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INTRODUCTION

This paper deals with the cohomology of some quotient norm one algebraic tori defined
over Q. They arise from a class of finite extensions of Q subject to certain local conditions
at a given finite place and at the infinite one. These tori are anisotropic, and we compute
their cohomology as well as their Tamagawa number.

The algebraic Q-tori considered in this paper are introduced in section 1. Fix a prime
number p and let 71, (Q) be the class of finite extensions F of Q satisfying the following
local conditions at p and co : F' has complex multiplication and Q,®qg F' is a field with
complex multiplication too. Then complex conjugation induces an involution  on F'. Now
let L/F be a nontrivial extension such that L and F are both in F4,(Q). They define the
Q-tori T' = Resp/q(Gm), Th = Resptg(Gm), S = Respq(Gm), and St = Respt/0(Gm).
The norm maps z — zz! on fields induce morphisms 7' — Tt and S — ST on the associated
tori. Letting 77 and S be their respective kernel, the quotient norm one Q-torus we want
to consider is 77/S;. Corollary 1.2 shows that 77/S] is Q-anisotropic.

In section 2 we compute the local cohomology of 77/57 at p and at oo (propositions 2.2
and 2.3). Section 3 is devoted to the computation of its global cohomology. It involves
the kernels and cokernels of three fundamental morphisms arising from class field theory.
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The first is the morphism ¢ : LT /Ny(L*) — FT /N;(F*) induced by inclusion. The two
others are deduced from the commutative diagram

Cor, - +
Br(L) — Br(L')
ResF/L i lReSFT/LT
Cor +
Br(F) — < Br(F)
as the restrictions p : Ker Cory /1 — Ker Corg/pt and o : Coker Cory, /i — Coker Corp) gt
of Resgy, and Respi/+ respectively. We show in proposition 3.8 that there are short exact
sequences

14>F1/L14>H0(Q7T1/Sl) Ker. 17

1 —— Cokert — HY(Q,T1/S51) Kerp 1,

and that H?(Q,Ty/S1) ~ Coker p. When r > 2 we find H*~1(Q,Ty/S;1) ~ Coker o and
H?(Q,T1/S1) = 1.

Section 4 deals with local and global aspects. Let C(T) = T'(A)/T(Q) be the adele class
group over Q and Cu(T) = T(Ag)/T(Q) be the one over Q. Proposition 4.2 shows that
1" (Q, T /S,) is trivial for all r. We have HY(Q,C(T1/S1)) = Co(T1/S1) and the same
holds for 77 and S; (lemma 4.3). Let ¢, : L;X /N;(Ly) — F;X/NT(FPX) be the morphism
induced by inclusion in the local setting. Theorem 4.4 shows that Cg(77/S1) has finite
invariant volume # Ker ¢, . Further theorem 4.5 shows that there are short exact sequences

1—— CQ(Tl)/CQ(Sl) HC@(Tl/Sl) *>K€I‘Lp —— 1,

1 — HY(Q,T1/S1) — H'(Q,T1/S1(A)) — Coker, —1,

and that H"(Q,T1/51) ~ H"(Q,T1/S1(A)) for r > 2. Gathering these results together in
corollary 4.6 we find that the Tamagawa number of 77/S; is 1 when [F' : L] is odd and
is 2 when [F : L] is even, and that H'(Q,T}/S;) has index 1 or 2 in HY(Q,T1/S1(A))
accordingly.

NOTATIONS

Fix an algebraic closure Q of Q and for each prime number ¢ an algebraic closure Q,
of Q. For an extension K of Q contained in Q let Ax be its adele ring, Ix = A% its
idele group, and Cx = I /K> its idele class group. When K = Q we simply write A, I,
and C. When K is a number field we let S be the set of places of K, S {( the subset of
nonarchimedean ones, S the archimedean ones. Write Gx = Gal(Q/K) and G = Gg ;
for £ € S}, let Gy = Gal(Q/Q).

For a topological abelian group A let AY = Homes(A, Q/Z) be the group of continuous
characters of finite order of A and A" the completion of A with respect to the topology
defined by the open subgroups of finite index. For a positive integer n let A™ be the direct
sum of n copies of A. For positive integers n, m such that n divides m let

Diag : A" < A™ = (A™/")"
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be the n-fold diagonal morphism A < A™/™ a s (a,...,a). Finally write KS(4) C A® A
for the kernel of the sum A ® A — A, (a,b) — a + b. Note that KS(A) is noncanonically
isomorphic to A.

1. TORI

Fix a prime p € Sé. We want to consider the class Fl;(Q) of finite extensions F' of Q
satisfying the following local conditions at p and oo :

(i) Fis CM,
(i) Fp = Qp®q F is a field,
(iii) F, is CM.
Let F € 74,(Q) and let { be the involution on F given by complex conjugation. Condition
(iii) above means that the Q-linear extension of { to Fj, is nontrivial. Write I' = (f) =

Gal(F/F') ~ Gal(F,/F}). Let

Ni: F* — P~
be the norm map z — zz' and put F; = Ker N; € F*. As no confusion should occur we
also write Ny for the p-adic norm map F* — FJX and set Fy,1 = F1 N F.

Now let L € F4,(Q) be a subfield of F', L # F. This is equivalent to L being a {-stable
subfield of F such that LT # L and L}; # L, = Q, ®g L. The restriction map identifies
I' with Gal(L/L) ~ Gal(Lp/L}L,), and we still denote by N; the norm L* — L™ (resp.
Ly — L;X) with kernel Ly (resp. Lp1). Thus we have the field extensions

F F,
AN AN
Ft L and E) L,
N N\
L L)
Q Qp.

Note that this situation yields some constraints on the arithmetic of the extensions
involved. Namely if both F,/ Fg and L,/ L;r, are unramified then the residue fields degree
f(Fp/Ly) = f (F /L)) must be odd, because the residue field of L}, has a unique quadratic
extension in F, ; if both Fp/FJ, Lp/L}; are ramified and p # 2 then the ramification index

e(Fy/Ly) = e(Fg / L;r)) must be odd, because the maximal unramified extension of L;) has
a unique quadratic extension in @p when p # 2.

We now define the Q-tori associated to the class F(Q). Let L, F € F,(Q) with
L C F and consider the following Q-tori

T dZGf ReSF/Q(Gm)a TT (if ReSFT/Q(Gm), S (Ef ReSL/Q(Gm), ST (Ef ReSLT/Q(Gm)-



4 MAJA VOLKOV

We have T'(Q) = F”*, T(Qp) = F,*, and similarly for the three others. Again write Nj for
the morphisms 7' — TT and S — ST induced by the norm and set
N, N,
Ty = Ker(T —5TT)  and S; = Ker(S —5 S7).
def def

Thus T is a Q-torus with T1(Q) = Fi, T1(Qp) = Fj 1, and similarly for S;. We want to
study the arithmetic of the quotient norm one Q-torus 77/S;. This will be achieved by
using the commutative diagram with exact rows ans columns

1 1 1
N.
1 S §—— > 5t 1
Ny
(%) 1 T T Tt 1
Mt gt
1—T1/5 T/S T7/ST —— 1.
1 1 1

Let 7 be a K-torus and X*(7) = Hom(7,G,,) its Z|Gk]-module of characters. Recall
that the contravariant functor 7 +— X*(7T) establishes an equivalence between the category
of algebraic tori over K and the category of finite free Z-modules with discrete action of
Gk ([P-Ra] Thm.2.1). The torus 7 is said K-anisotropic if X*(7)¢% = 0.

Lemma 1.1. The torus T} is Q-anisotropic.
N.
Proof. Consider the algebraic Fi-tori Ty = Resp/pt (Gr) and Tél) = Ker(Ty —» G,,). We

have X*(G,,) = Z, X*(Tp) = Z[I'], and X*(Ty)®rt = Z(1 4 v) with v = 1, the generator
of . The short exact sequence of Ff-tori

- N.
1 Tél) incl T() T Gm 1
yields a short exact sequence of Z[G pt]-modules
X¥(V- roj
02"z 2L x+(1) 0

with X*(N;)(1) = 14 . Hence X* (To(l)) = Z[I'|/Z(1 + v) and from the vanishing of
H'(Gpt,Z) = Hom(Gpy, Z) it follows that X*(T3") " = 0. Now T = Respi/q(Tp) and
applying the exact functor Respi/g to the above short exact sequence we find that 77 =
Respijg 73" Thus X*(T1) = Tndgr' (X*(T¢V)) and X*(11)¢ = X*(7g") %" =0. O
Corollary 1.2. The torus T1 /Sy is Q-anisotropic.

Proof. A quotient of an anisotropic torus is anisotropic : the projection T3 — T3 /S; yields
an embedding X*(7T}/S1) < X*(T}) which injects X*(71/51)¢ into X*(T1)¢ = 0. O
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2. LOCAL COHOMOLOGY

We begin with the computation of the Qp,-cohomology of the torus 77/S;. It involves
the kernel and cokernel of the morphism

tp o LY INY(Ly) — BNy ()

induced by the inclusion of L};X in FJ . The source and target having order 2 by assumption
(and local class field theory), ¢, is either an isomorphism or is trivial, and both its kernel
and cokernel are trivial or have order 2 accordingly.

Lemma 2.1. If [F}, : Lp] is odd then Keri, = Cokert, = 1. If [F, : L] is even then
Keru, = L} /N;(LY) and Coker i, = FJ* /N{(F)).
Note that our asumptions imply that [F), : L,] = [F': L].

Proof. By local class field theory we have a commutative diagram

fx Nejnh e
Fy /NT(FpX)HLp /NT(L;)
2 l rech/F; ) l rech/L;

Gal(F,/F}) = Gal(Ly JL}).

p/=p
By assumption the restriction Resg, ,r, is an isomorphism so the norm N . /L 88 well. The
p p
compositum NFZI/LI, oy : L};X /N;(Ly) — L;X /N;(L,) is the map raising to the power
[F;:,r : L;,], hence ¢, is an isomorphism if and only if [F];f : L;L] = [F, : Ly is odd. O

For an algebraic torus 7 over @, and for all » > 0 let
HT(QP? T) ;f Hgts (Gpa T(@p)) .

We have H°(Q,,T) = T(Q,). It is known that H(Q,,7) is finite ([Pl-Ra] Corollary of
Prop.6.9). For r > 3 we have H"(Qp,T) = 1 because G}, has cohomological dimension 2
([Se| 11.4.3,Cor. and 1.3.1,Cor.).

Proposition 2.2. The commutative diagram (%) induces

(i) a short exact sequence
1—— Fp,l/Lp,l —— HO(QP, Tl/Sl) — Ker bp —>= 1,
(ii) an isomorphism H'(Q,, T1/S1) ~ Coker ¢,
(iii) H"(Qp,T1/S1) =1 forr > 2.

Proof. The torus Tp is Qp-anisotropic as T1(Qp) = Fp1 is compact ([Pl-Ra] Thm.3.1),
hence the quotient 77/S5; is Q,-anisotropic as well (corollary 1.2). The local Nakayama-
Tate theorem ([Mi] 1.2.4) then gives H?(Qp,T1/S1) ~ HO(QP,X*(Tl/Sl))/\v =1 O0Of

course the same holds for S7 and T7.
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N.
The short exact sequence 1 — T — T SN N | yields the exact sequence
Ny

FX

) F* HY(Qp, Ty) — HY(Qp, T).

By Shapiro’s Lemma and Hilbert 90 we have H'(Q,,T) ~ H(F,,G,,) = 1, therefore
HYQp,Ty) ~ FJX/NT(FPX). Similarly H'(Q,, S1) ~ L;,X/NT(L;). Now from the short
exact sequence 1 — S; — 11 — 11/S1 — 1 and HQ(QP,Sl) = 1 we obtain the exact

sequence

1 ——> Fp1 /Ly —> HO(Qp, Ty /S1) — L} /N; (LX)

FJ* Ny (E)) — HYQ,, T1/S1) — 1

from which the statements on H"(Qy, T1/S1) for r = 0,1 follow. O

We now compute the R-cohomology of T7/S7. Let C; be the subgroup of norm one
elements in C* and R the subgroup of positive elements in R*.

Proposition 2.3. The commutative diagram (%) induces
(i) an isomorphism HO(R,Ty/S1) ~ COker((Cl[LT:@} Diag, @1[F*:Q])7

. i t,

(ii) an isomorphism H'(R,T1/S1) ~ Coker((RX/Rfr)[L «Q] Diag, (RX/Ri)[F 'Q])’

(iii) H*"(R,Ty/S1) =1 for all v > 1,

SR : 241 1 [LT:Q] Diag 1 [F1:Q]

(iv) isomorphisms H* *1(R,T;/S;) ~ Coker( (5Z/Z) — (32/z) for all

r > 1, via the local inv isomorphism Br(R) ~ 17/7.

Proof. Put n = [LT : Q] and m = [F' : Q]. Since L is totally imaginary and L to-
tally real we have HO(R, S) ~ (C*)" and HO(R, ST) ~ (R*)™. Further for all r > 1 we
have H™(R,S) = 1, H* YR, ST) = 1, and H* (R, ST) ~ Br(R)" ~ (3Z/Z)", the latter
isomorphism being the n-fold local inv. From the short exact sequence

N.
1 S, s gt 1

and N;(C*) = RY we find that HO(R, 1) ~ C;", HY(R, $1) ~ (R*/RX)", and for r > 1,
H?(R,S) = 1, H¥ (R, S;) ~ (%Z/Z)n Similarly, the same holds with S; and n
replaced by T and m. The result then follows from the short exact sequence

1 S1 T Tl/Sl —1

and the injectivity of the map Diag. O
Corollary 2.4. There are noncanonical isomorphisms

HOR,Ty/8)) ~ CFP - peeig 16y o~ (Lz/2) U g > 1,
and H?"(R,T1/S1) =1 for all r > 1.

XN;

Proof. Obvious from proposition 2.3 and the isomorphism R*/R% ~ 57 /7. O
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3. GLOBAL COHOMOLOGY

We now compute the Q-cohomology of the torus 77/S5;. It involves the kernels and
cokernels of three morphisms (see proposition 3.8), the first of which is

Lo LN (LX) — FPNy (F)

the morphism induced by the inclusion of L™ in F*. For a place v € S;+ and an algebraic
extension K of L set

SK(U) ;f {UJGSK‘ w]v}.

We have a commutative diagram
(Lh ®p1 L) — (Lh @1t F)* = @ es, ) (Fb ©pt F)*

Nvl i@wesFT(y)Nw

LIX — (L;r) Qrt FT)X = @wESFT(v) FJ}X

where the maps N,, IV,, are induced by N; and the horizontal ones by inclusions, hence
localising ¢ at v € Sy yields a morphism

b i LV NG(LE @11 L) — € F/Nu(Fj, @pt F)*.
wESp4(v)

When v = p (the unique place lying above p) we recover the morphism ¢, introduced in
section 2.

Lemma 3.1. The localisation maps induce isomorphisms

Ker: ~ @ Kert, and Coker: >~ @ Coker ¢,.

’UESL]L UGSLT
vF#p v#p

Remark 3.2. Recall that ¢, is either an isomorphism or is trivial according to the parity
of [Fp : Ly] = [F' : L] (lemma 2.1). When [F : L] is odd then Ker¢, = Coker¢, = 1,
consequently Ker ¢ ~ @UGSLT Ker ¢, and Coker ¢ ~ ®UESLT Coker ¢,,.

Proof. Since H'(L,G,,) = 1 by Hilbert 90 we have a short exact sequence of I'-modules

1 L Iy, Cr 1.

As I is cyclic we have H=1(I',C) = 1, and again by Hilbert 90 we have HY(I", L*) = 1.
Thus Tate cohomology yields a short exact sequence

1 LD N(LX) —— I3 /Ni(I1) —= Ci /N¢(Cp) — 1.

By class field theory both L;Y,X /N;(Ly) and Cpt/N;(Cp) have order 2, and the former
embeds in the latter ([Ne| Prop.5.6). Thus

LI NY(LY) = Cpi /Ny(C)
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which provides via the inclusion L;X [Ni(L)) = Ip+/N;(IL) a section to the above short
exact sequence. Therefore we have an isomorphism

Ip+/Ni(Ip) = L™ /Ny(L*) ® L) /Ny (L)
The same holds with L, LT replaced by F, F and the isomorphisms involved are compatible
with the inclusions L ¢ F, LT ¢ Ff. Hence
Ker([m INH(IL) 2 1 /NT(IF)> — P Kert, ~Kert®Kery, and
UGSLT

Coker (ILT /N:+(Ir) ind, IFT/NT(IF)> = EB Coker ¢, >~ Coker ¢ @ Coker ¢,
’UESLT

from which the result follows. O

For v € S;+ the Ll-algebra Ll ®+ L is either a field or isomorphic to LI, X LI, according
to #SL(v) = 1 or 2 respectively. Define the following subsets of S;+ and Sp+:

Spi(L) = {ve Sk | L @+ L~ L x L}
and  Spi(F) = {w € Spr | Fl @p F~Fl x FI}.

Our assumptions imply that the places lying above p or co do not belong to S+ (L), nor to
Spi(F). Note that v € Sp+(L) (resp. w € Spi(F)) if and only if LI,X/NU(LI @+ L)X =1
(resp. halke /Nw(FJ, ®pi F)* =1). We also set for each place v € S+

SFT(F,'U) (if SFT(F) M SFT(U)'
Thus we have

bt LV NG(LE @ L) — @ B/ Nu(F) @p: F)”
'LUESFT(’U)
’U}QSFi—(F,’U)
the right-hand side being 1 when Spi(F,v) = Spi(v).

Lemma 3.3. Let v € S;+. When v € S;i(L) we have Kert, = Cokert, = 1. When
v & Sp+(L) the local reciprocity maps together with the identification T' ~ 7 /27 induce
isomorphisms
7)27. —s P ziz
wWESL(v)
wESp+(Fyv)
1+ ([FL:Lljmod2z),

Ker ¢, ~ Ker

and
7)27. — P z/,z

N wESL1(v)
Coker t,, >~ Coker wgg;;(p,v)

1+ ([Fh: Ll mod2z),
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Thus when v & Sp+(L) and Spi (F,v) = Spi(v) we have Ker ¢, = LI,X/NU(LI, ®pr L) ~
Z/2Z and Coker ¢, = 1; when v € S;+(L) and Spt (F,v) # Spi (v) the kernel and cokernel

of 1, depend only on the parity of the local extension degrees [FJ, : Lj,] (for v lying above
p we recover the statement of lemma 2.1).

Proof. When v € S+ (L) every w € Sp+ lying above v belongs to S+ (F'), hence the source
and target of ¢, are both trivial, so Ker¢, = Coker¢, = 1.
When v € S+ (L) assume that {w | v, w & Sp+(F')} is not empty and let w be an element
thereof. By local class field theory we have a commutative diagram
[Fh:L)
— i

Fl/LY

Ly, w
LV Ny (LX) = FLS /Ny (FY) == LI /Ny (LX)
Z\LreCLv/Ll zlrech/FJ) ZireCLv/Li

Gal(L,/L}) — — = Gal(Fy/F)) —— Gal(L,/L})

CSFw/Ly

where ¢, 4, is induced by the inclusion, so that ¢, = (Lvyw)w‘v. The result then follows from
the canonical identifications Z /27 ~ T" ~ Gal(Fw/FJ)) o~ Gal(Lv/Ll). O

We introduce the following subsets of Sp+. Set

Spi(L) o {weSpi |wyi € Spi(D)} = |_| Spi(v).
UESLT(L)

Note that Spt(L) C Spt(F). Also define the “odd” and “even” part of Sp+ relative to LT
Spit = {we Spi | [Fl: L] is odd, v = w1},

even

Spt = {we Spi | [Fl: L] is even, v = wyi }

Of course we have Spt = Spi¢ U Spy. Note that v ¢ Sp+(L) implies Spt(F,v) C S
Further we introduce the subsets of S;;

Spit = {v e Spr | Spr() NSt £ @} and  SE™ = {v e Sy | Spilv) € S}

Corollary 3.4. The local reciprocity maps induce an isomorphism

Ker: ~ @ 7)27
vgS; (L)

v Evgﬁeen
Lt

and there is a noncanonical isomorphism
Cokers = @ (z/2z)#*) #7727
vgS, +(L) WES ot (1)

v7p 7 ben
’UGSLOSd wESFT
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Proof. According to lemmas 3.1 and 3.3 the localisation maps yield isomorphisms

Ker: ~ @ Kert, and Coker: ~ @ Coker ¢, .
v, 4(L) vgS; (L)
vFEp vFp
Let v € Spt, v € Spi(L). Then Spi(v) — Spt(F,v) C SR is equivalent to Spt(v) C Sy
and Spi(v) NS # @ implies Spt (F,v) # Spt(F). Thus lemma 3.3 shows that

Ker v, ~ Z/27Z and Coker v, ~ (Z/27) HOptl)=#p it Ew) iy Spt(v) C Sgyen
Ker¢, ~2 0 and Coker¢, ~ (Z/2Z) # 5t (0)=# Spi(Fv) =1 if Spi(v)N Spofdd #

where all the isomorphisms are induced by the localisation maps except for the last one
which is not canonical. The result follows by summing over the places v € S;+ such that
v & S;i(L) and v # p, and replacing the sum of #Spi (v) — #Sp:i (F,v) copies of Z/27
over those v such that Spt(v) C SP™ by the sum of Z/27Z over the w € Sp+ such that

w ¢ Spi(F), w# p, and w € S D

The two other morphisms involved in the Q-cohomology of T1/S; are of similar nature
and we treat them simultanuously. They both arise from the commutative diagram

Cor, ,; +
Br(L) —= Br(L')
ResF/Ll lReSFT/LT
CorF/FT

Br(F) —> Br(FT)

Respyr,
p : Ker Corp,/pi ——— Ker Corpypt

ReSFT/LT
and o : Coker Cory, /i —— Coker Corpp -

We have Ker p = Br(F/L) N Ker Cory,/+. For an extension K'/K of number fields and
v € Sk we define

Br(K',v)= € Br(K})
wWE Sk (v)

where as usual Sk (v) is the set of places of K’ lying above v. We have Br(K,v) = Br(K,)
and @wesK, Br(Ky,) = Docs, Br(K',v). We also let

Br(K,v) — Br(K',v)

o —  (Resks /k, (a))weSK/(v)

ResK//K(v) : {

Br(K',v) —  Br(K,v)

and Corgr/r(v) :
K/K() {(Bw)wESK/(v) — ®w€SK/(v)COTK;J/KU(5w).
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For each v € Sp+ we have Br(F,v) = GaweSFT(v) Br(F,w) = @,eg,) Br(F,u), and a
commutative diagram

Cor, ot +(v)

Br(L,v) —— Br(L',v)
ResF/L(v)l lReSFT/LT(v)
CorF/F (v)

Br(F,v) —— Br(Ft,v)

with Corp)pi(v) = Gues,iw) Corpypr(w) and Resp/r(v) = Guesy(v) Resp/r(u). Hence
localising p and o at v € S+ yields morphisms

Resgyr, (v)
pv : Ker Corp 11 (v) —— Ker Corp)pi (v)

(v)
and o, : Coker Cory,/p+(v) L Coker Cor g pt (v).

Lemma 3.5. The local restriction maps induce isomorphisms

Kerp ~ @ Kerp,, Cokerp ~ @ Coker p,
UGSLT UGSLT

and Kero ~ @ Kero,, Cokero ~ @ Coker oy,.
UESLT ’UGSL]L

Proof. By class field theory we have a commutative diagram with exact rows

invy,

0 —=Br(L) —= @yeq, Br(L,v) —=Q/Z ——=0
lCorL/L \LEBUCorL/L
0—>Br(LT)—>@v€STBr(L v —>Q/Z—>O

so Ker Corp, /1 ~ @UGSLTKer Corp,p1(v) and Coker Cory i =~ @veSLTCoker Corp,p1(v).

The same holds with L, LT replaced by F, F', and the result follows from the commutativity
of the diagrams

Ker CorL/LT Ker COI"F/FT

lz lz
@ Pv
@UGSLTKerCorL/LT( )H@veSTKerCorF/FT( v)

(e

and Coker Cory, /p i Coker Corp pi

PO

@UeSLTCoker Cory/p+(v) A @vesLTCoker Corp/pt (v).

Lemma 3.6. Let v € Sp;.
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(i) When v € Spi(L) the local inv maps induce isomorphisms

KS(Q/z) — P xs(Q/z)
Ker p, ~ Ker weS, 4(v)
Tt
)\ — ([Fw . Lv])\)wESFT('L))
and
Ks(Q/z) — P KS(Q/z)
Coker p, ~ Coker wES,4(v)
Tt
)\ — ([Fw .LU])\)wGSFJr(U)
When v & S+ (L) we have Ker p, = 0 and the local inv maps induce an isomorphism
Coker p,, ~ @ KS(Q/Z).

wESL+(Fyv)

(ii) When v € Sg we have Ker o, = Coker o, = 0. When v € S73 we have Kero, = 0
and the local inv maps induce an isomorphism
Coker o, >~ Coker(%Z/Z Dicg, @ %Z/Z).
wWESL+(v)

Proof. Let v € Syt and inv s (v) = invy, invy, (v) = @yeg,(y) invy. We have a commutative
diagram

Cor, ,, +(v)
Br(L,v) et Br(Lf,v)
linvL(v) linvjj(v)

Zu\v
(i) When v € S;+(L) C SiT the maps invy, (v) and invy;(v) are isomorphisms thus

Ker Cory, /.t (v) Nv)Ker<Q/%/\i‘9ﬂ(;@/Z : ?_‘/_Z/):KS(Q/Z)

invr,
When v ¢ Sy (L) we have Ker Cory, /11 (v) = 0. Similarly invp(v) = Buwes,(v) Ve induces
an isomorphism
Ker Corp)pi(v) =~ @ KS(Q/z)
invg (v)
weSLi(Fv)

the right-hand side being 0 if the set Spi(F,v) is empty (e.g. if v € S79). Hence the
statement is clear when v & S;i(L), and otherwise it follows from the commutativity of
the diagram

Pv

Ker Cory, /1 (v) Ker Corppi (v)
0 l invz(v) 0 l invp(v)
v
KS (Q/Z) GawESFT(v)KS (Q/Z)

where £,(\) = ([FJ, : Ll} A) for X € KS(Q/Z).

wESyi(v)



THE COHOMOLOGY OF SOME QUOTIENT NORM ONE TORI 13

(ii) When v € S]]; we have Coker Coryri(v) = Coker Corp/pi(v) = 0, thus Kero, =
Coker o, = 0. When v € S77 we have a commutative diagram

Coker Cory, 1+ (v) —2Y> Coker Corp/pt (v)
ziinvLT(v) 2iinVFT(v)
Diag
22/Z Ducs, i) 32/

since FJ) = Ll = R, and the result follows. O

Corollary 3.7. Forv € Sy let dy = ged{ [F}, : L], w € Spi (v) }.

(i) There are noncanonical isomorphisms

Ker p ~ @ iZ/Z and  Coker p ~ @ (Q/Z)#SFT(”)_I ® @ Q/Z.
’UESLT(L) ’UESLT(L) weSFT(F)
wQSFT(L)

(ii) Kero = 0 and there is a noncanonical isomorphism

FT.Q]-[L1:Q
Coker o ~ (%Z/Z>[ - ].

Proof. (i) According to lemma 3.5 the local restriction maps yield isomorphisms

Ker p ~ @ Kerp, and Cokerp~ @ Coker p,, .
UESLT UESLT

Let v € Sy and 8, : Q/Z = @yes, (»)Q/Z be the morphism A — (IFL « LA e )
F

The kernel of ¢, is %Z/ Z. Further Cokerd, = (Kerd,')" is noncanonically isomorphic to
#Spi(v) — 1 copies of Q/Z since the kernel of the dual morphism 4, : € k=7,

(N ) ZwGSFT(U) [F}, : L] ny is noncanonically isomorphic to #Sp+(v) — 1 copies of Z.
Pick an isomorphism KS(Q/Z) ~ Q/Z. Then lemma 3.6(i) shows that

wESp(

Ker p, ~ A7/Z and Coker p, ~ (Q/Z)* 7" it v € S, (L)

Ker p, = 0 and Coker p, ~ (Q/z)#% ") if v S (L)
where all the isomorphisms are noncanonical. The result follows by summing over the
places v € Sp+ and replacing the sum of #Sp+(F,v) copies of Q/Z over those v such that
v & Sri(L) by the sum of Q/Z over the w € Spi such that w & Spi(L).

(ii) According to lemmas 3.5 and 3.6(ii) we have Kero = 0 and the local restriction
maps yield an isomorphism

Coker o ~ EB Coker oy, .
UESZ‘?[
Let v € S73. We have #Spi(v) = [FT . L1] since F' is totally real, thus lemma 3.6(ii)
shows that there is a noncanonical isomorphism

FT:LT]-1
Coker g, ~ (%Z/Z>[ ! .
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The result follows by summing over the places v € S77 and writing #573 ([F t. L — 1)
[LT:QI([FT: LT]-1) = [FT: Q] - [LT: Q).

ol

Proposition 3.8. The commutative diagram (%) induces

(i) a short exact sequence

1—F /L — H°(Q,T1/51) Ker 1,
(ii) a short exact sequence

1 —— Cokert — HY(Q,T1/51) Ker p 1,

(iii) an isomorphism H*(Q,Ty/S1) ~ Coker p,
(iv) isomorphisms H**~*(Q,Ty/S1) ~ Coker o for all v > 2,
(v) H*(Q,T1/S1) =1 for all r > 2.

Proof. When r > 3 localising at oo yields an isomorphism H"(Q,71/S1) ~ H"(R,T1/51)
([Mi] 1.4.21) and proposition 2.3 together with lemmas 3.5 and 3.6(ii) give the result.

We have HY(Q,T) ~ H'(Q,G,,) = 1 by Shapiro’s Lemma and Hilbert 90, and from
the short exact sequence

N.
1 T Tt 1

we find that HY(Q,Ty) ~ FT*/N;(F*). We further have H1(Q,T") = 1 and H3(Q,T) ~
H3(R,T) ~ H'(R,T) = 1. Thus we also get the exact sequence

1 HHQ(QaTl) - H2(@7T) *>H2(Q7TT) - HS(@le) — 1.

The canonical isomorphisms H?(Q,T) ~ H?(F,G,,) ~ Br(F) and H?(Q,T") ~ Br(FT)
therefore induce isomorphisms H?(Q, T}) ~ Ker Corp/pi and H3(Q,Ty) ~ Coker Corppr-
Similarly we find H'(Q, $1) ~ L™ /Ny(L*), H*(Q, S;) ~ Ker Corp,p+ and H3(Q,5) ~
Coker CorL/LT. Now from the short exact sequence 1 — Sy — T3 — T1/S1 — 1 we obtain
the exact sequence

1 Fy/Ly H°(Q,Ty/81) — L™ /Ny (L)

lb

Ker Cory, py <—— HY(Q, Ty /S1) <—— F™ /N{(F*)

lp

Ker Corp/pi —— H?*(Q,Ty/S;) — Coker Corypt — 7 Coker Corppi -

As o is injective (corollary 3.7(ii)) the statements on H"(Q,77/51) for r = 0,1, 2 follow. [
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4. LOCAL AND GLOBAL
For an algebraic torus 7 over Q we have H"(Q, T (A)) = 69665@ H"(Qg,T) whenr > 1,
and for all » > 0 we let
IT'(Q, 7) = Ker(H'(Q,T) — H'(Q, T(A))).

Clearly II°(Q, T) = 1. It is known that ITI'(Q, 7)) is finite ([P1-Ra] Corollary to Prop.6.9),
and applying [Mi] 1.4.20(a) to X*(7) we see that IIT1*(Q,7T) is finite too. For r > 3 we
have H" (Q, T(A)) =H" (R, T) since Gy has cohomological dimension 2 when ¢ # oo, and
the local restriction map H"(Q,7) — H"(R,T) is an isomorphism ([Mi] 1.4.21). Thus
1" (Q,7) =1 when r > 3.

Remark 4.1. Let K be a finite Galois extension of Q and let
I (K/Q, T) = Ker(H'(K/Q,T) » H'(K/Q,T(4))).

Assume that K is a splitting field for 7. Then HY(K,T) = H'(K,T(A)) = 1 by

Hilbert 90, so the initial segment of the Hochschild-Serre exact sequence gives isomor-

phisms H'(K/Q,T) ~ H (Q,T) and H'(K/Q,T(A)) ~ H (Q,T(A)). Hence
I'(K/Q, 7T) = IIY(Q, T).

Again by H'(K,T) = H'(K,T(A)) = 1, Hochschild-Serre gives the commutative diagram

with exact rows

1—— H*(K/Q,T) H*Q,T) H?(K,T)

| | |

1 — > H2(K/Q,T(A)) —= H2(Q,T(A)) —= H2(K, T(A))

which yields the exact sequence
11— II*(K/Q,T) — II*(Q, T) — II*(K, 7).
We have isomorphisms H?(K,T) ~ Br(K)? and H*(K,T(A)) ~ Does, Br(K,)? with
d = dim T, so by global class field theory IIT?(K,7) = 1. Hence
II*(K/Q, T) = IT*(Q, T).
Proposition 4.2. We have III"(Q,T1/S1) =1 for all r.

Proof. By remark 4.1 and [Pl-Ra| Prop.6.12 we have III*(Q,T}/S;) = 1 since T1/S) is
Qp-anisotropic. The short exact sequence 1 — S; — T7 — T7/S7 — 1 induces the
commutative diagram with exact rows

HY(Q, 5) HY(Q,Ty) HY(Q,T1/S) H2(Q, Sy)

| | | |

H'(Q,51(A)) — HY(Q, Ty (A)) — H*(Q,T1/S1(A)) — H?*(Q, 51(4)).
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As in the proof of proposition 3.8 we have H'(Q,Ty) ~ F//Ny(F*), H'(Q,T1(A)) ~
TT(A)/N;T(A), and similarly for S;. Thus the above diagram yields

1 Coker ¢

HY(Q,T1/51) H?*(Q, 51)

| |

1——> @veSLTCoker Ly — H?! (Q,Tl/Sl(A)) S H? (Q7 Sl(A)).

As Sy is Qp-anisotropic we have Hl2((@, S1) = 1, and the map Cokert — @, ¢ TCokelr Ly
L
is injective by lemma 3.1. Therefore III'(Q,Ty/S1) = 1. O

For a Q-torus 7 let C(T) = T(A)/T(Q) be its adele class group over Q and Co(T) =
T(Ag)/T(Q) the one over Q.

Lemma 4.3. The commutative diagram (x) induces

() H(Q,C(T1) = Co(Th) and H'(Q.C(Tv)) = B} /Ny(Fy),
(11) HO(@,C(Tl/Sl)) = CQ(Tl/Sl) and Hl (Q,C(Tl/Sl)) ~ Coker lp-

Proof. The isomorphisms H'(Q,T}) ~ FPX/Ny(F*) = HOT,F*) and H'(Q,T1(A)) ~
Ipi/Ni(Ip) = HO(T, Ir) together with H—'(T',Cr) = 1 show that III'(Q,T}) = 1. Hence
there is a short exact sequence

1 —T1(Q) — Ti(Ag) —= H°(Q,C(T1)) —1

SO HO(Q,C(Tl)) = Tl(AQ)/Tl(Q) = C@(Tl) Similarly HO(Q,C(Tl/Sl)) = CQ(Tl/Sl)
since IIT*(Q, T1/51) = 1 by proposition 4.2.
Ni t 1 1 :
From 1 — C(Ty) — C(T) — C(T") — 1 and H*(Q,C(T)) = H*(F,C) = 1 we obtain
an isomorphism H*(Q, C(T1)) ~ Cqo(T1)/N1Cq(T) = Cpi /Nt(CF), and as in the proof of
lemma 3.1 we have Cri /N;(Cr) ~ F;X/NT(FPX). Similarly H'(Q,C(S1)) ~ LIT,>< IN;(Ly),
so from 1 — C(S1) = C(T1) — C(T1/S1) — 1 we deduce the exact sequence

LY INy(LY) —2= FJ* JNi(F)) — H'(Q, C(T1/51)) — H?(Q,C(51)).

By the global Nakayama-Tate theorem H?(Q,C(S))) ~ HO(Q,X*(S’l))AV ([Mi] 1.4.7)
and HO (Q,X*(Sl)) = 0 since S; is Q-anisotropic (lemma 1.1), hence H? (Q,C’(Sl)) =1.
Therefore H'(Q, C(T1/51)) ~ Coker v O

For a Q-torus 7 recall that there is a Haar measure 7 on 7 (Ag) called the Tamagawa
measure (see [Pl-Ra| 3.5 and 5.3). When it exists, the invariant volume of Cq(7T) =
T (Ag)/T(Q) with respect to 7 is called the Tamagawa number of 7 and is denoted 7(7T).

Theorem 4.4. The rational class group Cq(T1/S1) is compact and has finite invariant
volume

T7(T1/51) = #Kery, .
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Proof. Since T1/S; is Q-anisotropic (corollary 1.2) Cg(T1/51) is compact and has finite
invariant volume (|Pl-Ra] Thm.5.5). Ono’s theorem [On| gives the formula

HY(Q,X*(Tv/S
T(11/51) = 7 (Qi’ (73/ 1))
#H1°(Q, T1/51)
There are isomorphisms H'(Q,X*(T1/S1)) ~ H' (Q,C(Tl/S’l))v ~ Cokert,” by the

global Nakayama-Tate theorem and lemma 4.3(ii), and IIT'(Q,71/S;) = 1 by proposi-
tion 4.2. Hence 7(T71/S1) = # Coker ¢, = # Ker ). O

Theorem 4.5. The commutative diagram (x) induces

(i) a short exact sequence
1 ——Cqo(Th)/Cq(S1) — Co(T1/S1) — Kertp, — 1,
(ii) a short exact sequence
11— HY(Q,T1/S1) — H'(Q,T1/51(A)) —— Coker ), — 1,

(ili) isomorphisms H"(Q,T1/S1) ~ H"(Q,T1/S1(A)) for all v > 2.

Proof. From the short exact sequence 1 — C(S1) — C(T1) — C(T1/S1) — 1 and
lemma 4.3(i) we deduce the exact sequence

1 — C(S1) — Co(Ty) — Co(Th/S1) — L IN; (LX) —2= FJ* /Ny (F))

from which (i) follows.

By the Poitou-Tate theorem as in [Mi] 1.4.20, for » > 3 the localisation maps yield
isomorphisms H"(Q,T1/51) ~ H"(Q,T1/S1(A)) = H"(R,T1/51), and we have an exact
sequence

HY(Q,X*(T1/S)))" <— H'(Q,T1/S1(A))

|

H*(Q,T1/51)

HY(Q,T1/S1)

H*(Q,T1/81(A)) — H°(Q, X*(T1/S1)) — 1.

Proposition 4.2 shows that Hll(Q,Tl/Sl) = HIQ(Q,Tl/Sl) = 1, the global Nakayama-
Tate theorem and lemma 4.3(ii) that H* (Q,X*(Tl/Sl))v ~ Coker,, and corollary 1.2
that H%(Q, X*(T1/51)) = 0. The statements in (ii) and (iii) follow. O

Corollary 4.6. We have

T(T1/S1) =1 and HY(Q,T1/S1) ~ H'(Q,T1/51(A)) when [F : L] is odd,
7(T1/S1) = 2 and #(Hl (Q,Tl/Sl(A))/Hl(Q,Tl/Sl)> =2 when [F: L] is even.

Proof. Combine theorems 4.4 and 4.5 with lemma 2.1. O
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