mathbb{Q}})/T(\mathbb{Q})$ be the one over \mathbb{Q} . Proposition 4.2 shows that $\operatorname{III}^{r}(\mathbb{Q}, T_{1}/S_{1})$ is trivial for all r. We have $H^{0}(\mathbb{Q}, C(T_{1}/S_{1})) = C_{\mathbb{Q}}(T_{1}/S_{1})$ and the same holds for T_{1} and S_{1} (lemma 4.3). Let $\iota_{p} : L_{p}^{\dagger \times}/N_{\dagger}(L_{p}^{\times}) \to F_{p}^{\dagger \times}/N_{\dagger}(F_{p}^{\times})$ be the morphism induced by inclusion in the local setting. Theorem 4.4 shows that $C_{\mathbb{Q}}(T_{1}/S_{1})$ has finite invariant volume $\# \operatorname{Ker} \iota_{p}$. Further theorem 4.5 shows that there are short exact sequences

$$1 \longrightarrow C_{\mathbb{Q}}(T_1)/C_{\mathbb{Q}}(S_1) \longrightarrow C_{\mathbb{Q}}(T_1/S_1) \longrightarrow \operatorname{Ker} \iota_p \longrightarrow 1,$$
$$1 \longrightarrow H^1(\mathbb{Q}, T_1/S_1) \longrightarrow H^1(\mathbb{Q}, T_1/S_1(\mathbb{A})) \longrightarrow \operatorname{Coker} \iota_p \longrightarrow 1$$

and that $H^r(\mathbb{Q}, T_1/S_1) \simeq H^r(\mathbb{Q}, T_1/S_1(\mathbb{A}))$ for $r \ge 2$. Gathering these results together in corollary 4.6 we find that the Tamagawa number of T_1/S_1 is 1 when [F:L] is odd and is 2 when [F:L] is even, and that $H^1(\mathbb{Q}, T_1/S_1)$ has index 1 or 2 in $H^1(\mathbb{Q}, T_1/S_1(\mathbb{A}))$ accordingly.

NOTATIONS

Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and for each prime number ℓ an algebraic closure $\overline{\mathbb{Q}}_{\ell}$ of \mathbb{Q}_{ℓ} . For an extension K of \mathbb{Q} contained in $\overline{\mathbb{Q}}$ let \mathbb{A}_K be its adèle ring, $I_K = \mathbb{A}_K^{\times}$ its idèle group, and $C_K = I_K/K^{\times}$ its idèle class group. When $K = \overline{\mathbb{Q}}$ we simply write \mathbb{A} , I, and C. When K is a number field we let S_K be the set of places of K, S_K^f the subset of nonarchimedean ones, S_K^{∞} the archimedean ones. Write $G_K = \operatorname{Gal}(\overline{\mathbb{Q}}/K)$ and $G = G_{\mathbb{Q}}$; for $\ell \in S_{\mathbb{Q}}^f$ let $G_\ell = \operatorname{Gal}(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell)$.

For a topological abelian group A let $A^{\vee} = \operatorname{Hom}_{\operatorname{cts}}(A, \mathbb{Q}/\mathbb{Z})$ be the group of continuous characters of finite order of A and A^{\wedge} the completion of A with respect to the topology defined by the open subgroups of finite index. For a positive integer n let A^n be the direct sum of n copies of A. For positive integers n, m such that n divides m let

$$Diag: A^n \hookrightarrow A^m = (A^{m/n})^n$$

be the *n*-fold diagonal morphism $A \hookrightarrow A^{m/n}$, $a \mapsto (a, \ldots, a)$. Finally write $\mathrm{KS}(A) \subseteq A \oplus A$ for the kernel of the sum $A \oplus A \to A$, $(a, b) \mapsto a + b$. Note that $\mathrm{KS}(A)$ is noncanonically isomorphic to A.

1. Tori

Fix a prime $p \in S^f_{\mathbb{Q}}$. We want to consider the class $\mathcal{F}^p_{CM}(\mathbb{Q})$ of finite extensions F of \mathbb{Q} satisfying the following local conditions at p and ∞ :

- (i) F is CM,
- (ii) $F_p \stackrel{=}{=} \mathbb{Q}_p \otimes_{\mathbb{Q}} F$ is a field,
- (iii) F_p is CM.

Let $F \in \mathcal{F}^p_{CM}(\mathbb{Q})$ and let \dagger be the involution on F given by complex conjugation. Condition (iii) above means that the \mathbb{Q}_p -linear extension of \dagger to F_p is nontrivial. Write $\Gamma = \langle \dagger \rangle = \text{Gal}(F/F^{\dagger}) \simeq \text{Gal}(F_p/F_p^{\dagger})$. Let

$$N_{\dagger}: F^{\times} \to F^{\dagger \times}$$

be the norm map $x \mapsto xx^{\dagger}$ and put $F_1 = \operatorname{Ker} N_{\dagger} \subset F^{\times}$. As no confusion should occur we also write N_{\dagger} for the *p*-adic norm map $F_p^{\times} \to F_p^{\dagger \times}$ and set $F_{p,1} = F_1 \cap F_p^{\times}$.

Now let $L \in \mathcal{F}_{CM}^p(\mathbb{Q})$ be a subfield of F, $L \neq F$. This is equivalent to L being a \dagger -stable subfield of F such that $L^{\dagger} \neq L$ and $L_p^{\dagger} \neq L_p = \mathbb{Q}_p \otimes_{\mathbb{Q}} L$. The restriction map identifies Γ with $\operatorname{Gal}(L/L^{\dagger}) \simeq \operatorname{Gal}(L_p/L_p^{\dagger})$, and we still denote by N_{\dagger} the norm $L^{\times} \to L^{\dagger \times}$ (resp. $L_p^{\times} \to L_p^{\dagger \times}$) with kernel L_1 (resp. $L_{p,1}$). Thus we have the field extensions

Note that this situation yields some constraints on the arithmetic of the extensions involved. Namely if both F_p/F_p^{\dagger} and L_p/L_p^{\dagger} are unramified then the residue fields degree $f(F_p/L_p) = f(F_p^{\dagger}/L_p^{\dagger})$ must be odd, because the residue field of L_p^{\dagger} has a unique quadratic extension in $\overline{\mathbb{F}}_p$; if both F_p/F_p^{\dagger} , L_p/L_p^{\dagger} are ramified and $p \neq 2$ then the ramification index $e(F_p/L_p) = e(F_p^{\dagger}/L_p^{\dagger})$ must be odd, because the maximal unramified extension of L_p^{\dagger} has a unique quadratic extension in $\overline{\mathbb{Q}}_p$ when $p \neq 2$.

We now define the \mathbb{Q} -tori associated to the class $\mathcal{F}^p_{\mathrm{CM}}(\mathbb{Q})$. Let $L, F \in \mathcal{F}^p_{\mathrm{CM}}(\mathbb{Q})$ with $L \subset F$ and consider the following \mathbb{Q} -tori

$$T \underset{\text{def}}{=} \operatorname{Res}_{F/\mathbb{Q}}(\mathbb{G}_m), \quad T^{\dagger} \underset{\text{def}}{=} \operatorname{Res}_{F^{\dagger}/\mathbb{Q}}(\mathbb{G}_m), \quad S \underset{\text{def}}{=} \operatorname{Res}_{L/\mathbb{Q}}(\mathbb{G}_m), \quad S^{\dagger} \underset{\text{def}}{=} \operatorname{Res}_{L^{\dagger}/\mathbb{Q}}(\mathbb{G}_m).$$

We have $T(\mathbb{Q}) = F^{\times}$, $T(\mathbb{Q}_p) = F_p^{\times}$, and similarly for the three others. Again write N_{\dagger} for the morphisms $T \to T^{\dagger}$ and $S \to S^{\dagger}$ induced by the norm and set

$$T_1 \underset{\text{def}}{=} \operatorname{Ker}(T \xrightarrow{N_{\dagger}} T^{\dagger}) \quad \text{and} \quad S_1 \underset{\text{def}}{=} \operatorname{Ker}(S \xrightarrow{N_{\dagger}} S^{\dagger}).$$

Thus T_1 is a \mathbb{Q} -torus with $T_1(\mathbb{Q}) = F_1$, $T_1(\mathbb{Q}_p) = F_{p,1}$, and similarly for S_1 . We want to study the arithmetic of the quotient norm one \mathbb{Q} -torus T_1/S_1 . This will be achieved by using the commutative diagram with exact rows and columns

Let \mathcal{T} be a K-torus and $X^*(\mathcal{T}) = \text{Hom}(\mathcal{T}, \mathbb{G}_m)$ its $\mathbb{Z}[G_K]$ -module of characters. Recall that the contravariant functor $\mathcal{T} \mapsto X^*(\mathcal{T})$ establishes an equivalence between the category of algebraic tori over K and the category of finite free \mathbb{Z} -modules with discrete action of G_K ([Pl-Ra] Thm.2.1). The torus \mathcal{T} is said K-anisotropic if $X^*(\mathcal{T})^{G_K} = 0$.

Lemma 1.1. The torus T_1 is \mathbb{Q} -anisotropic.

Proof. Consider the algebraic F^{\dagger} -tori $T_0 = \operatorname{Res}_{F/F^{\dagger}}(\mathbb{G}_m)$ and $T_0^{(1)} = \operatorname{Ker}(T_0 \xrightarrow{N_{\dagger}} \mathbb{G}_m)$. We have $X^*(\mathbb{G}_m) = \mathbb{Z}, X^*(T_0) = \mathbb{Z}[\Gamma]$, and $X^*(T_0)^{G_{F^{\dagger}}} = \mathbb{Z}(1+\gamma)$ with $\gamma = \dagger$, the generator of Γ . The short exact sequence of F^{\dagger} -tori

$$1 \longrightarrow T_0^{(1)} \xrightarrow{\text{incl}} T_0 \xrightarrow{N_{\dagger}} \mathbb{G}_m \longrightarrow 1$$

yields a short exact sequence of $\mathbb{Z}[G_{F^{\dagger}}]$ -modules

$$0 \longrightarrow \mathbb{Z} \xrightarrow{X^*(N_{\dagger})} \mathbb{Z}[\Gamma] \xrightarrow{\operatorname{proj}} X^*(T_0^{(1)}) \longrightarrow 0$$

with $X^*(N_{\dagger})(1) = 1 + \gamma$. Hence $X^*(T_0^{(1)}) = \mathbb{Z}[\Gamma]/\mathbb{Z}(1+\gamma)$ and from the vanishing of $H^1(G_{F^{\dagger}},\mathbb{Z}) = \operatorname{Hom}(G_{F^{\dagger}},\mathbb{Z})$ it follows that $X^*(T_0^{(1)})^{G_{F^{\dagger}}} = 0$. Now $T = \operatorname{Res}_{F^{\dagger}/\mathbb{Q}}(T_0)$ and applying the exact functor $\operatorname{Res}_{F^{\dagger}/\mathbb{Q}}$ to the above short exact sequence we find that $T_1 = \operatorname{Res}_{F^{\dagger}/\mathbb{Q}} T_0^{(1)}$. Thus $X^*(T_1) = \operatorname{Ind}_G^{G_{F^{\dagger}}}(X^*(T_0^{(1)}))$ and $X^*(T_1)^G = X^*(T_0^{(1)})^{G_{F^{\dagger}}} = 0$. \Box Corollary 1.2. The torus T_1/S_1 is \mathbb{Q} -anisotropic.

Proof. A quotient of an anisotropic torus is anisotropic : the projection $T_1 \to T_1/S_1$ yields an embedding $X^*(T_1/S_1) \hookrightarrow X^*(T_1)$ which injects $X^*(T_1/S_1)^G$ into $X^*(T_1)^G = 0$. \Box

2. Local cohomology

We begin with the computation of the \mathbb{Q}_p -cohomology of the torus T_1/S_1 . It involves the kernel and cokernel of the morphism

$$\iota_p: L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}) \xrightarrow{}_{\text{incl}} F_p^{\dagger \times}/N_{\dagger}(F_p^{\times})$$

induced by the inclusion of $L_p^{\dagger \times}$ in $F_p^{\dagger \times}$. The source and target having order 2 by assumption (and local class field theory), ι_p is either an isomorphism or is trivial, and both its kernel and cokernel are trivial or have order 2 accordingly.

Lemma 2.1. If $[F_p : L_p]$ is odd then $\operatorname{Ker} \iota_p = \operatorname{Coker} \iota_p = 1$. If $[F_p : L_p]$ is even then $\operatorname{Ker} \iota_p = L_p^{\dagger \times} / N_{\dagger}(L_p^{\times})$ and $\operatorname{Coker} \iota_p = F_p^{\dagger \times} / N_{\dagger}(F_p^{\times})$.

Note that our asymptions imply that $[F_p: L_p] = [F: L]$.

Proof. By local class field theory we have a commutative diagram

$$F_{p}^{\dagger \times}/N_{\dagger}(F_{p}^{\times}) \xrightarrow{N_{F_{p}^{\dagger}/L_{p}^{\dagger}}} L_{p}^{\dagger \times}/N_{\dagger}(L_{p}^{\times})$$

$$\downarrow \bigvee_{\downarrow}^{\operatorname{rec}}_{F_{p}/F_{p}^{\dagger}} \qquad \downarrow \bigvee_{\downarrow}^{\operatorname{rec}}_{L_{p}/L_{p}^{\dagger}} \operatorname{Gal}(F_{p}/F_{p}^{\dagger}) \xrightarrow{\sim}_{\operatorname{Res}_{F_{p}/L_{p}}} \operatorname{Gal}(L_{p}/L_{p}^{\dagger}).$$

By assumption the restriction $\operatorname{Res}_{F_p/L_p}$ is an isomorphism so the norm $N_{F_p^{\dagger}/L_p^{\dagger}}$ as well. The compositum $N_{F_p^{\dagger}/L_p^{\dagger}} \circ \iota_p : L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}) \to L_p^{\dagger \times}/N_{\dagger}(L_p^{\times})$ is the map raising to the power $[F_p^{\dagger}:L_p^{\dagger}]$, hence ι_p is an isomorphism if and only if $[F_p^{\dagger}:L_p^{\dagger}] = [F_p:L_p]$ is odd. \Box

For an algebraic torus \mathcal{T} over \mathbb{Q}_p and for all $r \geq 0$ let

$$H^{r}(\mathbb{Q}_{p},\mathcal{T}) \stackrel{=}{=} H^{r}_{\mathrm{cts}}(G_{p},\mathcal{T}(\overline{\mathbb{Q}}_{p})).$$

We have $H^0(\mathbb{Q}_p, \mathcal{T}) = \mathcal{T}(\mathbb{Q}_p)$. It is known that $H^1(\mathbb{Q}_p, \mathcal{T})$ is finite ([Pl-Ra] Corollary of Prop.6.9). For $r \geq 3$ we have $H^r(\mathbb{Q}_p, \mathcal{T}) = 1$ because G_p has cohomological dimension 2 ([Se] II.4.3, Cor. and I.3.1, Cor.).

Proposition 2.2. The commutative diagram (\star) induces

(i) a short exact sequence

 $1 \longrightarrow F_{p,1}/L_{p,1} \longrightarrow H^0(\mathbb{Q}_p, T_1/S_1) \longrightarrow \operatorname{Ker} \iota_p \longrightarrow 1,$

- (ii) an isomorphism $H^1(\mathbb{Q}_p, T_1/S_1) \simeq \operatorname{Coker} \iota_p$,
- (iii) $H^r(\mathbb{Q}_p, T_1/S_1) = 1$ for $r \ge 2$.

Proof. The torus T_1 is \mathbb{Q}_p -anisotropic as $T_1(\mathbb{Q}_p) = F_{p,1}$ is compact ([Pl-Ra] Thm.3.1), hence the quotient T_1/S_1 is \mathbb{Q}_p -anisotropic as well (corollary 1.2). The local Nakayama-Tate theorem ([Mi] I.2.4) then gives $H^2(\mathbb{Q}_p, T_1/S_1) \simeq H^0(\mathbb{Q}_p, X^*(T_1/S_1))^{\wedge \vee} = 1$. Of course the same holds for S_1 and T_1 .

The short exact sequence $1 \to T_1 \to T \xrightarrow{N_{\dagger}} T^{\dagger} \to 1$ yields the exact sequence

$$F_p^{\times} \xrightarrow{N_{\dagger}} F_p^{\dagger \times} \longrightarrow H^1(\mathbb{Q}_p, T_1) \longrightarrow H^1(\mathbb{Q}_p, T).$$

By Shapiro's Lemma and Hilbert 90 we have $H^1(\mathbb{Q}_p,T) \simeq H^1(F_p,\mathbb{G}_m) = 1$, therefore $H^1(\mathbb{Q}_p, T_1) \simeq F_p^{\dagger \times} / N_{\dagger}(F_p^{\times})$. Similarly $H^1(\mathbb{Q}_p, S_1) \simeq L_p^{\dagger \times} / N_{\dagger}(L_p^{\times})$. Now from the short exact sequence $1 \to S_1 \to T_1 \to T_1 / S_1 \to 1$ and $H^2(\mathbb{Q}_p, S_1) = 1$ we obtain the exact sequence

$$1 \longrightarrow F_{p,1}/L_{p,1} \longrightarrow H^{0}(\mathbb{Q}_{p}, T_{1}/S_{1}) \longrightarrow L_{p}^{\dagger \times}/N_{\dagger}(L_{p}^{\times})$$

$$\downarrow^{\iota_{p}}$$

$$F_{p}^{\dagger \times}/N_{\dagger}(F_{p}^{\times}) \longrightarrow H^{1}(\mathbb{Q}_{p}, T_{1}/S_{1}) \longrightarrow 1$$

from which the statements on $H^r(\mathbb{Q}_p, T_1/S_1)$ for r = 0, 1 follow.

We now compute the \mathbb{R} -cohomology of T_1/S_1 . Let \mathbb{C}_1 be the subgroup of norm one elements in \mathbb{C}^{\times} and \mathbb{R}^{\times}_{+} the subgroup of positive elements in \mathbb{R}^{\times} .

Proposition 2.3. The commutative diagram (\star) induces

- (i) an isomorphism $H^0(\mathbb{R}, T_1/S_1) \simeq \operatorname{Coker}\left(\mathbb{C}_1^{[L^{\dagger}:\mathbb{Q}]} \xrightarrow{\operatorname{Diag}} \mathbb{C}_1^{[F^{\dagger}:\mathbb{Q}]}\right)$, (ii) an isomorphism $H^1(\mathbb{R}, T_1/S_1) \simeq \operatorname{Coker}\left(\left(\mathbb{R}^{\times}/\mathbb{R}^{\times}_+\right)^{[L^{\dagger}:\mathbb{Q}]} \xrightarrow{\operatorname{Diag}} \left(\mathbb{R}^{\times}/\mathbb{R}^{\times}_+\right)^{[F^{\dagger}:\mathbb{Q}]}\right)$,
- (iii) $H^{2r}(\mathbb{R}, T_1/S_1) = 1$ for all $r \ge 1$,
- (iv) isomorphisms $H^{2r+1}(\mathbb{R}, T_1/S_1) \simeq \operatorname{Coker}\left(\left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^{[L^{\dagger}:\mathbb{Q}]} \xrightarrow{\operatorname{Diag}} \left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^{[F^{\dagger}:\mathbb{Q}]}\right)$ for all $r \geq 1$, via the local inv isomorphism $\operatorname{Br}(\mathbb{R}) \simeq \frac{1}{2}\mathbb{Z}/\mathbb{Z}$.

Proof. Put $n = [L^{\dagger} : \mathbb{Q}]$ and $m = [F^{\dagger} : \mathbb{Q}]$. Since L is totally imaginary and L^{\dagger} totally real we have $H^0(\mathbb{R}, S) \simeq (\mathbb{C}^{\times})^n$ and $H^0(\mathbb{R}, S^{\dagger}) \simeq (\mathbb{R}^{\times})^n$. Further for all $r \ge 1$ we have $H^r(\mathbb{R}, S) = 1$, $H^{2r-1}(\mathbb{R}, S^{\dagger}) = 1$, and $H^{2r}(\mathbb{R}, S^{\dagger}) \simeq \operatorname{Br}(\mathbb{R})^n \simeq (\frac{1}{2}\mathbb{Z}/\mathbb{Z})^n$, the latter isomorphism being the n-fold local inv. From the short exact sequence

$$1 \longrightarrow S_1 \longrightarrow S \xrightarrow{N_{\dagger}} S^{\dagger} \longrightarrow 1$$

and $N_{\dagger}(\mathbb{C}^{\times}) = \mathbb{R}^{\times}_{+}$ we find that $H^{0}(\mathbb{R}, S_{1}) \simeq \mathbb{C}_{1}^{n}$, $H^{1}(\mathbb{R}, S_{1}) \simeq \left(\mathbb{R}^{\times}/\mathbb{R}^{\times}_{+}\right)^{n}$, and for $r \geq 1$, $H^{2r}(\mathbb{R}, S_1) = 1, \ H^{2r+1}(\mathbb{R}, S_1) \simeq \left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^n$. Similarly, the same holds with S_1 and nreplaced by T_1 and m. The result then follows from the short exact sequence

$$1 \longrightarrow S_1 \longrightarrow T_1 \longrightarrow T_1/S_1 \longrightarrow 1$$

and the injectivity of the map Diag.

Corollary 2.4. There are noncanonical isomorphisms

$$H^{0}(\mathbb{R}, T_{1}/S_{1}) \simeq \mathbb{C}_{1}^{[F^{\dagger}:\mathbb{Q}]-[L^{\dagger}:\mathbb{Q}]}, \quad H^{2r+1}(\mathbb{R}, T_{1}/S_{1}) \simeq \left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^{[F^{\dagger}:\mathbb{Q}]-[L^{\dagger}:\mathbb{Q}]} \text{ for all } r \ge 1,$$

and $H^{2r}(\mathbb{R}, T_{1}/S_{1}) = 1 \text{ for all } r \ge 1.$

Proof. Obvious from proposition 2.3 and the isomorphism $\mathbb{R}^{\times}/\mathbb{R}_{+}^{\times} \simeq \frac{1}{2}\mathbb{Z}/\mathbb{Z}$.

6

3. Global Cohomology

We now compute the \mathbb{Q} -cohomology of the torus T_1/S_1 . It involves the kernels and cokernels of three morphisms (see proposition 3.8), the first of which is

$$\iota: L^{\dagger \times} / N_{\dagger}(L^{\times}) \xrightarrow{}_{\mathrm{incl}} F^{\dagger \times} / N_{\dagger}(F^{\times})$$

the morphism induced by the inclusion of $L^{\dagger \times}$ in $F^{\dagger \times}$. For a place $v \in S_{L^{\dagger}}$ and an algebraic extension K of L^{\dagger} set

$$S_K(v) \underset{\text{def}}{=} \{ w \in S_K \mid w \mid v \}.$$

We have a commutative diagram

$$\begin{array}{c|c} (L_v^{\dagger} \otimes_{L^{\dagger}} L)^{\times} & \longrightarrow (L_v^{\dagger} \otimes_{L^{\dagger}} F)^{\times} = \bigoplus_{w \in S_F^{\dagger}(v)} (F_w^{\dagger} \otimes_{F^{\dagger}} F)^{\times} \\ & & & \downarrow^{\bigoplus_{w \in S_F^{\dagger}(v)} N_w} \\ & & \downarrow^{\bigoplus_{w \in S_F^{\dagger}(v)} N_w} \\ & & L_v^{\dagger \times} & \longleftarrow (L_v^{\dagger} \otimes_{L^{\dagger}} F^{\dagger})^{\times} = \bigoplus_{w \in S_F^{\dagger}(v)} F_w^{\dagger \times} \end{array}$$

where the maps N_v , N_w are induced by N_{\dagger} and the horizontal ones by inclusions, hence localising ι at $v \in S_{L^{\dagger}}$ yields a morphism

$$\iota_{v}: L_{v}^{\dagger \times} / N_{v} (L_{v}^{\dagger} \otimes_{L^{\dagger}} L)^{\times} \longrightarrow \bigoplus_{w \in S_{F^{\dagger}}(v)} F_{w}^{\dagger \times} / N_{w} (F_{w}^{\dagger} \otimes_{F^{\dagger}} F)^{\times}.$$

When v = p (the unique place lying above p) we recover the morphism ι_p introduced in section 2.

Lemma 3.1. The localisation maps induce isomorphisms

$$\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \in S_{L^{\dagger}} \\ v \neq p}} \operatorname{Ker} \iota_{v} \quad and \quad \operatorname{Coker} \iota \simeq \bigoplus_{\substack{v \in S_{L^{\dagger}} \\ v \neq p}} \operatorname{Coker} \iota_{v}.$$

Remark 3.2. Recall that ι_p is either an isomorphism or is trivial according to the parity of $[F_p : L_p] = [F : L]$ (lemma 2.1). When [F : L] is odd then $\operatorname{Ker} \iota_p = \operatorname{Coker} \iota_p = 1$, consequently $\operatorname{Ker} \iota \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \iota_v$ and $\operatorname{Coker} \iota \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \iota_v$.

Proof. Since $H^1(L, \mathbb{G}_m) = 1$ by Hilbert 90 we have a short exact sequence of Γ -modules

$$1 \longrightarrow L^{\times} \longrightarrow I_L \longrightarrow C_L \longrightarrow 1.$$

As Γ is cyclic we have $\hat{H}^{-1}(\Gamma, C_L) = 1$, and again by Hilbert 90 we have $\hat{H}^1(\Gamma, L^{\times}) = 1$. Thus Tate cohomology yields a short exact sequence

$$1 \longrightarrow L^{\dagger \times} / N_{\dagger}(L^{\times}) \longrightarrow I_{L^{\dagger}} / N_{\dagger}(I_L) \longrightarrow C_{L^{\dagger}} / N_{\dagger}(C_L) \longrightarrow 1.$$

By class field theory both $L_p^{\dagger \times}/N_{\dagger}(L_p^{\times})$ and $C_{L^{\dagger}}/N_{\dagger}(C_L)$ have order 2, and the former embeds in the latter ([Ne] Prop.5.6). Thus

$$L_p^{\dagger \times} / N_{\dagger}(L_p^{\times}) \simeq C_{L^{\dagger}} / N_{\dagger}(C_L)$$

which provides via the inclusion $L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}) \hookrightarrow I_{L^{\dagger}}/N_{\dagger}(I_L)$ a section to the above short exact sequence. Therefore we have an isomorphism

$$I_{L^{\dagger}}/N_{\dagger}(I_L) \simeq L^{\dagger \times}/N_{\dagger}(L^{\times}) \oplus L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}).$$

The same holds with L, L^{\dagger} replaced by F, F^{\dagger} and the isomorphisms involved are compatible with the inclusions $L \subset F, L^{\dagger} \subset F^{\dagger}$. Hence

$$\operatorname{Ker}\left(I_{L^{\dagger}}/N_{\dagger}(I_{L}) \xrightarrow{\operatorname{incl}} I_{F^{\dagger}}/N_{\dagger}(I_{F})\right) = \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \iota_{v} \simeq \operatorname{Ker} \iota \oplus \operatorname{Ker} \iota_{p} \quad \text{and}$$
$$\operatorname{Coker}\left(I_{L^{\dagger}}/N_{\dagger}(I_{L}) \xrightarrow{\operatorname{incl}} I_{F^{\dagger}}/N_{\dagger}(I_{F})\right) = \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \iota_{v} \simeq \operatorname{Coker} \iota \oplus \operatorname{Coker} \iota_{p}$$

from which the result follows.

For $v \in S_{L^{\dagger}}$ the L_v^{\dagger} -algebra $L_v^{\dagger} \otimes_{L^{\dagger}} L$ is either a field or isomorphic to $L_v^{\dagger} \times L_v^{\dagger}$ according to $\#S_L(v) = 1$ or 2 respectively. Define the following subsets of $S_{L^{\dagger}}$ and $S_{F^{\dagger}}$:

$$S_{L^{\dagger}}(L) \stackrel{=}{=} \{ v \in S_{L^{\dagger}} \mid L_{v}^{\dagger} \otimes_{L^{\dagger}} L \simeq L_{v}^{\dagger} \times L_{v}^{\dagger} \}$$

and
$$S_{F^{\dagger}}(F) \stackrel{=}{=} \{ w \in S_{F^{\dagger}} \mid F_{w}^{\dagger} \otimes_{F^{\dagger}} F \simeq F_{w}^{\dagger} \times F_{w}^{\dagger} \}.$$

Our assumptions imply that the places lying above p or ∞ do not belong to $S_{L^{\dagger}}(L)$, nor to $S_{F^{\dagger}}(F)$. Note that $v \in S_{L^{\dagger}}(L)$ (resp. $w \in S_{F^{\dagger}}(F)$) if and only if $L_v^{\dagger \times}/N_v(L_v^{\dagger} \otimes_{L^{\dagger}} L)^{\times} = 1$ (resp. $F_w^{\dagger \times}/N_w(F_w^{\dagger} \otimes_{F^{\dagger}} F)^{\times} = 1$). We also set for each place $v \in S_{L^{\dagger}}$

$$S_{F^{\dagger}}(F,v) \stackrel{}{=} S_{F^{\dagger}}(F) \cap S_{F^{\dagger}}(v)$$

Thus we have

$$\iota_{v}: L_{v}^{\dagger \times} / N_{v} (L_{v}^{\dagger} \otimes_{L^{\dagger}} L)^{\times} \longrightarrow \bigoplus_{\substack{w \in S_{F^{\dagger}}(v) \\ w \notin S_{F^{\dagger}}(F,v)}} F_{w}^{\dagger \times} / N_{w} (F_{w}^{\dagger} \otimes_{F^{\dagger}} F)^{\times}$$

the right-hand side being 1 when $S_{F^{\dagger}}(F, v) = S_{F^{\dagger}}(v)$.

Lemma 3.3. Let $v \in S_{L^{\dagger}}$. When $v \in S_{L^{\dagger}}(L)$ we have $\operatorname{Ker} \iota_{v} = \operatorname{Coker} \iota_{v} = 1$. When $v \notin S_{L^{\dagger}}(L)$ the local reciprocity maps together with the identification $\Gamma \simeq \mathbb{Z}/2\mathbb{Z}$ induce isomorphisms

$$\operatorname{Ker} \iota_{v} \simeq \operatorname{Ker} \begin{pmatrix} \mathbb{Z}/2\mathbb{Z} & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Z}/2\mathbb{Z} \\ & & w \notin S_{F^{\dagger}}(F,v) \\ 1 & \longmapsto & \left(\begin{bmatrix} F_{w}^{\dagger} : L_{v}^{\dagger} \end{bmatrix} \mod 2\mathbb{Z} \right)_{w} \end{pmatrix}$$

and

$$\operatorname{Coker} \iota_{v} \simeq \operatorname{Coker} \begin{pmatrix} \mathbb{Z}/2\mathbb{Z} & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Z}/2\mathbb{Z} \\ & & w \notin S_{F^{\dagger}}(F,v) \\ 1 & \longmapsto & \left(\begin{bmatrix} F_{w}^{\dagger} : L_{v}^{\dagger} \end{bmatrix} \operatorname{mod} 2\mathbb{Z} \right)_{w} \end{pmatrix}.$$

Thus when $v \notin S_{L^{\dagger}}(L)$ and $S_{F^{\dagger}}(F, v) = S_{F^{\dagger}}(v)$ we have $\operatorname{Ker} \iota_{v} = L_{v}^{\dagger \times} / N_{v}(L_{v}^{\dagger} \otimes_{L^{\dagger}} L)^{\times} \simeq \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{Coker} \iota_{v} = 1$; when $v \notin S_{L^{\dagger}}(L)$ and $S_{F^{\dagger}}(F, v) \neq S_{F^{\dagger}}(v)$ the kernel and cokernel of ι_{v} depend only on the parity of the local extension degrees $[F_{w}^{\dagger}: L_{v}^{\dagger}]$ (for v lying above p we recover the statement of lemma 2.1).

Proof. When $v \in S_{L^{\dagger}}(L)$ every $w \in S_{F^{\dagger}}$ lying above v belongs to $S_{F^{\dagger}}(F)$, hence the source and target of ι_v are both trivial, so Ker $\iota_v = \text{Coker } \iota_v = 1$.

When $v \notin S_{L^{\dagger}}(L)$ assume that $\{w \mid v, w \notin S_{F^{\dagger}}(F)\}$ is not empty and let w be an element thereof. By local class field theory we have a commutative diagram

where $\iota_{v,w}$ is induced by the inclusion, so that $\iota_v = (\iota_{v,w})_{w|v}$. The result then follows from the canonical identifications $\mathbb{Z}/2\mathbb{Z} \simeq \Gamma \simeq \operatorname{Gal}(F_w/F_w^{\dagger}) \simeq \operatorname{Gal}(L_v/L_v^{\dagger})$.

We introduce the following subsets of $S_{F^{\dagger}}$. Set

$$S_{F^{\dagger}}(L) \underset{\text{def}}{=} \{ w \in S_{F^{\dagger}} \mid w_{\mid L^{\dagger}} \in S_{L^{\dagger}}(L) \} = \bigsqcup_{v \in S_{L^{\dagger}}(L)} S_{F^{\dagger}}(v)$$

Note that $S_{F^{\dagger}}(L) \subseteq S_{F^{\dagger}}(F)$. Also define the "odd" and "even" part of $S_{F^{\dagger}}$ relative to L^{\dagger}

$$\begin{split} S_{F^{\dagger}}^{\text{odd}} &= \{ w \in S_{F^{\dagger}} \mid [F_{w}^{\dagger} : L_{v}^{\dagger}] \text{ is odd, } v = w_{|L^{\dagger}} \}, \\ S_{F^{\dagger}}^{\text{even}} &= \{ w \in S_{F^{\dagger}} \mid [F_{w}^{\dagger} : L_{v}^{\dagger}] \text{ is even, } v = w_{|L^{\dagger}} \}. \end{split}$$

Of course we have $S_{F^{\dagger}} = S_{F^{\dagger}}^{\text{odd}} \sqcup S_{F^{\dagger}}^{\text{even}}$. Note that $v \notin S_{L^{\dagger}}(L)$ implies $S_{F^{\dagger}}(F, v) \subset S_{F^{\dagger}}^{\text{even}}$. Further we introduce the subsets of $S_{L^{\dagger}}$

$$S_{L^{\dagger}}^{\text{odd}} = \{ v \in S_{L^{\dagger}} \mid S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\text{odd}} \neq \varnothing \} \text{ and } S_{L^{\dagger}}^{\text{even}} = \{ v \in S_{L^{\dagger}} \mid S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text{even}} \}.$$

Corollary 3.4. The local reciprocity maps induce an isomorphism

$$\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \notin S_{L^{\dagger}}(L) \\ v \neq p \\ v \in S_{L^{\dagger}}^{\operatorname{eeven}}}} \mathbb{Z}/2\mathbb{Z}$$

and there is a noncanonical isomorphism

$$\operatorname{Coker} \iota \simeq \bigoplus_{\substack{v \notin S_{L^{\dagger}}(L) \\ v \neq p \\ v \in S_{L^{\dagger}}^{\operatorname{odd}}}} (\mathbb{Z}/2\mathbb{Z})^{\#S_{F^{\dagger}}(v) - \#S_{F^{\dagger}}(F,v) - 1} \oplus \bigoplus_{\substack{w \notin S_{F^{\dagger}}(F) \\ w \neq p \\ w \in S_{F^{\dagger}}^{\operatorname{odd}}}} \mathbb{Z}/2\mathbb{Z}.$$

Proof. According to lemmas 3.1 and 3.3 the localisation maps yield isomorphisms

$$\operatorname{Ker} \iota \simeq \bigoplus_{\substack{v \notin S_L^{\dagger}(L) \\ v \neq p}} \operatorname{Ker} \iota_v \quad \text{and} \quad \operatorname{Coker} \iota \simeq \bigoplus_{\substack{v \notin S_L^{\dagger}(L) \\ v \neq p}} \operatorname{Coker} \iota_v$$

Let $v \in S_{L^{\dagger}}, v \notin S_{L^{\dagger}}(L)$. Then $S_{F^{\dagger}}(v) - S_{F^{\dagger}}(F, v) \subset S_{F^{\dagger}}^{\text{even}}$ is equivalent to $S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text{even}}$ and $S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\text{odd}} \neq \emptyset$ implies $S_{F^{\dagger}}(F, v) \neq S_{F^{\dagger}}(F)$. Thus lemma 3.3 shows that

$$\begin{cases} \operatorname{Ker} \iota_v \simeq \mathbb{Z}/2\mathbb{Z} & \operatorname{and} \operatorname{Coker} \iota_v \simeq \left(\mathbb{Z}/2\mathbb{Z}\right)^{\#S_{F^{\dagger}}(v) - \#S_{F^{\dagger}}(F,v)} & \operatorname{if} S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\operatorname{even}} \\ \operatorname{Ker} \iota_v \simeq 0 & \operatorname{and} \operatorname{Coker} \iota_v \simeq \left(\mathbb{Z}/2\mathbb{Z}\right)^{\#S_{F^{\dagger}}(v) - \#S_{F^{\dagger}}(F,v) - 1} & \operatorname{if} S_{F^{\dagger}}(v) \cap S_{F^{\dagger}}^{\operatorname{odd}} \neq \varnothing \end{cases}$$

where all the isomorphisms are induced by the localisation maps except for the last one which is not canonical. The result follows by summing over the places $v \in S_{L^{\dagger}}$ such that $v \notin S_{L^{\dagger}}(L)$ and $v \neq p$, and replacing the sum of $\#S_{F^{\dagger}}(v) - \#S_{F^{\dagger}}(F, v)$ copies of $\mathbb{Z}/2\mathbb{Z}$ over those v such that $S_{F^{\dagger}}(v) \subset S_{F^{\dagger}}^{\text{even}}$ by the sum of $\mathbb{Z}/2\mathbb{Z}$ over the $w \in S_{F^{\dagger}}$ such that $w \notin S_{F^{\dagger}}(F), w \neq p$, and $w \in S_{F^{\dagger}}^{\text{even}}$.

The two other morphisms involved in the \mathbb{Q} -cohomology of T_1/S_1 are of similar nature and we treat them simultaneously. They both arise from the commutative diagram

as

$$\rho: \operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}} \xrightarrow{\operatorname{Res}_{F/L}} \operatorname{Ker} \operatorname{Cor}_{F/F^{\dagger}}$$

and
$$\sigma : \operatorname{Coker} \operatorname{Cor}_{L/L^{\dagger}} \xrightarrow{\operatorname{Res}_{F^{\dagger}/L^{\dagger}}} \operatorname{Coker} \operatorname{Cor}_{F/F^{\dagger}}$$

We have $\operatorname{Ker} \rho = \operatorname{Br}(F/L) \cap \operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}}$. For an extension K'/K of number fields and $v \in S_K$ we define

$$\operatorname{Br}(K',v) = \bigoplus_{w \in S_{K'}(v)} \operatorname{Br}(K'_w)$$

where as usual $S_{K'}(v)$ is the set of places of K' lying above v. We have $\operatorname{Br}(K, v) = \operatorname{Br}(K_v)$ and $\bigoplus_{w \in S_{K'}} \operatorname{Br}(K'_w) = \bigoplus_{v \in S_K} \operatorname{Br}(K', v)$. We also let

$$\operatorname{Res}_{K'/K}(v) : \begin{cases} \operatorname{Br}(K,v) & \longrightarrow & \operatorname{Br}(K',v) \\ \alpha & \longmapsto & \left(\operatorname{Res}_{K'_w/K_v}(\alpha)\right)_{w \in S_{K'}(v)} \end{cases}$$

and
$$\operatorname{Cor}_{K'/K}(v) : \begin{cases} \operatorname{Br}(K',v) & \longrightarrow & \operatorname{Br}(K,v) \\ (\beta_w)_{w \in S_{K'}(v)} & \longmapsto & \otimes_{w \in S_{K'}(v)} \operatorname{Cor}_{K'_w/K_v}(\beta_w). \end{cases}$$

For each $v \in S_{L^{\dagger}}$ we have $\operatorname{Br}(F, v) = \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{Br}(F, w) = \bigoplus_{u \in S_{L}(v)} \operatorname{Br}(F, u)$, and a commutative diagram

$$\begin{array}{c} \operatorname{Br}(L,v) \xrightarrow{\operatorname{Cor}_{L/L}\dagger(v)} \operatorname{Br}(L^{\dagger},v) \\ \xrightarrow{\operatorname{Res}_{F/L}(v)} \bigvee \qquad & \bigvee_{\operatorname{Cor}_{F/F}\dagger(v)} \bigvee_{\gamma} \operatorname{Res}_{F^{\dagger}/L} ^{\dagger}(v) \\ \operatorname{Br}(F,v) \xrightarrow{\operatorname{Cor}_{F/F}\dagger(v)} \operatorname{Br}(F^{\dagger},v) \end{array}$$

with $\operatorname{Cor}_{F/F^{\dagger}}(v) = \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{Cor}_{F/F^{\dagger}}(w)$ and $\operatorname{Res}_{F/L}(v) = \bigoplus_{u \in S_{L}(v)} \operatorname{Res}_{F/L}(u)$. Hence localising ρ and σ at $v \in S_{L^{\dagger}}$ yields morphisms

$$\rho_{v} : \operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}}(v) \xrightarrow{\operatorname{Res}_{F/L}(v)} \operatorname{Ker} \operatorname{Cor}_{F/F^{\dagger}}(v)$$

and $\sigma_{v} : \operatorname{Coker} \operatorname{Cor}_{L/L^{\dagger}}(v) \xrightarrow{\operatorname{Res}_{F^{\dagger}/L^{\dagger}}(v)} \operatorname{Coker} \operatorname{Cor}_{F/F^{\dagger}}(v)$

Lemma 3.5. The local restriction maps induce isomorphisms

$$\begin{split} & \operatorname{Ker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \rho_{v} \,, \quad \operatorname{Coker} \rho \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \rho_{v} \\ & and \quad \operatorname{Ker} \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \sigma_{v} \,, \quad \operatorname{Coker} \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \sigma_{v}. \end{split}$$

Proof. By class field theory we have a commutative diagram with exact rows

so $\operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}} \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}}(v)$ and $\operatorname{Coker} \operatorname{Cor}_{L/L^{\dagger}} \simeq \bigoplus_{v \in S_{L^{\dagger}}} \operatorname{Coker} \operatorname{Cor}_{L/L^{\dagger}}(v)$. The same holds with L, L^{\dagger} replaced by F, F^{\dagger} , and the result follows from the commutativity of the diagrams

$$\begin{split} & \operatorname{Ker}\operatorname{Cor}_{L/L^{\dagger}} \xrightarrow{\rho} \operatorname{Ker}\operatorname{Cor}_{F/F^{\dagger}} \\ & \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \\ & \bigoplus_{v \in S_{L^{\dagger}}}\operatorname{Ker}\operatorname{Cor}_{L/L^{\dagger}}(v) \xrightarrow{\bigoplus_{v} \rho_{v}} \bigoplus_{v \in S_{L^{\dagger}}}\operatorname{Ker}\operatorname{Cor}_{F/F^{\dagger}}(v) \\ & \text{and} \qquad \operatorname{Coker}\operatorname{Cor}_{L/L^{\dagger}} \xrightarrow{\sigma} \operatorname{Coker}\operatorname{Cor}_{F/F^{\dagger}} \\ & \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \\ & \bigoplus_{v \in S_{L^{\dagger}}}\operatorname{Coker}\operatorname{Cor}_{L/L^{\dagger}}(v) \xrightarrow{\bigoplus_{v} \sigma_{v}} \bigoplus_{v \in S_{L^{\dagger}}}\operatorname{Coker}\operatorname{Cor}_{F/F^{\dagger}}(v). \end{split}$$

Lemma 3.6. Let $v \in S_{L^{\dagger}}$.

(i) When $v \in S_{L^{\dagger}}(L)$ the local inv maps induce isomorphisms

$$\operatorname{Ker} \rho_{v} \simeq \operatorname{Ker} \begin{pmatrix} \operatorname{KS}(\mathbb{Q}/\mathbb{Z}) & \longrightarrow & \bigoplus_{w \in S_{F^{\dagger}}(v)} \\ \lambda & \longmapsto & \left(\left[F_{w}^{\dagger} : L_{v}^{\dagger} \right] \lambda \right)_{w \in S_{F^{\dagger}}(v)} \end{pmatrix}$$

and

$$\operatorname{Coker} \rho_v \simeq \operatorname{Coker} \begin{pmatrix} \operatorname{KS}(\mathbb{Q}/\mathbb{Z}) & \longrightarrow & \bigoplus_{w \in S_F^{\dagger}(v)} \operatorname{KS}(\mathbb{Q}/\mathbb{Z}) \\ \lambda & \longmapsto & \left(\left[F_w^{\dagger} : L_v^{\dagger} \right] \lambda \right)_{w \in S_F^{\dagger}(v)} \end{pmatrix}.$$

When $v \notin S_{L^{\dagger}}(L)$ we have Ker $\rho_v = 0$ and the local inverse induce an isomorphism

$$\operatorname{Coker} \rho_v \simeq \bigoplus_{w \in S_F^{\dagger}(F,v)} \operatorname{KS}(\mathbb{Q}/\mathbb{Z})$$

(ii) When $v \in S_{L^{\dagger}}^{f}$ we have Ker $\sigma_{v} = \operatorname{Coker} \sigma_{v} = 0$. When $v \in S_{L^{\dagger}}^{\infty}$ we have Ker $\sigma_{v} = 0$ and the local inv maps induce an isomorphism

$$\operatorname{Coker} \sigma_v \simeq \operatorname{Coker} \left(\frac{1}{2} \mathbb{Z} / \mathbb{Z} \xrightarrow{\operatorname{Diag}} \bigoplus_{w \in S_{F^{\dagger}}(v)} \frac{1}{2} \mathbb{Z} / \mathbb{Z} \right).$$

Proof. Let $v \in S_{L^{\dagger}}$ and $\operatorname{inv}_{L^{\dagger}}(v) = \operatorname{inv}_{v}$, $\operatorname{inv}_{L}(v) = \bigoplus_{u \in S_{L}(v)} \operatorname{inv}_{u}$. We have a commutative diagram

$$\begin{aligned} \operatorname{Br}(L,v) &\xrightarrow{\operatorname{Cor}_{L/L^{\dagger}(v)}} \operatorname{Br}(L^{\dagger},v) \\ & \downarrow^{\operatorname{inv}_{L}(v)} & \downarrow^{\operatorname{inv}_{L^{\dagger}}(v)} \\ & \bigoplus_{u \in S_{L}(v)} \mathbb{Q}/\mathbb{Z} \xrightarrow{\Sigma_{u|v}} \mathbb{Q}/\mathbb{Z} \,. \end{aligned}$$

(i) When $v \in S_{L^{\dagger}}(L) \subset S_{L^{\dagger}}^{f}$ the maps $\operatorname{inv}_{L}(v)$ and $\operatorname{inv}_{L^{\dagger}}(v)$ are isomorphisms thus

$$\operatorname{Ker}\operatorname{Cor}_{L/L^{\dagger}}(v) \simeq_{\operatorname{inv}_{L}(v)} \operatorname{Ker} \begin{pmatrix} \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}/\mathbb{Z} & \longrightarrow & \mathbb{Q}/\mathbb{Z} \\ (\lambda, \mu) & \longmapsto & \lambda + \mu \end{pmatrix} = \operatorname{KS}(\mathbb{Q}/\mathbb{Z})$$

When $v \notin S_{L^{\dagger}}(L)$ we have Ker $\operatorname{Cor}_{L/L^{\dagger}}(v) = 0$. Similarly $\operatorname{inv}_{F}(v) = \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{inv}_{w}$ induces an isomorphism

$$\operatorname{Ker}\operatorname{Cor}_{F/F^{\dagger}}(v) \simeq \bigoplus_{\operatorname{inv}_{F}(v)} \operatorname{KS}(\mathbb{Q}/\mathbb{Z})$$

the right-hand side being 0 if the set $S_{F^{\dagger}}(F, v)$ is empty (e.g. if $v \in S_{L^{\dagger}}^{\infty}$). Hence the statement is clear when $v \notin S_{L^{\dagger}}(L)$, and otherwise it follows from the commutativity of the diagram

$$\begin{split} \operatorname{Ker} \operatorname{Cor}_{L/L^{\dagger}}(v) & \xrightarrow{\rho_{v}} \operatorname{Ker} \operatorname{Cor}_{F/F^{\dagger}}(v) \\ & \stackrel{\langle \\ | \operatorname{inv}_{L}(v) \\ \operatorname{KS}(\mathbb{Q}/\mathbb{Z}) & \stackrel{\xi_{v}}{\longrightarrow} \bigoplus_{w \in S_{F^{\dagger}}(v)} \operatorname{KS}(\mathbb{Q}/\mathbb{Z}) \end{split}$$

where $\xi_v(\lambda) = \left(\left[F_w^{\dagger} : L_v^{\dagger} \right] \lambda \right)_{w \in S_F^{\dagger}(v)}$ for $\lambda \in \mathrm{KS}(\mathbb{Q}/\mathbb{Z})$.

(ii) When $v \in S_{L^{\dagger}}^{f}$ we have $\operatorname{Coker} \operatorname{Cor}_{L/L^{\dagger}}(v) = \operatorname{Coker} \operatorname{Cor}_{F/F^{\dagger}}(v) = 0$, thus $\operatorname{Ker} \sigma_{v} = \operatorname{Coker} \sigma_{v} = 0$. When $v \in S_{L^{\dagger}}^{\infty}$ we have a commutative diagram

$$\begin{array}{c} \operatorname{Coker}\operatorname{Cor}_{L/L^{\dagger}}(v) \xrightarrow{\sigma_{v}} \operatorname{Coker}\operatorname{Cor}_{F/F^{\dagger}}(v) \\ & \swarrow & \bigvee_{i} \operatorname{inv}_{L^{\dagger}}(v) & \swarrow & \bigvee_{i} \operatorname{inv}_{F^{\dagger}}(v) \\ & \frac{1}{2}\mathbb{Z}/\mathbb{Z} \xrightarrow{\operatorname{Diag}} \bigoplus_{w \in S_{F^{\dagger}}(v)} \frac{1}{2}\mathbb{Z}/\mathbb{Z} \end{array}$$

since $F_w^{\dagger} = L_v^{\dagger} = \mathbb{R}$, and the result follows.

Corollary 3.7. For $v \in S_{L^{\dagger}}$ let $d_v = \gcd\{ [F_w^{\dagger} : L_v^{\dagger}], w \in S_{F^{\dagger}}(v) \}.$

(i) There are noncanonical isomorphisms

$$\operatorname{Ker} \rho \simeq \bigoplus_{v \in S_L^{\dagger}(L)} \frac{1}{d_v} \mathbb{Z} / \mathbb{Z} \quad and \quad \operatorname{Coker} \rho \simeq \bigoplus_{v \in S_L^{\dagger}(L)} (\mathbb{Q} / \mathbb{Z})^{\#S_F^{\dagger}(v)-1} \oplus \bigoplus_{\substack{w \in S_F^{\dagger}(F) \\ w \notin S_F^{\dagger}(L)}} \mathbb{Q} / \mathbb{Z} \,.$$

(ii) Ker $\sigma = 0$ and there is a noncanonical isomorphism

Coker
$$\sigma \simeq \left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^{[F^{\dagger}:\mathbb{Q}]-[L^{\dagger}:\mathbb{Q}]}$$

Proof. (i) According to lemma 3.5 the local restriction maps yield isomorphisms

$$\operatorname{Ker} \rho \simeq \bigoplus_{v \in S_L^{\dagger}} \operatorname{Ker} \rho_v \quad \text{and} \quad \operatorname{Coker} \rho \simeq \bigoplus_{v \in S_L^{\dagger}} \operatorname{Coker} \rho_v \,.$$

Let $v \in S_{L^{\dagger}}$ and $\delta_{v} : \mathbb{Q}/\mathbb{Z} \to \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Q}/\mathbb{Z}$ be the morphism $\lambda \mapsto \left([F_{w}^{\dagger} : L_{v}^{\dagger}] \lambda \right)_{w \in S_{F^{\dagger}}(v)}$. The kernel of δ_{v} is $\frac{1}{d_{v}}\mathbb{Z}/\mathbb{Z}$. Further Coker $\delta_{v} = (\operatorname{Ker} \delta_{v}^{\vee})^{\vee}$ is noncanonically isomorphic to $\#S_{F^{\dagger}}(v) - 1$ copies of \mathbb{Q}/\mathbb{Z} since the kernel of the dual morphism $\delta_{v}^{\vee} : \bigoplus_{w \in S_{F^{\dagger}}(v)} \mathbb{Z} \to \mathbb{Z}$, $(n_{w})_{w} \mapsto \sum_{w \in S_{F^{\dagger}}(v)} [F_{w}^{\dagger} : L_{v}^{\dagger}] n_{w}$ is noncanonically isomorphic to $\#S_{F^{\dagger}}(v) - 1$ copies of \mathbb{Z} . Pick an isomorphism $\operatorname{KS}(\mathbb{Q}/\mathbb{Z}) \simeq \mathbb{Q}/\mathbb{Z}$. Then lemma 3.6(i) shows that

$$\begin{cases} \operatorname{Ker} \rho_v \simeq \frac{1}{d_v} \mathbb{Z}/\mathbb{Z} & \text{and } \operatorname{Coker} \rho_v \simeq \left(\mathbb{Q}/\mathbb{Z}\right)^{\#S_F^{\dagger}(v)-1} & \text{if } v \in S_{L^{\dagger}}(L) \\ \operatorname{Ker} \rho_v = 0 & \text{and } \operatorname{Coker} \rho_v \simeq \left(\mathbb{Q}/\mathbb{Z}\right)^{\#S_F^{\dagger}(F,v)} & \text{if } v \notin S_{L^{\dagger}}(L) \end{cases}$$

where all the isomorphisms are noncanonical. The result follows by summing over the places $v \in S_{L^{\dagger}}$ and replacing the sum of $\#S_{F^{\dagger}}(F, v)$ copies of \mathbb{Q}/\mathbb{Z} over those v such that $v \notin S_{L^{\dagger}}(L)$ by the sum of \mathbb{Q}/\mathbb{Z} over the $w \in S_{F^{\dagger}}$ such that $w \notin S_{F^{\dagger}}(L)$.

(ii) According to lemmas 3.5 and 3.6(ii) we have $\text{Ker } \sigma = 0$ and the local restriction maps yield an isomorphism

$$\operatorname{Coker} \sigma \simeq \bigoplus_{v \in S_{L^{\dagger}}^{\infty}} \operatorname{Coker} \sigma_{v} \,.$$

Let $v \in S_{L^{\dagger}}^{\infty}$. We have $\#S_{F^{\dagger}}(v) = [F^{\dagger} : L^{\dagger}]$ since F^{\dagger} is totally real, thus lemma 3.6(ii) shows that there is a noncanonical isomorphism

Coker
$$\sigma_v \simeq \left(\frac{1}{2}\mathbb{Z}/\mathbb{Z}\right)^{[F^{\dagger}:L^{\dagger}]-1}$$
.

The result follows by summing over the places $v \in S_{L^{\dagger}}^{\infty}$ and writing $\#S_{L^{\dagger}}^{\infty}([F^{\dagger}:L^{\dagger}]-1) = [L^{\dagger}:\mathbb{Q}]([F^{\dagger}:L^{\dagger}]-1) = [F^{\dagger}:\mathbb{Q}] - [L^{\dagger}:\mathbb{Q}].$

Proposition 3.8. The commutative diagram (\star) induces

(i) a short exact sequence

$$1 \longrightarrow F_1/L_1 \longrightarrow H^0(\mathbb{Q}, T_1/S_1) \longrightarrow \operatorname{Ker} \iota \longrightarrow 1,$$

(ii) a short exact sequence

$$1 \longrightarrow \operatorname{Coker} \iota \longrightarrow H^1(\mathbb{Q}, T_1/S_1) \longrightarrow \operatorname{Ker} \rho \longrightarrow 1,$$

- (iii) an isomorphism $H^2(\mathbb{Q}, T_1/S_1) \simeq \operatorname{Coker} \rho$,
- (iv) isomorphisms $H^{2r-1}(\mathbb{Q}, T_1/S_1) \simeq \operatorname{Coker} \sigma$ for all $r \ge 2$,
- (v) $H^{2r}(\mathbb{Q}, T_1/S_1) = 1$ for all $r \ge 2$.

Proof. When $r \geq 3$ localising at ∞ yields an isomorphism $H^r(\mathbb{Q}, T_1/S_1) \simeq H^r(\mathbb{R}, T_1/S_1)$ ([Mi] I.4.21) and proposition 2.3 together with lemmas 3.5 and 3.6(ii) give the result.

We have $H^1(\mathbb{Q},T) \simeq H^1(\mathbb{Q},\mathbb{G}_m) = 1$ by Shapiro's Lemma and Hilbert 90, and from the short exact sequence

$$1 \longrightarrow T_1 \longrightarrow T \xrightarrow{N_{\dagger}} T^{\dagger} \longrightarrow 1$$

we find that $H^1(\mathbb{Q}, T_1) \simeq F^{\dagger \times} / N_{\dagger}(F^{\times})$. We further have $H^1(\mathbb{Q}, T^{\dagger}) = 1$ and $H^3(\mathbb{Q}, T) \simeq H^3(\mathbb{R}, T) \simeq H^1(\mathbb{R}, T) = 1$. Thus we also get the exact sequence

$$1 \longrightarrow H^{2}(\mathbb{Q}, T_{1}) \longrightarrow H^{2}(\mathbb{Q}, T) \longrightarrow H^{2}(\mathbb{Q}, T^{\dagger}) \longrightarrow H^{3}(\mathbb{Q}, T_{1}) \longrightarrow 1.$$

The canonical isomorphisms $H^2(\mathbb{Q},T) \simeq H^2(F,\mathbb{G}_m) \simeq \operatorname{Br}(F)$ and $H^2(\mathbb{Q},T^{\dagger}) \simeq \operatorname{Br}(F^{\dagger})$ therefore induce isomorphisms $H^2(\mathbb{Q},T_1) \simeq \operatorname{Ker}\operatorname{Cor}_{F/F^{\dagger}}$ and $H^3(\mathbb{Q},T_1) \simeq \operatorname{Coker}\operatorname{Cor}_{F/F^{\dagger}}$. Similarly we find $H^1(\mathbb{Q},S_1) \simeq L^{\dagger \times}/N_{\dagger}(L^{\times}), \ H^2(\mathbb{Q},S_1) \simeq \operatorname{Ker}\operatorname{Cor}_{L/L^{\dagger}}$ and $H^3(\mathbb{Q},S_1) \simeq \operatorname{Coker}\operatorname{Cor}_{L/L^{\dagger}}$. Now from the short exact sequence $1 \to S_1 \to T_1 \to T_1/S_1 \to 1$ we obtain the exact sequence

$$\begin{split} 1 & \longrightarrow F_1/L_1 & \longrightarrow H^0(\mathbb{Q}, T_1/S_1) & \longrightarrow L^{\dagger \times}/N_{\dagger}(L^{\times}) \\ & \downarrow^{\iota} \\ & \text{Ker}\operatorname{Cor}_{L/L^{\dagger}} & \longleftarrow H^1(\mathbb{Q}, T_1/S_1) & \longleftarrow F^{\dagger \times}/N_{\dagger}(F^{\times}) \\ & \downarrow^{\rho} \\ & \text{Ker}\operatorname{Cor}_{F/F^{\dagger}} & \longrightarrow H^2(\mathbb{Q}, T_1/S_1) & \longrightarrow \operatorname{Coker}\operatorname{Cor}_{L/L^{\dagger}} & \xrightarrow{\sigma} \operatorname{Coker}\operatorname{Cor}_{F/F^{\dagger}}. \end{split}$$

As σ is injective (corollary 3.7(ii)) the statements on $H^r(\mathbb{Q}, T_1/S_1)$ for r = 0, 1, 2 follow. \Box

4. LOCAL AND GLOBAL

For an algebraic torus \mathcal{T} over \mathbb{Q} we have $H^r(\mathbb{Q}, \mathcal{T}(\mathbb{A})) = \bigoplus_{\ell \in S_{\mathbb{Q}}} H^r(\mathbb{Q}_{\ell}, \mathcal{T})$ when $r \ge 1$, and for all $r \ge 0$ we let

$$\mathrm{III}^{r}(\mathbb{Q},\mathcal{T}) \stackrel{=}{=} \mathrm{Ker}\Big(H^{r}(\mathbb{Q},\mathcal{T}) \to H^{r}\big(\mathbb{Q},\mathcal{T}(\mathbb{A})\big)\Big).$$

Clearly $\operatorname{III}^0(\mathbb{Q}, \mathcal{T}) = 1$. It is known that $\operatorname{III}^1(\mathbb{Q}, \mathcal{T})$ is finite ([Pl-Ra] Corollary to Prop.6.9), and applying [Mi] I.4.20(a) to $X^*(\mathcal{T})$ we see that $\operatorname{III}^2(\mathbb{Q}, \mathcal{T})$ is finite too. For $r \geq 3$ we have $H^r(\mathbb{Q}, \mathcal{T}(\mathbb{A})) = H^r(\mathbb{R}, \mathcal{T})$ since G_ℓ has cohomological dimension 2 when $\ell \neq \infty$, and the local restriction map $H^r(\mathbb{Q}, \mathcal{T}) \to H^r(\mathbb{R}, \mathcal{T})$ is an isomorphism ([Mi] I.4.21). Thus $\operatorname{III}^r(\mathbb{Q}, \mathcal{T}) = 1$ when $r \geq 3$.

Remark 4.1. Let K be a finite Galois extension of \mathbb{Q} and let

$$\amalg^{r}(K/\mathbb{Q},\mathcal{T}) \underset{\text{def}}{=} \operatorname{Ker}\Big(H^{r}(K/\mathbb{Q},\mathcal{T}) \to H^{r}\big(K/\mathbb{Q},\mathcal{T}(\mathbb{A})\big)\Big).$$

Assume that K is a splitting field for \mathcal{T} . Then $H^1(K,\mathcal{T}) = H^1(K,\mathcal{T}(\mathbb{A})) = 1$ by Hilbert 90, so the initial segment of the Hochschild-Serre exact sequence gives isomorphisms $H^1(K/\mathbb{Q},\mathcal{T}) \simeq H^1(\mathbb{Q},\mathcal{T})$ and $H^1(K/\mathbb{Q},\mathcal{T}(\mathbb{A})) \simeq H^1(\mathbb{Q},\mathcal{T}(\mathbb{A}))$. Hence

$$\mathrm{III}^{1}(K/\mathbb{Q},\mathcal{T}) = \mathrm{III}^{1}(\mathbb{Q},\mathcal{T}).$$

Again by $H^1(K, \mathcal{T}) = H^1(K, \mathcal{T}(\mathbb{A})) = 1$, Hochschild-Serre gives the commutative diagram with exact rows

$$1 \longrightarrow H^{2}(K/\mathbb{Q}, \mathcal{T}) \longrightarrow H^{2}(\mathbb{Q}, \mathcal{T}) \longrightarrow H^{2}(K, \mathcal{T})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow H^{2}(K/\mathbb{Q}, \mathcal{T}(\mathbb{A})) \longrightarrow H^{2}(\mathbb{Q}, \mathcal{T}(\mathbb{A})) \longrightarrow H^{2}(K, \mathcal{T}(\mathbb{A}))$$

which yields the exact sequence

$$1 \longrightarrow \operatorname{III}^{2}(K/\mathbb{Q}, \mathcal{T}) \longrightarrow \operatorname{III}^{2}(\mathbb{Q}, \mathcal{T}) \longrightarrow \operatorname{III}^{2}(K, \mathcal{T}).$$

We have isomorphisms $H^2(K, \mathcal{T}) \simeq \operatorname{Br}(K)^d$ and $H^2(K, \mathcal{T}(\mathbb{A})) \simeq \bigoplus_{v \in S_K} \operatorname{Br}(K_v)^d$ with $d = \dim \mathcal{T}$, so by global class field theory $\operatorname{III}^2(K, \mathcal{T}) = 1$. Hence

$$\mathrm{III}^{2}(K/\mathbb{Q},\mathcal{T}) = \mathrm{III}^{2}(\mathbb{Q},\mathcal{T}).$$

Proposition 4.2. We have $\coprod^r(\mathbb{Q}, T_1/S_1) = 1$ for all r.

Proof. By remark 4.1 and [Pl-Ra] Prop.6.12 we have $\operatorname{III}^2(\mathbb{Q}, T_1/S_1) = 1$ since T_1/S_1 is \mathbb{Q}_p -anisotropic. The short exact sequence $1 \to S_1 \to T_1 \to T_1/S_1 \to 1$ induces the commutative diagram with exact rows

As in the proof of proposition 3.8 we have $H^1(\mathbb{Q},T_1) \simeq F^{\dagger \times}/N_{\dagger}(F^{\times}), H^1(\mathbb{Q},T_1(\mathbb{A})) \simeq$ $T^{\dagger}(\mathbb{A})/N_{\dagger}T(\mathbb{A})$, and similarly for S_1 . Thus the above diagram yields

As S_1 is \mathbb{Q}_p -anisotropic we have $\mathrm{III}^2(\mathbb{Q}, S_1) = 1$, and the map Coker $\iota \to \bigoplus_{v \in S_r} \mathrm{Coker}\,\iota_v$ is injective by lemma 3.1. Therefore $\operatorname{III}^1(\mathbb{Q}, T_1/S_1) = 1$.

For a Q-torus \mathcal{T} let $C(\mathcal{T}) = \mathcal{T}(\mathbb{A})/\mathcal{T}(\overline{\mathbb{Q}})$ be its adèle class group over $\overline{\mathbb{Q}}$ and $C_{\mathbb{Q}}(\mathcal{T}) =$ $\mathcal{T}(\mathbb{A}_{\mathbb{Q}})/\mathcal{T}(\mathbb{Q})$ the one over \mathbb{Q} .

Lemma 4.3. The commutative diagram (\star) induces

- (i) $H^0(\mathbb{Q}, C(T_1)) = C_{\mathbb{Q}}(T_1) \text{ and } H^1(\mathbb{Q}, C(T_1)) \simeq F_p^{\dagger \times} / N_{\dagger}(F_p^{\times}),$ (ii) $H^0(\mathbb{Q}, C(T_1/S_1)) = C_{\mathbb{Q}}(T_1/S_1) \text{ and } H^1(\mathbb{Q}, C(T_1/S_1)) \simeq \operatorname{Coker} \iota_p.$

Proof. The isomorphisms $H^1(\mathbb{Q}, T_1) \simeq F^{\dagger \times} / N_{\dagger}(F^{\times}) = \hat{H}^0(\Gamma, F^{\times})$ and $H^1(\mathbb{Q}, T_1(\mathbb{A})) \simeq F^{\dagger \times} / N_{\dagger}(F^{\times})$ $I_{F^{\dagger}}/N_{\dagger}(I_F) = \hat{H}^0(\Gamma, I_F)$ together with $\hat{H}^{-1}(\Gamma, C_F) = 1$ show that $\coprod^1(\mathbb{Q}, T_1) = 1$. Hence there is a short exact sequence

$$1 \longrightarrow T_1(\mathbb{Q}) \longrightarrow T_1(\mathbb{A}_{\mathbb{Q}}) \longrightarrow H^0(\mathbb{Q}, C(T_1)) \longrightarrow 1$$

so $H^0(\mathbb{Q}, C(T_1)) = T_1(\mathbb{A}_{\mathbb{Q}})/T_1(\mathbb{Q}) = C_{\mathbb{Q}}(T_1)$. Similarly $H^0(\mathbb{Q}, C(T_1/S_1)) = C_{\mathbb{Q}}(T_1/S_1)$ since $\operatorname{III}^1(\mathbb{Q}, T_1/S_1) = 1$ by proposition 4.2.

From $1 \to C(T_1) \to C(T) \xrightarrow{N_{\dagger}} C(T^{\dagger}) \to 1$ and $H^1(\mathbb{Q}, C(T)) = H^1(F, C) = 1$ we obtain an isomorphism $H^1(\mathbb{Q}, C(T_1)) \simeq C_{\mathbb{Q}}(T^{\dagger})/N_{\dagger}C_{\mathbb{Q}}(T) = C_{F^{\dagger}}/N_{\dagger}(C_F)$, and as in the proof of lemma 3.1 we have $C_{F^{\dagger}}/N_{\dagger}(C_F) \simeq F_p^{\dagger \times}/N_{\dagger}(F_p^{\times})$. Similarly $H^1(\mathbb{Q}, C(S_1)) \simeq L_p^{\dagger \times}/N_{\dagger}(L_p^{\times})$, so from $1 \to C(S_1) \to C(T_1) \to C(T_1/S_1) \to 1$ we deduce the exact sequence

$$L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}) \xrightarrow{\iota_p} F_p^{\dagger \times}/N_{\dagger}(F_p^{\times}) \longrightarrow H^1(\mathbb{Q}, C(T_1/S_1)) \longrightarrow H^2(\mathbb{Q}, C(S_1)).$$

By the global Nakayama-Tate theorem $H^2(\mathbb{Q}, C(S_1)) \simeq H^0(\mathbb{Q}, X^*(S_1))^{\wedge \vee}$ ([Mi] I.4.7) and $H^0(\mathbb{Q}, X^*(S_1)) = 0$ since S_1 is \mathbb{Q} -anisotropic (lemma 1.1), hence $H^2(\mathbb{Q}, C(S_1)) = 1$. Therefore $H^1(\mathbb{Q}, C(T_1/S_1)) \simeq \operatorname{Coker} \iota_p$.

For a Q-torus \mathcal{T} recall that there is a Haar measure τ on $\mathcal{T}(\mathbb{A}_{\mathbb{Q}})$ called the Tamagawa measure (see [Pl-Ra] 3.5 and 5.3). When it exists, the invariant volume of $C_{\mathbb{Q}}(\mathcal{T}) =$ $\mathcal{T}(\mathbb{A}_{\mathbb{Q}})/\mathcal{T}(\mathbb{Q})$ with respect to τ is called the Tamagawa number of \mathcal{T} and is denoted $\tau(\mathcal{T})$.

Theorem 4.4. The rational class group $C_{\mathbb{Q}}(T_1/S_1)$ is compact and has finite invariant volume

$$\tau(T_1/S_1) = \#\operatorname{Ker}\iota_p.$$

Proof. Since T_1/S_1 is Q-anisotropic (corollary 1.2) $C_{\mathbb{Q}}(T_1/S_1)$ is compact and has finite invariant volume ([Pl-Ra] Thm.5.5). Ono's theorem [On] gives the formula

$$\tau(T_1/S_1) = \frac{\#H^1(\mathbb{Q}, X^*(T_1/S_1))}{\#\mathrm{III}^1(\mathbb{Q}, T_1/S_1)}$$

There are isomorphisms $H^1(\mathbb{Q}, X^*(T_1/S_1)) \simeq H^1(\mathbb{Q}, C(T_1/S_1))^{\vee} \simeq \operatorname{Coker} \iota_p^{\vee}$ by the global Nakayama-Tate theorem and lemma 4.3(ii), and $\operatorname{III}^1(\mathbb{Q}, T_1/S_1) = 1$ by proposition 4.2. Hence $\tau(T_1/S_1) = \# \operatorname{Coker} \iota_p = \# \operatorname{Ker} \iota_p$.

Theorem 4.5. The commutative diagram (\star) induces

(i) a short exact sequence

$$1 \longrightarrow C_{\mathbb{Q}}(T_1)/C_{\mathbb{Q}}(S_1) \longrightarrow C_{\mathbb{Q}}(T_1/S_1) \longrightarrow \operatorname{Ker} \iota_p \longrightarrow 1,$$

(ii) a short exact sequence

$$1 \longrightarrow H^{1}(\mathbb{Q}, T_{1}/S_{1}) \longrightarrow H^{1}(\mathbb{Q}, T_{1}/S_{1}(\mathbb{A})) \longrightarrow \operatorname{Coker} \iota_{p} \longrightarrow 1,$$

(iii) isomorphisms $H^r(\mathbb{Q}, T_1/S_1) \simeq H^r(\mathbb{Q}, T_1/S_1(\mathbb{A}))$ for all $r \ge 2$.

Proof. From the short exact sequence $1 \to C(S_1) \to C(T_1) \to C(T_1/S_1) \to 1$ and lemma 4.3(i) we deduce the exact sequence

$$1 \longrightarrow C_{\mathbb{Q}}(S_1) \longrightarrow C_{\mathbb{Q}}(T_1) \longrightarrow C_{\mathbb{Q}}(T_1/S_1) \longrightarrow L_p^{\dagger \times}/N_{\dagger}(L_p^{\times}) \xrightarrow{\iota_p} F_p^{\dagger \times}/N_{\dagger}(F_p^{\times})$$

from which (i) follows.

By the Poitou-Tate theorem as in [Mi] I.4.20, for $r \geq 3$ the localisation maps yield isomorphisms $H^r(\mathbb{Q}, T_1/S_1) \simeq H^r(\mathbb{Q}, T_1/S_1(\mathbb{A})) = H^r(\mathbb{R}, T_1/S_1)$, and we have an exact sequence

$$H^{1}(\mathbb{Q}, X^{*}(T_{1}/S_{1}))^{\vee} \longleftarrow H^{1}(\mathbb{Q}, T_{1}/S_{1}(\mathbb{A})) \longleftarrow H^{1}(\mathbb{Q}, T_{1}/S_{1})$$

$$\downarrow$$

$$H^{2}(\mathbb{Q}, T_{1}/S_{1}) \longrightarrow H^{2}(\mathbb{Q}, T_{1}/S_{1}(\mathbb{A})) \longrightarrow H^{0}(\mathbb{Q}, X^{*}(T_{1}/S_{1}))^{\vee} \longrightarrow 1$$

Proposition 4.2 shows that $\operatorname{III}^1(\mathbb{Q}, T_1/S_1) = \operatorname{III}^2(\mathbb{Q}, T_1/S_1) = 1$, the global Nakayama-Tate theorem and lemma 4.3(ii) that $H^1(\mathbb{Q}, X^*(T_1/S_1))^{\vee} \simeq \operatorname{Coker} \iota_p$, and corollary 1.2 that $H^0(\mathbb{Q}, X^*(T_1/S_1)) = 0$. The statements in (ii) and (iii) follow. \Box

Corollary 4.6. We have

$$\begin{cases} \tau(T_1/S_1) = 1 \text{ and } H^1(\mathbb{Q}, T_1/S_1) \simeq H^1(\mathbb{Q}, T_1/S_1(\mathbb{A})) & \text{when } [F:L] \text{ is odd,} \\ \tau(T_1/S_1) = 2 \text{ and } \# \Big(H^1(\mathbb{Q}, T_1/S_1(\mathbb{A})) / H^1(\mathbb{Q}, T_1/S_1) \Big) = 2 & \text{when } [F:L] \text{ is even.} \end{cases}$$

Proof. Combine theorems 4.4 and 4.5 with lemma 2.1.

References

- [Mi] J.S. Milne, Arithmetic Duality Theorems (2nd edition), available at http://www.jmilne.org/math/ (2004).
- [Ne] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften 322, Springer Verlag (1999).
- [NSW] J. Neukirch, A. Schmidt, K. Wingberg, *Cohomology of number fields*, Grundlehren der mathematischen Wissenschaften **323**, Springer Verlag (2000).
- [On] T. Ono, On the Tamagawa number of algebraic tori, Ann. of Math. 78 1 (1963), 47-73.
- [Pl-Ra] V.P. Platonov, A.I. Rapinchuk, Algebraic groups and number theory, Pure and applied mathematics 139, Academic Press (1994).
- [Se] J.-P. Serre, Cohomologie Galoisienne (5th edition), Lecture Notes in Mathematics 5, Springer Verlag (1994).

Université de Mons, Département de Mathématique, Place du Parc 20, 7000 Mons, Belgium.

 $E\text{-}mail\ address: \texttt{maja.volkov@umons.ac.be}$