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Abstract. In (Arch. Math. 57 (1991), pp. 446–455), R. Farré proved a posi-
tivstellensatz for real-series closed fields. Here we consider p-valued fields 〈K, vp〉
with a non-trivial valuation v which satisfies a compatibility condition between vp

and v. We use this notion to establish the p-adic analogue of real-series closed fields;
these fields are called henselian residually p-adically closed fields. First we solve a
Hilbert’s Seventeenth problem for these fields and then, we introduce the notions
of residually p-adic ideal and residually p-adic radical of an ideal in the ring of
polynomials in n indeterminates over a henselian residually p-adically closed field.
Thanks to these two notions, we prove a Nullstellensatz theorem for this class of
valued fields. We finish the paper with the study of the differential analogue of
henselian residually p-adically closed fields. In particular, we give a solution to a
Hilbert’s Seventeenth problem in this setting.
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1. Introduction

Let us recall that a valued field is a field K equipped with a surjective map v :
K → Γ ∪ {∞}, where Γ := v(K×) is a totally ordered abelian group and v satisfies
the following properties:

• v(x) = ∞ ⇐⇒ x = 0,
• v(xy) = v(x) + v(y),
• v(x+ y) > min{v(x), v(y)}.

The subring OK := {x ∈ K|v(x) > 0} of K is called the valuation ring of 〈K, v〉, the
value group is v(K×), the residue field of K is kK := OK/MK where MK := {x ∈
K|v(x) > 0} is the maximal ideal of OK and the canonical residue map is denoted by
π : OK 7−→ kK . If K is a field equipped with two valuations v and w then we add a
subscript v in order to distinguish the valuations rings, maximal ideals, residue fields
and residue maps, respectively, of the valuation v with those of w (i.e. OK,v, MK,v,
kK,v and πv). Moreover if 〈K, v〉 is a valued field with an element of minimal positive
value then that element is denoted by 1.

To each valuation defined on K we can associate a binary relation D which is
interpreted by the set of 2-tuples (a, b) of K2 such that v(a) 6 v(b). So this relation
D satisfies the following properties (⋆):
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• D is transitive, ¬D(0, 1),
• D is compatible with + and .,
• and either D(a, b) or D(b, a) for all a, b ∈ K.

Such a relation is called a linear divisibility relation (a l.d. relation).
If A is a domain with fraction field K and D is a relation which satisfies the

properties (⋆) then, by extending D to K as follows:

D(
a

b
,
c

d
) ⇐⇒ D(ad, bc) with a, b, c, d ∈ A and b, d 6= 0,

we get that the l.d. relation D on K induces a valuation v on K by defining v(a) 6

v(b) if D(a, b). As for the valuation rings, we add a subscript v to its corresponding
l.d. relation Dv if necessary.

If 〈K, v〉 is a valued field then we denote its Henselization by 〈Kh, vh〉. For general
valuation theory, the reader can be refer to [15].

In this paper, we are dealing with notions of p-valued fields, p-valuations and p-
adically closed fields which are all assumed of p-rank 1 for some prime number p
following the terminology of [14]. We are interested in henselian residually p-adically
closed fields which is the p-adic counterpart of real-series closed fields (see [4] and [5,
chapter 1] for a brief history of results about real-series closed fields).

First we define a theory analogous to the theory of real-series closed fields in a
language including divisibility predicates Dvp

and Dv. Each divisibility predicate cor-
responds to a valuation and these two valuations are connected with a compatibility
condition as introduced in [7, Definition 2.2]. This theory is denoted by HRpCF and
its models are called henselian residually p-adically closed fields.

Then we prove an analogue of the Hilbert’s Seventeenth problem for henselian
residually p-adically closed fields by using the same ideas as in [4]. We introduce the
field analogue of the notion of M-Kochen ring which was considered in Section 3 of
[7] for valued domains. It allows us to characterize the intersection of the valuation
rings of p-valuations which extend a fixed p-valuation vp such that vp(M) > 0 for
some particular subset M . Since we want to use a model completeness result, we
have to identify the subset M which is required in the solution of this problem for
henselian residually p-adically closed fields.

In the third section, we follow the lines of the work [17] in order to prove a Null-
stellensatz theorem for henselian residually p-adically closed fields. To this effect, we
define the notions of residually p-adic ideal and residually p-adic radical of an ideal
in the polynomial ring in n indeterminates over a model of HRpCF . Generally it
suffices to adapt the proofs of [17] by replacing the role of the classical Kochen ring
by our M-Kochen ring.

Finally, in the last section, we study a special class of D-henselian valued fields
(first considered in [16]) which uses the results of [6] and [8]. In [6], we established and
axiomatized the model-companion of the theory of differential p-valued fields which
is denoted by pCDF and whose models are called p-adically closed differential fields.
It is a p-adic adaptation of the theory of closed ordered differential field (see [18])
which is denoted by CODF . In [8], we study D-henselian valued fields with residue
differential field which is a model of CODF and with a Z-group as value group, i.e. a
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differential analogue of the theory of real-series closed fields. In particular, we prove
a positivstellensatz result for these D-henselian valued fields.

Here we adapt these results to the p-adic case by using pCDF , i.e. we are interested
in the valued D-field analogue of HRpCF . So we prove a Hilbert’s Seventeenth
problem for D-henselian valued fields whose residue field is a model of pCDF and
whose value group is a Z-group. The model-theoretic tool that we need is a theorem
of quantifier elimination in [8]; it enables us to prove the model completeness of
the theory of these D-henselian valued fields in a suitable language by using linear
divisibility predicates.

2. Hilbert’s seventeenth problem for henselian residually p-adically

closed fields

We begin this section with a notion which is the p-adic analogue of the convexity
of a valuation in the case of real-series closed fields.

Definition 2.1. Let 〈K, vp, v〉 be a p-valued field with vp its p-valuation and v a
non-trivial valuation on K. We say that v is compatible with vp if the following holds

∀x, y [vp(x) 6 vp(y) ⇒ v(x) 6 v(y)].

Let us recall a well-known fact on p-valued fields.

Lemma 2.2. Let 〈K, vp〉 be a p-valued field and let x be an element of K. If there
exists an element y in K such that yǫ = 1 + pxǫ, with ǫ = 2 if p 6= 2 and ǫ = 3
otherwise, then vp(x) > 0. Conversely if 〈K, vp〉 is henselian and vp(x) > 0 then
there exists an element y in K such that yǫ = 1 + pxǫ with ǫ as before.

Proof. See Lemma 1.5 in [1]. �

Lemma 2.3. Let 〈K, vp〉 be a p-valued field and let v be a non-trivial henselian
valuation on K with residue field kK,v of characteristic zero. Then v is compatible
with vp.

Proof. Let x, y in K be such that v(x) < v(y). Hence y
p.x

∈ MK,v since the character-

istic of kK,v is zero. Let us consider the polynomial f(X) = Xǫ − (1 + p · ( y
p.x

)ǫ) with

ǫ as in Lemma 2.2. So f(X) has coefficients in OK,v. Moreover π(f)(X) is equal to
Xǫ − 1; hence 1 is a simple residue root of f(X). By Hensel’s Lemma applied to v,
f(X) has a root z such that π(z) = 1. So, by Lemma 2.2, we get that vp(p.x) 6 vp(y),
which implies vp(x) < vp(y). �

Now we recall some definitions and results from [7], namely the notions of p-valued
and p-convexly valued domains. It is useful in the next theorems for the following
reasons:

• if 〈K, vp, v〉 is a p-valued field with v a non-trivial valuation on K then OK,v

is a p-valued domain,
• moreover, if v is compatible with vp and char(kK,v) = 0 then OK,v is a p-

convexly valued domain.
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Definition 2.4. Let A be a domain containing Q. We say that A is a p-valued
domain if A is not a field and its fraction field Q(A) is p-valued.

Definition 2.5. Let F be a p-valued field with vp its p-valuation and let A ⊆ B
be two subsets of F . We say that A is p-convex in B if for all a ∈ A and b ∈ B,
vp(a) 6 vp(b) implies b ∈ A.

With our terminology, we can state easy results.

Lemma 2.6. Let 〈F, vp〉 be a p-valued field and let A be a p-valued domain which is
p-convex in F . Then A is a valuation ring and F = Q(A).

Proof. See Lemma 2.3 in [7]. �

Notation 2.7. In the sequel, if A is a valuation ring then we denote the maximal ideal
and the residue field of A by MA and kA respectively. The previous lemma shows
that any p-convex subdomain A of a p-valued field F supports a valuation v which
corresponds to a l.d. relation Dv on the domain A. So the notations MA and kA are
always relative to this valuation v. If A is a ring then we denote by A× the set of
units of A and if B is a subset of A then we denote by B• the set B \ {0}.
Definition 2.8. A p-convexly valued domain A is a p-valued domain such that A is
a valuation ring and MA is p-convex in A.

Remark 2.9. Equivalent properties characterize p-convexly valued domains A (see
Lemma 2.5 of [7]); for example,

A |= ∀x, y
(
vp(x) 6 vp(y) → ∃z(xz = y)

)
,

which motivates Definition 2.1.
Another equivalent property is that A is a valuation ring and for every a ∈ MA,

vp(a) > 0.

Let Lp be an expansion of the language of rings Lrings ∪ {Dvp
,Dv} such that Dvp

will be interpreted as a l.d. relation with respect to a p-valuation vp and Dv as a l.d.
relation with respect to a valuation v. The Lp-theory of p-convexly valued domains
is denoted by pCV R. An axiomatization of pCV R in Lp can be found in Section 2
of [7].

Now we recall a part of Lemma 2.9 in [7].

Lemma 2.10. Let A, B be two Lp-structures which are models of pCV R and B is a
p-convexly valued domain extension of A (i.e. 〈A,Dvp

〉 ⊆ 〈B,Dvp
〉 or Q(A) ⊆ Q(B)

as p-valued fields). Then the following are equivalent:

(1) A ⊆Lp
B;

(2) A ∩MB = MA;

Remark 2.11. By Lemma 2.10 in [7], we know that if A is a p-convexly valued domain
then vp(A

×) is a convex subgroup of vp(Q(A)×). Hence if A is a p-convexly valued
domain then, by p-convexity of MA in A, we have vp(A

×) < vp(MA).
So we can define a p-valuation on the residue field kA of A, denoted by ṽp, as

follows:
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• if x = 0 in kA then ṽp(x) = ∞;
• otherwise if x 6= 0 in kA, we take y ∈ A× such that πv(y) = x and define ṽp(x)

as vp(y) (where v is the valuation with respect to A).

Since vp(A
×) < vp(MA), ṽp is well-defined and 〈kA, ṽp〉 is a p-valued field.

The two next lemmas will allow us to extend p-convexly valued domains in the
most natural way as possible.

Lemma 2.12. Let A be a p-valued domain and let 〈K, vp〉 be a p-valued field extension
of Q(A) such that there exists an element of K of value lower than vp(A

•).
Then there exists a minimal p-convexly valued domain pcH(A,K) containing A

whose fraction field is K. Furthermore, if A is a p-convexly valued domain then
A ⊆Lp

pcH(A,K).

Proof. See Lemma 2.14 in [7] where pcH(A,K) is defined as follows
{
k ∈ K : ∃a ∈ A such that K |= vp(a) 6 vp(k)

}
.

�

Lemma 2.13. Let A be a p-convexly valued domain and let Q̃(A) be a p-adic closure
of Q(A) for the p-valuation vp on Q(A).

Then there exists a p-convexly valued domain Ã such that

• A ⊆Lp
Ã, the valuation v with respect to Ã is henselian,

• its residue field k eA is p-adically closed, its value group is divisible

• and its fraction field is Q̃(A).

Proof. See Lemma 2.15 in [7]. �

Now we recall the definition of the Kochen’s operator which plays an important
role in the characterization of p-valued field extensions (see Chapter 6 in [14]).

Definition 2.14. The following operator γp(X) is called the Kochen’s operator :

γp(X) =
1

p
· Xp −X

(Xp −X)2 − 1
.

Let us introduce the notion of M-Kochen ring defined in Definition 3.6 in [7]. It
yields, in Theorem 2.21, a characterization of the intersection of the valuation rings
of p-valuations which extend a given p-valuation vp such that vp(M) > 0 for some
particular subset M .

Definition 2.15. For any field extension L of a p-valued 〈K, vp〉 and any subset M
of L, the M-Kochen ring RM

γp
(L) is defined as the subring of L consisting of quotients

of the form

a =
b

1 + pd
with b, d ∈ OK,vp

[γp(L),M ] and 1 + pd 6= 0

where OK,vp
[γp(L),M ] denotes the subring of L generated by γp(L) \ {∞} and M

over the ring OK,vp
.
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Remark 2.16. If 〈K, vp〉 is a henselian p-valued field then OK,vp
is equal to γp(K) (see

Remark 1 in [11]). In this case, the elements of the M-Kochen ring RM
γp

(L) (for a

field extension L of K) have the following form a = b
1+pd

with b, d ∈ Z[γp(L),M ] and

1 + pd 6= 0. Let us note that the fraction field of RM
γp

(L) is L (see Merckel’s Lemma

in [14, Appendix]).

Definition 2.17. Let Lp,a be the following language Lp∪{a}. Let 〈K, vp, v, a〉 be a p-
valued field with vp its p-valuation, a non-trivial valuation v on K and a distinguished
element a of K.

We say that K is a henselian residually p-adically closed field if v(K×) is a Z-group
with v(a) = 1, v is henselian and its residue field 〈kK,v, ṽp〉 is p-adically closed (see
Remark 2.11).

We will denote this Lp,a-theory Th(K) by HRpCF .

Clearly, a canonical model ofHRpCF is the field of Laurent series over Qp, denoted
by Qp((t)) (t plays the role of the distinguished element a).

Remark 2.18. More generally if we consider a p-adically closed field K with its p-
valuation vp then we can obtain a henselian p-adically closed field by considering
the field of Laurent series K((t)) over K with its t-adic valuation compatible with
the following natural p-valuation wp: for any f :=

∑
i>z fit

i with fz 6= 0, we define

wp(f) := (z, vp(fz)) ∈ Z × vp(K
×), lexicographically ordered.

Let us consider a p-valued field 〈K, vp〉 with its p-valuation vp henselian and let
assume moreover that its value group contains a non-trivial smallest convex subgroup
G such that v(K×)/G (equipped with its induced ordering) has a smallest positive
element. Then 〈K, vp, w〉 can be extended to a model of HRpCF where w is the
coarse valuation with respect to G. It suffices for this to apply Lemma 2.23 like in
Theorem 2.28.

In the theory of henselian residually p-adically closed fields, another operator γ(X)
(defined in the following lemma) will play an important role as the one of Kochen’s
operator in the p-adic field case (see [11]). It enables us to determine whenever an
element of the maximal ideal of a valued field 〈K, v〉 has the least positive value.

Lemma 2.19. Let 〈K, v〉 be a valued field and let a be a non-zero element of K. Let
γ be the operator defined by γ(X) = X

X2−a
. Then the following are equivalent:

(1) v(a) = 1,
(2) γ(K) ⊆ OK and a ∈ MK.

Proof. See Lemma 2.3 in [4]. �

Lemma 2.20. Let 〈K, v〉 be a henselian valued field such that v(a) = 1. Then
OK,v = γ(K).

Proof. By Lemma 2.19, we have that γ(K) ⊆ OK and a ∈ MK . Let y be in OK and
let us consider the polynomial f(X) = X−y(X2−a). Then 0 is a simple residue root
of f and by Hensel’s Lemma, there exists an element x of OK,v such that f(x) = 0;
hence y = γ(x). �



HENSELIAN RESIDUALLY p-ADICALLY CLOSED FIELDS 7

This is the content of Theorem 3.11 in [7].

Theorem 2.21. Let L be a field extension of a p-valued field 〈K, vp〉 and let M be a
subset of L such that vp((M ∩K)•) > 0. Assume that there exists a p-valuation wp

on L such that M ⊆ OL,wp
.

Then the subring RM
γp

(L) of L is the intersection of the valuation rings OL,v where
v ranges over the p-valuations of L which extend the one of K such that M belongs
to OL,v.

The two next lemmas allow us to extend the Lp-structure of a p-valued field
〈K, vp, v〉 with a valuation v compatible with vp to particular valued field extensions
〈L,w〉.

In the following proofs, we use the notations of Remark 2.11: if 〈K, vp, v〉 is
a p-valued field such that the non-trivial valuation v is compatible with vp and
char(kK,v) = 0 then OK,v is a p-convexly valued domain and 〈kOK,v

, ṽp〉 is p-valued.
Let us note that kOK,v

= kK,v.

Lemma 2.22. Let 〈K, vp, v〉 be a p-valued field such that v is a non-trivial valuation
compatible with vp and char(kK,v) = 0, let 〈L,w〉 be a valued field extension of 〈K, v〉
with v(K×) = w(L×) and let wp be a p-valuation on kL,w such that 〈kL,w, wp〉 is a
p-valued field extension of 〈kK,v, ṽp〉. Then there exists a p-valuation wp on L such
that w is compatible with wp and w̃p = wp.

Proof. First we define a subring OL,wp
of OL,w and then we show that it is a valuation

ring and that the corresponding valuation wp is a p-valuation satisfying the required
properties.

We define the subring OL,wp
of OL,w as follows: let x ∈ L, we say that x ∈ OL,wp

iff
the value w(x) is strictly positive or w(x) = 0 and wp(πw(x)) > 0. Clearly, OL,wp

is a
valuation ring of L, the corresponding valuation wp is a p-valuation on L since wp is
a p-valuation on kL,w; and the compatibility of w with wp comes from the definition.

If y is an element of kL,w such that y = πw(x) 6= 0 for some x in O×
L,w then w̃p(y)

is defined as wp(x). By definition, wp(x) > 0 iff wp(πw(x)) = wp(y) > 0. So we get
that wp coincides with w̃p. �

The next lemma is based on the previous one and a construction used by R. Farré
in Proposition 1.3 of [4].

Lemma 2.23. Let 〈K, vp, v〉 be a p-valued field such that v is a non-trivial valuation
compatible with vp and char(kK,v) = 0 and let H be an ordered abelian group such

that v(K×) ⊆ H ⊆ v̂(K×), the divisible hull of v(K×).
Then there exists an algebraic valued field extension 〈L,wp, w〉 of 〈K, vp, v〉 such

that 〈L,w〉 is henselian, 〈kL,w, w̃p〉 is p-adically closed and w(L×) = H.

Proof. First, we take a henselian valued field extension 〈L,w〉 of 〈K, v〉 such that its

residue field is a p-adic closure 〈k̂K , ̂̃vp〉 of 〈kK,v, ṽp〉 and v(K×) = w(L×) (see [15,
p. 164]). By applying Lemma 2.22, we take a p-valuation wp on L extending vp such

that w is compatible with wp and w̃p = ̂̃vp. Let 〈L̂, ŵp〉 be a p-adic closure of 〈L,wp〉.
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Since OL,w is a p-convexly domain (with respect to wp), we can apply Lemma 2.13

to find a p-convexly valued domain Ô with fraction field L̂ such that OL,w ⊆Lp
Ô.

So 〈L̂, ŵp, ŵ〉 is an Lp-extension of 〈K, vp, v〉 where ŵ is the valuation corresponding

to the valuation ring Ô. Moreover the valuation ŵ on L̂ is henselian and so, by
Lemma 2.3, ŵ is compatible with ŵp. By construction, the value group of 〈L̂, ŵ〉
is the divisible hull v̂(K×) of v(K×) and 〈kbL, bw,

˜̂wp〉 = 〈k̂K , ̂̃vp〉. We finally take a

field extension L0 of L into L̂ maximal with the property v(L×
0 ) ⊆ H . We will have

finished if we prove v(L×
0 ) = H . Otherwise let h be an element of H \ v(L×

0 ) and n

its order into H/v(L×
0 ). Taking b ∈ L0 with v(b) = n · h and c =

n
√
b ∈ L̂ we have

v(c) = h. We then note that the following natural inequalities

n 6 (v(L×
0 ) + (h) : v(L×

0 )) 6 (v(L0(c)
×) : v(L×

0 )) 6 [L0(c) : L0]

are in fact equalities and therefore v(L0(c)
×) = v(L×

0 ) + (h) ⊆ H , contradicting the
maximality of L0. �

Now we show the definability of the p-valuation vp in henselian residually p-adically
closed fields.

Lemma 2.24. Let 〈K, vp, v〉 be a henselian residually p-adically closed field. Then
the membership to the valuation ring OK,vp

is existentially definable in the language
LD := Lrings ∪ {D}.
Proof. By definition of HRpCF , 〈kK,v, ṽp〉 is p-adically closed with respect to ṽp and
〈kK,v, ṽp〉 |= ∀z [ṽp(z) > 0 ⇐⇒ ∃y (yǫ = 1 + pzǫ)] with ǫ choosen as in the statement
of Lemma 2.3. Since v is compatible with vp, the equivalent properties of p-convexly
valued domains give us vp(MK,v) > 0 (see Remark 2.9).

If v(x) = 0 then 〈kK,v, ṽp〉 |= ∃y [yǫ = 1 + pπv(x)
ǫ] ∨ ∃w [wǫ = 1 + pπv(x

−1)ǫ].
If ṽp(πv(x)) > 0 then ṽp(y) = 0 (otherwise we deal with x−1 and w); hence if z is
an element of K such that πv(z) = y then z is a simple residue root of f(Y ) =
Y ǫ − (1+ pxǫ). By Hensel’s Lemma applied to v, we get that K |= ∃w [wǫ = 1+ pxǫ];
i.e. vp(x) > 0.

So we conclude that vp(x) > 0 iff

v(x) > 0 ∨ [v(x) = 0 ∧ ∃y (yǫ = 1 + pxǫ)] ∨ [v(x) = 0 ∧ ∃z (zǫ = xǫ + p)].

�

Remark 2.25. Since the theory of p-adically closed fields pCF is model complete in
the language of fields and the theory of Z-groups is model complete in the language
of abelian totally ordered groups {+,−,6, 0, 1}, we get that the theory HRpCF
is model complete in LD ∪ {a} := LD,a by classical Ax-Kochen-Ersov principle for
valued fields of equicharacteristic zero (see, for example, the results from [3]).

Moreover, for henselian residually p-adically closed fields, we conclude that the
p-valuation vp is henselian since it holds for Qh(t)h (with Qh is the Henselization of
Q with respect to its natural p-valuation vp) and Dp is existentially definable in LD,a

(see Lemma 2.24).
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Lemma 2.26. In the LD,a-theory of henselian residually p-adically closed fields, the
negations of nth power predicates Pn are existentially definable in the language of
rings with the distinguished element a.

Proof. Let K be a model of HRpCF . We consider a non-zero element x in K such
that v(x) > 0 (otherwise if v(x) < 0 then we use that K |= Pn(x) ⇐⇒ Pn(x−n+1)).
Then for each natural number, we get that

K |= ∃y [

n−1∨

i=0

v(x) = v(aiyn)] since v(K×) is a Z-group with v(a) = 1.

Since OK,v satisfies Hensel’s Lemma and kK,v is p-adically closed, this is equivalent
to

kK,v |= ∃z [
n−1∨

i=0

∨

q∈∆n

zn = q · πv(x · a−i · y−n)]

where ∆n = {q ∈ N|q = λpr, 0 6 r < n, λ ∈ Λn} and Λn = {λ ∈ N|1 6 λ 6

pvp(n)+1, p 6 |λ} (see [1]). So we get that K =
⋃n−1

i=0

⋃
q∈∆n

qaiKn (and the union is

disjoint). �

Now we state and prove the analogue of the Hilbert’s Seventeenth problem for a
henselian residually p-adically closed field K. In the sequel, we denote the ring of
polynomials in n indeterminates over K by K[X] and its fraction field by K(X).

Before stating the theorem, we recall a lemma from [11].

Lemma 2.27. Let D be a divisible totally ordered abelian group with d a positive
element in D. Let H be a subgroup of D which is maximal with respect to the property
that d = 1 in H. Then H forms a Z-group.

Now we define the following subsets of K(X): the subring A := 〈γ(K(X))〉 of
K(X) generated by γ(K(X)) and M := A · MK,v.

Theorem 2.28. Let 〈K, vp, v〉 be a henselian residually p-adically closed field and let
f be in K(X). Assume that vp(f(x̄)) > 0 for every x̄ ∈ Kn such that f(x̄) is defined
(*).

Then f belongs to the M-Kochen ring RM
γp

(K(X)) of K(X).

Proof. Suppose that f does not belong to RM
γp

(K(X)). Since there exists a p-valuation

vp on K(X) which extends the one of K such that vp(M) > 0 (see Remark 2.29), we
can extend the p-valuation vp onK to a p-valuation wp onK(X) such that wp(M) > 0
and wp(f) < 0 by applying Lemma 2.21.

Let us consider B = pcH(A,K(X)). Since B is not a field, Lemma 2.12 yields
that B is a p-convexly valued domain whose fraction field is K(X). In the following,
we denote by w the valuation on K(X) corresponding to the valuation ring B. Since
a ∈ MK,v and vp(A ·MK,v) > 0, we get that vp(a

−1) < vp(A); hence a ∈ MB. Since
γ(K(X)) ⊆ B, 〈K(X), w〉 is a valued field such that w(a) = 1 (see Lemma 2.19).
The following statement of Lemma 2.10 shows us that OK,v ⊆LD,a

B:

MB ∩ OK,v = MK,v.
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Indeed, the inclusion ⊆ is trivial and for the other one, we know that B satisfies
vp(m

−1) < vp(h) for any m ∈ MK,v and any h ∈ A and by definition of B, it implies
that m−1 6∈ pcH(A,K(X)) = B; so the conclusion follows.

Since OK,v = γ(K) ⊆ γ(K(X)) ⊆ B = OK(X),w (see Lemma 2.20) and MK,v =
a · OK,v ⊆ a · OK(X),w = MB by Lemma 2.19, we conclude

〈K,Dvp
,Dv, a〉 ⊆Lp,a

〈K(X),Dwp
,Dw, a〉.

Now we use Proposition 2.23 applied to Lemma 2.27 in order to obtain an extension
〈L,wp, w〉 of 〈K(X), wp, w〉 such that 〈L,w〉 henselian, 〈kL,w, w̃p〉 is p-adically closed,
〈L,wp〉 is a p-valued extension of 〈K(X), wp〉 and w(L×) is a Z-group with w(a) =
1w(L×).

By applying Ax-Kochen-Ersov transfer theorem for henselian valued fields of equichar-
acteristic zero, we deduce that 〈K,Dv, a〉 ≺ 〈L,Dw, a〉 in the language LD,a. Keeping
in mind that, as well in K as in L, the p-valuations are existentially definable in
the language Lrings ∪ {D}, we have that 〈K,Dvp

,Dv, a〉 ≺Lp,a
〈L,Dwp

,Dw, a〉. But
wp(f) < 0 in L implies wp(f(X)) < 0 and hence the formula φ expressing ∃x̄ (f(x̄))
is defined and wp(f(x̄)) < 0 holds in L. By the elementary inclusion, φ holds in
〈K, vp, v〉 showing that (*) is false. �

Remark 2.29. In the previous theorem, we have to find a p-valuation vp on K(X)
which extends the one of K such that vp(M) > 0, i.e. vp(A · MK,v) > 0. We take
a |K|+-saturated Lp,a-elementary extension L of K and so, we satisfy in L the n-
type required for X1, · · · , Xn. This n-type is consistent since in L, we have that
γ(L) ⊆ OL,v and so A(L) · ML,v ⊆ ML,v ⊆ OL,vp

where the subring A(L) of L
generated by γ(L) is equal to OL,v.

3. Nullstellensatz for henselian residually p-adically closed fields

In this section, we introduce the notion of residually p-adic ideal and the one of
residually p-adic radical of an ideal in K[X] over a henselian residually p-adically
closed field K, by analogy with these notions in the p-adic case (see [17]). These two
notions are related to the M-Kochen ring with the previous subset M of K(X), i.e.
A ·MK,v where A := 〈γ(K(X))〉 is the subring of K(X) generated by γ(K(X)). We
will closely follow the work of A. Srhir in order to prove a Nullstellensatz theorem
for henselian residually p-adically closed fields.

Definition 3.1. Let 〈K, vp, v, a〉 be a p-valued field with v a non-trivial valuation
and let a be a non-zero element of K.

We call such a field residually p-valued if v is compatible with vp, kK,v is of char-
acteristic zero and v(a) = 1.

Definition 3.2. Let 〈K, vp, v, a〉 be a residually p-valued field and let L be a field
extension of K.

We say that L is a formally residually p-valued field over K if L admits a p-
valuation wp which extends the given p-valuation vp on K and a valuation w such
that 〈L,wp, w〉 is residually p-valued and K ⊆Lp

L; i.e. 〈L,wp, w〉 is a residually
p-valued field extension.
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Remark 3.3. If 〈K, vp, v, a〉 is a residually p-valued field then K(X) is formally resid-
ually p-valued over K. It suffices to extend the two valuations vp and v as follows.

Let f be an element of K[X], i.e. f =
∑N

i=k fiX
i for some natural numbers

0 6 k 6 N with fk 6= 0; k is called the initial degree of f . Then we let w(f) :=
(k, v(fk)) ∈ N × v(K×) and so, we extend w to the field of rational functions K(X)
by letting w(g/h) := w(g) − w(h) ∈ Z × v(K×) (lexicographically ordered) where g,
h ∈ K[X] and h 6= 0. We proceed similarly for wp which is a p-valuation on K(X)
extending the one of K. Let us show that w is compatible with wp on K(X). So
we consider elements f/g, s/t ∈ K(X) such that wp(f/g) 6 wp(s/t). We have to
distinguish two cases:

• the difference of the initial degrees of (f, g) and (s, t) is the same and so, we
conclude by using the compatibility of v with vp;

• the difference of the initial degrees of (f, g) is strictly less than the one of (s, t)
and the conclusion follows from the definition of w and the lexicographic order
of Z × v(K×).

By induction, we get the same result for K(X).

In [7, Theorem 3.4], we showed the following

Theorem 3.4. Let L be a field extension of the p-valued field 〈K, vp〉 and let M be
a subset of L such that vp((M ∩K)•) > 0.

A necessary and sufficient condition for L to be a p-valued field extension of K
such that vp(M

•) > 0 is that

1

p
/∈ OK,vp

[γp(L),M ].

So we can deduce the following

Proposition 3.5. Let L be a field extension of a residually p-valued field 〈K, vp, v, a〉.
Then L is formally residually p-valued over K iff 1

p
6∈ OK,vp

[γp(L),M ] where M is

equal to A.MK,v and A := 〈γ(L)〉 is the subring of L generated by γ(L).

Proof. The implication (⇒) is trivial. Indeed, if we assume that 〈L,wp, w, a〉 is a
residually p-valued field extension of K then we get that vp(OK,vp

[γp(L),M ]) > 0
since wp(γp(L)) > 0 (see Lemma 6.2 in [14]), γ(L) ⊆ OL,w and so, A · ML,w ⊆
ML,w ⊆ OL,wp

(because w is compatible with wp).
For the other one, there exists a p-valuation wp on L such that wp(M) > 0 by

Theorem 3.4. It suffices to follow the same proof as the one of Theorem 2.28 in order
to build a valuation w on L such that w is compatible with wp and w(a) = 1. �

In Section 2, we have already defined the notion of M-Kochen ring RM
γp

(L) for a

field extension L of a p-valued field 〈K, vp〉.
For the rest of the section, we assume that K is a henselian residually p-adically

closed field and that M is the subset of any field extension L as in the previous
proposition. Hence we have that the elements of the M-Kochen ring RM

γp
(L) over L

have the following form a = b
1+pd

with b, d ∈ Z[γp(L),M ] and 1 + pd 6= 0 since the

p-valuation vp is henselian (see Remark 2.16).
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Proposition 3.6. Let L be a field extension of K. Then L is a formally residually
p-valued field over K iff 1

p
6∈ RM

γp
(L).

Proof. We assume that L is formally residually p-valued over K. If 1
p
∈ RM

γp
(L) then

there exist t, s ∈ Z[γp(L),M ] such that 1
p

= t
1+ps

. Thus we have p(t − s) = 1. This

contradicts Proposition 3.5.
Conversely assume that 1

p
6∈ RM

γp
(L). Since Z[γp(L),M ] ⊆ RM

γp
(L), one has 1

p
6∈

Z[γp(L),M ]. �

Now we prove the analogue of Corollary 1.6 in [17].

Corollary 3.7. Let L be a henselian residually p-adically closed field such that
K ⊆LD,a

L. Let I be an ideal of K[X] generated by f1, · · · , fr and let g be a poly-
nomial not in I. Let Φ : K[X]/I 7−→ L be a K-homomorphism such that Φ(ḡ) 6= 0.
Then there exists a K-homomorphism Ψ : K[X]/I 7−→ K such that Ψ(ḡ) 6= 0.

Proof. We put x1 = Φ(X1 + I), · · · , xn = Φ(Xn + I) and x̄ := (x1, · · · , xn). Then
x̄ ∈ Ln, f1(x̄) = · · · = fr(x̄) = 0 and g(x̄) 6= 0. This statement can be expressed by
an elementary LD,a-sentence with parameters from K which holds in L. Since the
LD,a-theory HRpCF is model complete, we infer that this statement also holds in
K. Thus there exists ȳ ∈ Kn such that f1(ȳ) = · · · = fr(ȳ) = 0 and g(ȳ) 6= 0. �

Now Definition 3.1 of [17] motivates the following definition of a residually p-adic
ideal in K[X].

Definition 3.8. Let I be an ideal of K[X] generated by the polynomials f1, · · · , fr.
We say that I is a residually p-adic ideal of K[X] if for any g ∈ K[X], for any m ∈ N•

and for any λ1, · · · , λr ∈ RM
γp

(K(X)).K[X] such that gm = λ1f1 + · · ·+ λrfr then we

have g ∈ I, where RM
γp

(K(X)).K[X] is the subring of K(X) generated by RM
γp

(K(X))

and K[X].

Remark 3.9. As in Remark 3.2 in [17], this definition does not depend on the choice
of the basis f1, · · · , fr of the ideal I. If ā is an element of Kn then the maximal ideal
K[X] defined by Mā := {f ∈ K[X ]|f(ā) = 0} is a residually p-adic ideal of K[X].

Notation 3.10. If I is an ideal of K[X], we will denote by Z(I) the algebraic set
of Kn defined by Z(I) := {x̄ ∈ Kn|f(x̄) = 0 ∀f ∈ I} and by I(Z(I)) := {f ∈
K[X]|f(x̄) = 0 ∀x̄ ∈ Z(I)}.

If, in addition, I is a prime ideal of K[X], then we shall denote by . the residue
map with respect to I and by K(I) the residue field of I, i.e. the fraction field of the
domain K[X]/I.

Proposition 3.11. Let I be an ideal of K[X] generated by the polynomials f1, · · · , fr.
Then the ideal I(Z(I)) is a residually p-adic ideal.

Proof. Let g be a polynomial in K[X], m ∈ N• and λ1, · · · , λr ∈ RM
γp

(K(X)) ·K[X]

such that gm = λ1f1 + · · · + λrfr. We have to show that g ∈ I(Z(I)). Let x̄ be in
Z(I). We consider the following K-rational place φ : K(X) 7−→ K ∪ {∞} such that
φ(Xi) = xi for 1 6 i 6 n. Since fj ∈ I, we have φ(fj) = 0 for all 1 6 i 6 r.
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Claim: for any λ ∈ RM
γp

(K(X)) ·K[X], we have φ(λ) 6= ∞.

By Lemma 2.19, we have that for any h ∈ K(X), φ(γ(h)) 6= ∞ and by Lemma 2.1
in [10], for any λ ∈ R∅

γp
(K(X)), φ(λ) 6= ∞. So by definition of RM

γp
(K(X)) and the

fact that φ(Xi) 6= ∞, we get the claim.
Now from the Claim, we deduce that φ(g) = 0, i.e. g(x̄) = 0. It follows that

g ∈ I(Z(I)). Hence I(Z(I)) is a residually p-adic ideal. �

The next proposition gives a characterization of residually p-adic ideals in terms
of formally residually p-valued field over K. So we get the analogue of Proposition
3.6 in [17].

Proposition 3.12. Let I be a prime ideal of K[X] generated by the polynomials
f1, · · · , fr. Then I is a residually p-adic ideal if and only if its residue field K(I) is
formally residually p-valued over K.

Proof. We assume that the residue field K(I) of I is not formally residually p-valued
over K. By Theorem 3.4, one has 1

p
∈ RM ′

γp
(K(I)) where A′ := 〈γ(K(I))〉 is the

subring of K(I) generated by γ(K(I)) and M ′ is equal to A′.MK,v.

More precisely there exist f̄/ḡ and h̄/l̄ in Z[γp(K(I)),M ′] such that 1
p

= f̄/ḡ

1+ph̄/l̄
.

One can choose f/g and h/l such that f/g,h/l ∈ Z[γp(K(X)),M ] where M is equal
to A · MK,v with A the subring of K(X) generated by γ(K(X)). We obtain the

equality gl + p(gh− fl) = 0, i.e. gl + p(gh − fl) ∈ I. It follows that there exist
α1, · · · , αr ∈ K[X] such that gl + p(gh − fl) =

∑r
i=1 αifi. By Remark 3.3 and

Proposition 3.5, we have 1 + p(h/l − f/g) 6= 0. So we can write gl =
∑r

i=1 λifi

with λi := αi

1+p(h/l−f/g)
for 1 6 i 6 r. Since f/g, h/l ∈ Z[γp(K(X)),M ], we have

λi ∈ RM
γp

(K(X)) · K[X] for all 1 6 i 6 r. Hence we have gl = λ1f1 + · · · + λrfr.
Since I is a residually p-adic ideal, we get gl ∈ I. On the other hand, g 6∈ I and l 6∈ I
imply gl 6∈ I. This is a contradiction.

Conversely assume that the residue field K(I) is formally residually p-valued over
K. We first prove I = I(Z(I)) and then we conclude from Proposition 3.11 that I
is residually p-adic.

Let f 6∈ I. As in Theorem 2.28, we can take an extension 〈L,wp, w〉 of K(I)
which is a model of HRpCF such that f 6= 0 in L. By using Corollary 3.7, there
exists a K-homomorphism Ψ : K[X]/I 7−→ K such that Ψ(f) 6= 0. We put x1 :=
Ψ(X̄1), · · · , xn := Ψ(X̄n) and x̄ := (x1, · · · , xn) ∈ Kn. Then we have x̄ ∈ Z(I) and
f(x̄) 6= 0. Thus f 6∈ I(Z(I)). Hence I = I(Z(I)). �

As in Example 3.7 in [17], for any integer i such that 1 6 i 6 n, the prime ideal
(X1, · · · , Xi) of K[X1, · · · , Xn] is a residually p-adic ideal. The next proposition may
be considered as the residually p-adic counterpart of Proposition 3.8 in [17].

Proposition 3.13. Let I be a residually p-adic ideal of K[X] generated by the poly-
nomials f1, · · · , fr. Then one has the following properties:

• I is a radical ideal of K[X],
• All the minimal prime ideals of K[X] containing I are residually p-adic ideals.

Proof. The proof is the same as the one in [17] with Λ replaced by RM
γp

(K(X)). �
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Now we give the geometric characterization of residually p-adic ideals which is the
analogue of Theorem 3.9 in [17].

Theorem 3.14. Let I be an ideal of K[X] generated by the polynomials f1, · · · , fr.
Then I is a residually p-adic ideal if and only if I = I(Z(I)).

Proof. If I = I(Z(I)) then, by Proposition 3.11, I is a residually p-adic ideal.
Conversely suppose that I is a residually p-adic ideal. First assume that I is prime.

Then, by Lemma 3.12, the residue field K(I) of I is formally residually p-valued over
K. Therefore I = I(Z(I)) (see the second part of the proof in Proposition 3.12).
Second, if I is any residually p-adic ideal then I is clearly a radical ideal of K[X].

Thus I =
⋂k

i=1 Ii where Ii are the minimal prime ideals of I in K[X]. So we know,
by Proposition 3.13, that I1, · · · , Ik are residually p-adic ideals of K[X]. Hence

I =
⋂k

i=1 I(Z(Ii)) = I(Z(I)). �

The next result provides a residually p-adic analogue of Corollary 3.10 in [17].

Corollary 3.15. Let I be an ideal of K[X] generated by the polynomials f1, · · · , fr.
Then the ideal I(Z(I)) is the smallest residually p-adic ideal of K[X] containing I.

Proof. We know, from Proposition 3.11, that I(Z(I)) is a residually p-adic ideal of
K[X] containing I. Moreover, if I1 is a residually p-adic ideal of K[X] such that
I ⊆ I1, then we have that I(Z(I)) ⊆ I(Z(I1)). Since I1 is a residually p-adic ideal,
we conclude from Theorem 3.14 that I1 = I(Z(I1)). Thus I(Z(I)) ⊆ I1. Hence the
ideal I(Z(I)) is the smallest residually p-adic ideal of K[X] containing I. �

Now we give the definition of the residually p-adic radical of an ideal I ⊆ K[X]
and some of its algebraic properties.

Definition 3.16. Let I be an ideal of K[X] generated by the polynomials f1, · · · , fr.
The residually p-adic radical of I is the subset of K[X ] defined by

p
√
I := {g ∈ K[X]|∃m ∈ N• and ∃λ1, · · · , λr ∈ RM

γp
(K(X)).K[X] : gm =

r∑

i=1

λifi}.

As in the definition of residually p-adic ideal, the residually p-adic radical of a
polynomial ideal is independent of the choice of the basis of the ideal. By replacing
the ring Λ by RM

γp
(K(X)) in the proof of the Proposition 4.3 in [17], we see that p

√
I

is the smallest residually p-adic ideal of K[X] containing I. Let us remark that an

ideal I of K[X] is a residually p-adic ideal if and only if I = p
√
I.

Proposition 3.17. Let I be an ideal of K[X]. Then p
√
I is the intersection of all the

residually p-adic prime ideals of K[X] containing I.

Proof. It suffices to replace Λ.K[X] by RM
γp

(K(X)).K[X] in the proof of Proposition

4.5 in [17]. �

Now we are able to prove the Nullstellensatz for henselian residually p-adically
closed fields.

Theorem 3.18. Let I be an ideal of K[X]. Then p
√
I = I(Z(I)).
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Proof. Immediate consequence of Corollary 3.15 and the fact that p
√
I is the smallest

residually p-adic ideal of K[X] containing I. �

The following result gives a correspondence between algebraic sets of Kn and resid-
ually p-adic ideals of K[X ]. Thus we provide a residually p-adic analogue of Propo-
sition 5.2 in [17].

Proposition 3.19. There exists a one to one correspondence between algebraic sets
of Kn and residually p-adic ideals of K[X].

Proof. It suffices to use, in the proof of [17], Theorem 3.14 instead of Theorem 3.9 in
[17]. �

As an immediate consequence of this proposition, we obtain the following corollary.

Corollary 3.20. There exists a one to one correspondence between irreducible alge-
braic sets of Kn and residually p-adic prime ideals of K[X].

Corollary 3.21. There exists a one to one correspondence between points of Kn and
residually p-adic maximal ideals of K[X].

Proof. Let M be a residually p-adic maximal ideal of K[X]. Then, according to
Proposition 3.12, the field K(M) is formally residually p-valued over K. As in
Theorem 2.28, we can take an extension 〈L,wp, w, a〉 of this field which is a model of
HRpCF . Hence we have a K-homomorphism Φ : K[X]/M 7−→ L. Then, by model
completeness of the LD,a-theory of henselian residually p-adically closed fields or more
precisely, by Corollary 3.7, we obtain a K-homomorphism Ψ : K[X]/M 7−→ K. We
put xi = Ψ(Xi) for 1 6 i 6 n and x̄ = (x1, · · · , xn). If f ∈ M then f(x̄) = Ψ(f) = 0
i.e. x̄ ∈ Z(M). Therefore M ⊆ I({x̄}). Hence M = I({x̄}) since M is a maximal
ideal.

Conversely, let ā ∈ Kn. By Remark 3.9, the maximal ideal Mā defined by Mā :=
{f ∈ K[X]|f(ā) = 0} is a residually p-adic maximal ideal of K[X]. �

Now we define in a similar way as in [2] the model-theoretic radical ideal of an
ideal in K[X]. Our goal is to show by using the arguments of the previous results
that the algebraic and model-theoretic notions of radical coincide.

Definition 3.22. Let I be an ideal of K[X]. The model-theoretic radical ideal of I
is defined as the following polynomial ideal, denoted by HRpCFRad(I)

HRpCFRad(I) :=
⋂

p∈P

P

where P is the following set
{P ideal of K[X] containing I such that K[X]/P can be Lp-embedded over K in

a model L of HRpCF}.
Note that if P is in P then P is prime.
Now we prove the theorem which was previously announced.

Theorem 3.23. Under the previous assumptions and notations, HRpCFRad(I) = p
√
I.
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Proof. Let f1, . . . , fr be generators of the ideal I in K[X].

(1) First we show that p
√
I ⊆ HRpCFRad(I). Let g ∈ K[X ] such that g 6∈

HRpCFRad(I). Thus there exists a prime ideal J in K[X] containing I but not g
such that

K ⊆Lp
L

where L |= HRpCF and K[X]/J ⊆ L. By model completeness of the Lp-theory
HRpCF , we get that g 6∈ I(Z(I)). Furthermore, by Theorem 3.18, we get that

g 6∈ p
√
I.

(2) Second we prove the other inclusion and we assume that g 6∈ p
√
I. Now it

suffices to follow the ideas in the proof of Theorem 4.4 in [7].
Let S be the following multiplicative subset of K[X]

{gm : m ∈ N}.
We consider the following set J of ideals in K[X]

J = {J ⊇ I proper residually p-adic ideal of K[X] such that J is disjoint of S}.
Clearly J is non-emty since p

√
I belongs to J . By Zorn’s Lemma, there exists a

maximal element J in J . So J is a proper residually p-adic ideal in K[X] containing
I such that J ∩ S = ∅. Let us show that J is prime. Assume that f · h ∈ J for
some f, h ∈ K[X] \ J . By maximality of J ∈ J , we get that p

√
〈f, J〉 ∩ S 6= ∅ and

p
√
〈h, J〉 ∩ S 6= ∅. So we have that

gk1 = λf +
l∑

i=1

λi · ji and gk2 = λ′h+
l∑

i=1

λ′i · ji

where j1, . . . , jl are generators of J , λ, λ′, λi, λ
′
i belongs to RM

γp(K(X))·K[X] and k1, k2 ∈
N. So we obtain that gk1+k2 belongs to J since J is residually p-adic.

By Proposition 3.12, K(I) is formally residually p-valued over K. As in the proof
of Proposition 3.12, we can take an extension 〈L,wp, w〉 of K(I) which is a model of
HRpCF and K ⊆Lp

L with g 6= 0 in L. So by definition of HRpCFRad(I), we have
that g 6∈ HRpCFRad(I). �

4. Hilbert’s seventeenth problem for a class of 0-D-henselian fields

In this section, we keep previous notations and conventions; the usual terminology
in differential algebra can be found in [13].

In Section 5 of [6], we introduce the theory of p-adically closed differential fields
which is the model-companion of the universal theory of differential p-valued fields
in the differential Macintyre’s language (see [12]), i.e. LD

Dp,pω
:= Lfields ∪ {D,Dp, pn :

n ∈ N \ {0, 1}} where Dp will be interpreted as a l.d. relation with respect to
a p-valuation vp, the pn are predicates for nth powers and D is a unary function
interpreted as a derivation. This LD

Dp,pω
-theory admits quantifier elimination and is

denoted by pCDF .
Let us recall an axiomatization of pCDF .
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(1) Axioms for differential p-valued fields where Dp is the l.d. relation with respect
to the p-valuation vp and D is a derivation,

(2) Hensel’s Lemma with respect to the p-valuation vp and the value group is a
Z-group,

(3) ∀x [pn(x) ⇐⇒ ∃y (yn = x)],
(4) (DL)-scheme of axioms (following the terminology in Section 3 of [6]):

for any positive integer n, for any differential polynomial f(X, · · · , X(n)) of
order n with coefficients in the valuation ring Ovp

(:= {x|Dp(1, x)}),

∀ǫ ∀b0, · · · , bn
{ n∧

i=0

Dp(1, bi) ∧ f ∗(b0, · · · , bn) = 0 ∧ (
∂

∂X(n)
f ∗)(b0, · · · , bn) 6= 0

⇒ ∃y [Dp(1, y) ∧ f(y) = 0 ∧
n∧

i=0

Dp(ǫ, y
(i) − bi)]

}

where f ∗ is the differential polynomial f seen as an ordinary polynomial in
the differential indeterminates X, · · · , X(n).

By using pCDF as differential residue field theory and the theory of Z-groups as
value group theory, we can introduce the valued D-field analogue of the theory of
henselian residually p-adically closed fields. For this purpose, we adapt the setting
of the work [16] to our p-adic case.

First we recall the structure of the canonical example of valued D-field whose the
theory will be studied in a residually p-adic setting (see also Section 6 in [16]).

We consider a differential field 〈k, δ〉 which is a model of pCDF -hence it is linearly
differentially closed and admits quantifier elimination in the language LD

Dp,pω
(see [6])-

and a Z-group G. It is a well-known fact that Th(G) admits quantifier elimination
in the language of abelian totally ordered groups with additional unary predicates of
divisibility {n|.}n∈ω which means:

∀g ∈ G [n|g ⇐⇒ ∃g′ ∈ G (g′ + · · ·+ g′︸ ︷︷ ︸
n times

= g)].

We are interested in the field k((tG)) of generalized power series. The set k((tG))
is defined by {f : G 7−→ k : supp(f) := {g ∈ G : f(g) 6= 0} is well-ordered in
the ordering induced by G}. Each element of k((tG)) can be viewed as a formal
power series

∑
g∈G

f(g)tg with the addition and the multiplication defined as follows:

(f + h)(g) := f(g) + h(g) and (f.h)(g) :=
∑

g′+g′′=g f(g′)h(g′′) for any g ∈ G.

The canonical valuation v on k((tG)) is defined as min supp(f) for any f ∈ k((tG))
and the canonical derivation D is defined as follows: (Df)(g) := δ(f(g)).

Moreover, the three-sorted theory of this valued D-field in the corresponding three-
sorted language is called the theory of (k,Z)-D-henselian valued fields. Now we give
an axiomatization of this theory, for a model 〈K, k,Γ〉:

Axiom 1. K and k are differential fields of characteristic zero and ∀η [pn(η) ⇐⇒
∃δ (δn = η)].

Axiom 2. K is a valued field whose value group v(K×) is equal to Γ via the
valuation map v and whose residue field π(OK) is equal to k via the residue map π.
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Axiom 3. ∀x ∈ K {[v(Dx) > v(x)] ∧ [π(Dx) = Dπ(x)]} and
∀x∃y [Dy = 0 ∧ v(y) = v(x)].

Axiom 4 (D-Hensel’s Lemma). If P ∈ OK{X} is a differential polynomial over
OK , b ∈ OK and v(P (b)) > 0 = v( ∂

∂X(i)P (b)) for some i, then there is some c ∈ K
with P (c) = 0 and v(b− c) > v(P (b)).

Axiom 5. Γ ≡ G and k ≡ k.

If 〈K,D, v〉 is a valued field 〈K, v〉 with a derivation D which satisfies ∀x [v(Dx) >

v(x)] then we say that K is a valued D-field. Moreover, if K satisfies Axiom 4 then
the valuation v is said D-henselian.

Now we define the theory of henselian residually p-adically closed D-fields.

Definition 4.1. We will call 〈K,D, vp, v, a〉 a henselian residually p-adically closed
D-field if 〈K,D, vp〉 is a p-valued differential field with a D-henselian valuation v such
that its differential residue field 〈kK,v, ṽp〉 is a model of pCDF and its value group is
a Z-group with v(a) = 1 and D(a) = 0.

In the canonical example k((tG)) of this class of D-henselian valued fields, t plays
the role of a in Definition 4.1.

Now we apply Corollary 3.14 of [8] in order to prove a model completeness result for
the theory of henselian residually p-adically closed D-fields which can be expressed
in the first-order language LD,p,a := Lp,a ∪ {D}. We denote this LD,p,a-theory by
HRpCDF . This model-theoretic result will be needed in the proof of Theorem 4.4
which is a differential Hilbert’s Seventeenth problem for henselian residually p-adically
closed D-fields.

Proposition 4.2. The LD,p,a-theory HRpCDF is model complete.

Proof. It is well-known that the theory of Z-groups admits quantifier elimination in
the language LV of totally ordered abelian groups with divisibility predicates and
that the theory pCDF admits quantifier elimination in the differential Macintyre’s
language LR := LD

Dp,pω
. We have to show that any formula is equivalent to an existen-

tial formula. So we consider an LD,p,a-formula φ(x̄) where x̄ are the free variables. By
using [8, Appendix], we can translate this LD,p,a-formula to an (LD,LV ,LR)-formula
φ∗(x̄) where LD := Lrings ∪ {D, a;Pn, n ∈ N \ {0, 1}} such that D is a derivation
and the Pn’s are the nth powers predicates. Now we apply Corollary 4.2 in [8] to
obtain an (LD,LV ,LR)-quantifier-free formula ψ∗(x̄) equivalent to φ∗(x̄). Since the
divisibility predicates n|. of the language of Z-groups are existentially definable in the
language {+,−,6, 0, 1} and the p-valuation vp, the predicates for the nth powers and
their negations are existentially definable in the language of fields in pCDF , we get
by using Lemma 2.26 and the reciprocal translation of [8, Appendix], an existential
LD,p,a-formula ψ(x̄) equivalent to φ(x̄) (we also used v(a) = 1). �

Lemma 4.3. Let 〈K,D, vp, v, a〉 be a valued D-field which is residually p-valued.
Then we can extend 〈K,D, vp, v, a〉 to a model 〈L,D,wp, w, a〉 of HRpCDF .

Proof. We know that ifH is a discrete totally ordered abelian group and α = 1H is the

least positive element of H then there exists G an extension of H contained in H̃, the
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divisible hull of H such that G is a Z-group with least positive element α (see Lemma
4 in [11]). First we build an henselian unramified valued D-field extension K ′ of K
such that its residue differential field is a model of pCDF . Since pCDF is the model
companion of the theory of differential p-valued fields, we can consider a p-valued
extension k′ of kK which is a model of pCDF . By using the existence part of Lemma
7.12 in [16], we obtain our extension K ′. Moreover, by Lemma 2.22, we can equip K ′

with a p-valuation which extends the one of K, is compatible with the valuation on
K ′ and induces the p-valuation on k′ (moreover, we can assume K ′ henselian). Then
we build a p-valued totally ramified valued D-field extension K ′′ of K ′ such that its
value group v(K ′′×) is equal to G. To this effect, it suffices to use Lemma 2.23 and to
apply the calculations in Proposition 7.17 in [16]. Hence we obtain a totally ramified
valued D-field extension. Now by using the same construction as in Proposition 3.12
of [8] and the first step of the proof, we obtain an unramified valued D-field extension
K ′′′ of K ′′ which has enough constants and its differential residue field is a model of
pCDF .

To finish the proof, we proceed as in [16], more precisely we use Lemma 7.25 of [16]
to produce the necessary pseudo-convergent sequence in K ′′′ and then use Proposition
7.32 of [16] to actually find a solution in an immediate valued D-field extension. So
we obtain the required valued D-field extension L. Since the extension is immediate,
the valuation v is henselian on L and kL,v |= pCDF with v(L×) a Z-group. By
using Lemma 2.24, we can define a p-valuation on L and then, v is convex for this
p-valuation on L; so L is also a p-valued extension of K〈X〉. �

Now we can prove an analogue of the Hilbert’s Seventeenth problem for the theory
of henselian residually p-adically closed D-fields as in Theorem 2.28. We will use the
following notation for the logarithmic derivative operator: †, i.e. x† = Dx

x
. We denote

by K{X} the differential ring of differential polynomials in n indeterminates over K
and its fraction field by K〈X〉.
Theorem 4.4. Let 〈K,D, vp, v, a〉 be a henselian residually p-adically closed valued
D-field and let f be in K〈X〉. If vp(f(x̄)) > 0 for every x̄ ∈ Kn such that f(x̄) is
defined (*).

Then f belongs to RM
γp

(K〈X〉) where M is equal to A · MK,v such that A is the

subring of K〈X〉 generated by (K〈X〉•)† and γ(K〈X〉).
Proof. We proceed as in Theorem 2.28. Suppose that f does not belong toRM

γp
(K〈X〉).

Since there exists a p-valuation vp on K〈X〉 which extends the one of K such that
vp(M) > 0 (see Remark 4.5), we can extend the p-valuation vp of K to a p-valuation
wp on K〈X〉 such that wp(M) > 0 and wp(f) < 0 by applying Lemma 2.21.

We consider B = pcH(A,K〈X〉). We get the same properties for B as the ones
in Theorem 2.28; furthermore, since (K〈X〉•)† ⊆ B, B is a differential ring in the
following sense: if x ∈ B then x† belongs toB and soD(x) is inB (**). We use Propo-
sition 4.3 instead Proposition 2.23 in Theorem 2.28 in order to obtain an extension
〈L,D,wp, w, a〉 of 〈K〈X〉, D, wp, w, a〉 with 〈L,D,w〉 D-henselian, 〈kL,w, D, w̃p〉 is a
p-adically closed differential field, 〈L,D,wp〉 is a p-valued differential field extension
of 〈K〈X〉, D, wp〉 and w(L×) a Z-group such that w(a) = 1w(L×).
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Now it suffices to conclude as in Theorem 2.28 by using the model completeness
result of Proposition 4.2 in order to deduce that 〈K,D,Dv, a〉 ≺LD,a∪{D} 〈L,D,Dw〉.

�

Remark 4.5. As in Remark 2.29, we have to find, in the previous theorem, a p-
valuation vp on K〈X〉 which extends the one of K such that vp(M) > 0, i.e. vp(A ·
MK,v) > 0. We take a |K|+-saturated LD,p,a-elementary extension L of K and so,
we satisfy in L the n-type required for X1, · · · , Xn. This n-type is consistent since
in L, we have that (L•)† ⊆ OL,v and so (L•)† · ML,v ⊆ ML,v ⊆ OL,vp

.
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Université de Paris 7, 1982.
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