On Ordered Fields with Infinitely Many Integer Parts

Gurgen Asatryan

Université de Mons-Hainaut, Institut de Mathématique, Place du Parc 20, 7000 Mons, Belgique

E-mail: asatryan@umh.ac.be

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We investigate integer parts of ordered fields. We prove the existence of normal integer parts for a class of ordered fields. Along with the normal one we construct infinitely many elementary non-equivalent integer parts for each field from this class.

- K is an ordered field,
- G is an ordered abelian group (all the orders are total).
 - A discretely ordered subring M ⊆ K is called an Integer Part of K if x ∈ K ⇒ ∃z ∈ M (z ≤ x < z + 1).
 - [Shepherdson] Models of **Open Induction** (OI) are the IP's of real closed fields (RCF).

We investigate integer parts of ordered fields. We prove the existence of normal integer parts for a class of ordered fields. Along with the normal one we construct infinitely many elementary non-equivalent integer parts for each field from this class.

K is an ordered field,

G is an ordered abelian group (all the orders are total).

- A discretely ordered subring M ⊆ K is called an Integer Part of K if x ∈ K ⇒ ∃z ∈ M (z ≤ x < z + 1).
- [Shepherdson] Models of **Open Induction** (OI) are the IP's of real closed fields (RCF).

OI - a first order theory in the language $\mathcal{L}=\{0,1,+,\cdot,<\}$ which has the following axioms:

- axioms of DOR (discretely ordered ring),
- for each quantifier free \mathcal{L} -formula $\psi(\vec{x}, y)$ the following axiom:

$$\begin{split} \mathsf{Ind}(\psi) &: \left(\psi(\vec{x},0) \land \forall y \ge 0 \; [\psi(\vec{x},y) \to \psi(\vec{x},y+1)]\right) \to \\ & \to \forall y \ge 0 \; [\psi(\vec{x},y)] \end{split}$$

- [Wilkie] Each discretely ordered ℤ-ring can be embedded in a model of OI.
- Lou van den Dries extended the previous result for the normal case.
- Macintyre and Marker gave several constructions for extending discretely ordered rings and proved that some classical theorems of primes fail in OI or in NOI (=normality+OI).

- [Wilkie] Each discretely ordered ℤ-ring can be embedded in a model of OI.
- Lou van den Dries extended the previous result for the normal case.
- Macintyre and Marker gave several constructions for extending discretely ordered rings and proved that some classical theorems of primes fail in OI or in NOI (=normality+OI).
- [Mourgues and Ressayre] Each RCF has an IP.
- If k is archimedean then $k((G^{<})) \oplus \mathbb{Z}$ is an IP of k((G)).
- A subfield $F \subseteq k((G))$ is called truncation closed if

$$\sum_{g \in G} a_g t^g \in F \Rightarrow \sum_{g \in G, g < g_0} a_g t^g \in F(g_0 \in G).$$

[in symbols $F \subseteq_{tr} k((G))$].

• $F \subseteq_{tr} k((G)) \Rightarrow F$ has an IP: $Neg(F) \oplus \mathbb{Z}$. $[Neg(F) = F \cap k((G^{<})), G^{<} = \{g \in G | g < 0\}]$

Construction by Mourgues and Ressayre: K is an RCF.

- a) $\exists K \hookrightarrow_{tr} k((G))$ (for suitable k and G).
- b) K has an IP.

The IP constructed in this way is called truncation IP of K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Construction by Mourgues and Ressayre: K is an RCF.

- a) $\exists K \hookrightarrow_{tr} k((G))$ (for suitable k and G).
- b) K has an IP.

The IP constructed in this way is called truncation IP of K.

Related Results.

- Fornasiero extended these results for ordered Henselian fields.
- Boughattas constructed a *p*-real closed field with no IP (*p* is an arbitrary prime).

The truncation IP of a non-archimedean RCF is never normal (as $\sqrt{2}$ is rational in such an IP).

Construction by Mourgues and Ressayre: K is an RCF.

a)
$$\exists K \hookrightarrow_{tr} k((G))$$
 (for suitable k and G).

b) K has an IP.

The IP constructed in this way is called truncation IP of K.

Related Results.

- Fornasiero extended these results for ordered Henselian fields.
- Boughattas constructed a *p*-real closed field with no IP (*p* is an arbitrary prime).

The truncation IP of a non-archimedean RCF is never normal (as $\sqrt{2}$ is rational in such an IP).

Normality Condition. An IP M is called normal if $(x, y, c_1, \ldots, c_n \in M)$:

$$x^n + c_1 x^{n-1} y + \cdots + c_n y^n = 0 \Rightarrow \exists z \in M(x = yz).$$

The following natural question is posed by S. Kuhlmann:

Does any RCF have a normal IP?

Berarducci and Otero constructed a normal IP of the field $k(t)^r$ ("r" signifies the real closure, $t \ll 1$), where

k is a recursive RCF, $k \subseteq \mathbb{R}$, $trdeg(k) = \aleph_0$.

This gave a positive answer to the question (posed by Macintyre and Marker) on existence of

a nonstandard recursive normal model of OI with cofinal set of primes.

Thus the field $k(t)^r$ has at least two elementary non-equivalent IP's.

Main Results

- We give a recurrent construction which allows to generate new IP's based on the existed ones.
- We construct normal IP's for a class of ordered fields, giving a partial answer to the above mentioned question by S.
 Kuhlmann. This class consists of some truncation closed subfields of ℝ((G)) where G has an anti-well-ordered value-set.
- Each field from that class possesses an IP which satisfies the same homogeneous existential formulae as a prescribed archimedean field with an infinite transcendence degree.
- The class of elementary non-equivalent IP's of each field from the considered class is continuum.

Outline of the Main Steps

- Basic Construction
- Anti-well-ordered Case of the Value Set
- Sketch of the Proofs of Main Theorems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Remarks

Proposition Let (a) $K \subseteq F \subseteq_{tr} K((G))$, (b) $M \subseteq H \subseteq K$. *M* is an IP, and *H* is a subfield of *K*, (c) $\mu \stackrel{def}{=} trdeg(K/H) \ge |Neg(F)|$, (d) $cf(\mu) > |Supp(u)|$, for all $u \in Neg(F)$. Then $\exists T \subseteq F \cap K((G^{\leq}))$ such that

• the elements of T are algebraically independent over H and

• $H[T]_0 \oplus M$ is an IP of F.

Proposition Let (a) $K \subseteq F \subseteq_{tr} K((G))$, (b) $M \subseteq H \subseteq K$. M is an IP, and H is a subfield of K, (c) $\mu \stackrel{def}{=} trdeg(K/H) \ge |Neg(F)|$, (d) $cf(\mu) > |Supp(u)|$, for all $u \in Neg(F)$. Then $\exists T \subseteq F \cap K((G^{\leq}))$ such that

• the elements of T are algebraically independent over H and

• $H[T]_0 \oplus M$ is an IP of F.

We denote:

- $H[T]_0 = \{p(a_1, ..., a_n) | a_i \in T, p \in H[X]_0\},\$
- $H[X]_0 = \{p \in H[X] : \text{ constant term of } p \text{ is } 0\}$

•
$$Neg(F) = F \cap K((G^{<})).$$

- E transcendence base of K/H, $\bar{\mu}$ the initial ordinal of μ .
 - choose a suitable well-order \prec on E,
 - induce norm functions $\|\cdot\|: K \to E$, $\|\cdot\|: Neg(F) \to E$,
 - construct a map $\lambda : Neg(F) \rightarrow E$ so that

$$\|u\| < \lambda(u) \quad (u \in Neg(F)),$$

- define $T \stackrel{\text{def}}{=} \{u + \lambda(u) | u \in T_1\}$, where $T_1 \subseteq Neg(F)$ will be defined based on the map λ ,
- prove that T is the desired set.

[Note that $\lambda(u) \in E \subseteq K$, whence $T \subseteq F \cap K((G^{\leq}))$.]

Proof Sketch. Construction of λ

Given $0 \neq u \in Neg(F)$, we define

 $||u|| \stackrel{def}{=} the lowest upper bound of \{||a|| : a \in Coef(u)\}.$ 3) ||u|| is well-defined. In fact, by using (d), we have

$$Neg(F) = \bigcup_{e \in E} [F \cap H_e((G^{<}))]$$

and

$$\|u\| = \min\{e \in E | u \in H_e((G^{<}))\}.$$

We let $\|0\| = -\infty$, $\hat{E} = E \cup \{-\infty\}.$
4) $U_e \stackrel{def}{=} \{u \in Neg(F) : \|u\| = e\} \ (e \in \hat{E}).$

Proof Sketch. Construction of $\boldsymbol{\lambda}$

5) We have the following partition of Neg(F):

$$Neg(F) = \sqcup_{e \in \hat{E}} U_e$$

 6) Choose (U_e, ≺_e) ≃ the initial ordinal of cardinality |U_e|. Define order on Neg(F) lexicographically (u ∈ U_{e1}, w ∈ U_{e2}):

$$u \prec w \quad \stackrel{def}{\Leftrightarrow} \quad [e_1 \prec e_2 \lor (e_1 = e_2 \land u \prec_{e_1} w)].$$

Proof Sketch. The Integer Part

10) We define $\lambda : Neg(F) \to E$ by: $\lambda(u) \stackrel{def}{=} \lambda_e(u) \ (u \in U_e).$

Thus, λ is isotonic. Moreover,

$$e \prec \varphi(i, e') \Rightarrow e \ll S_e \Rightarrow ||u|| < \lambda(u).$$

11) Define the subset $T_1 \subseteq Neg(F)$ by the following induction:

12) The rest is to show that $T = \{u + \lambda(u) | u \in T_1\}$ satisfies the assertions based on the following facts.

(*)
$$u_1 \prec \cdots \prec u_n \in T_1 \Rightarrow \lambda(u_n) \in K((G))$$
 is transcendent over
 $H(u_1, \ldots, u_n, \lambda(u_1), \ldots, \lambda(u_{n-1})).$
(**) $p(u_1 + \lambda(u_1), \ldots, u_n + \lambda(u_n)) = p(\lambda(u_1), \ldots, \lambda(u_n))$
 $p \in H[\vec{x}], u_i \in T_1$ (pairwise distinct, $i = \overline{1, n} \Rightarrow p \equiv const.$

 The elements g, g₁ ∈ G are called archimedean equivalent (g ~ g₁) if there exists n ∈ N such that

 $|g| \leq n|g_1| \& |g_1| \leq n|g|.$

• The order < on the set $[G] \stackrel{\textit{def}}{=} \{[g] | g \in G\}$ is defined by:

$$[g] < [g_1] \stackrel{def}{\Leftrightarrow} |g| > |g_1| \& g \not\sim g_1$$

(note that [0] is the greatest element).

 The elements g, g₁ ∈ G are called archimedean equivalent (g ~ g₁) if there exists n ∈ N such that

 $|g| \leq n|g_1| \& |g_1| \leq n|g|.$

• The order < on the set $[G] \stackrel{\textit{def}}{=} \{[g] | g \in G\}$ is defined by:

$$[g] < [g_1] \stackrel{def}{\Leftrightarrow} |g| > |g_1| \& g \not\sim g_1$$

(note that [0] is the greatest element).

- The natural valuation on G is the map v : G → [G] defined by: v(g) = [g].
- The set $\Gamma = [G] \setminus \{[0]\}$ is called the value set of G.
- Hahn's Theorem states that each ordered abelian group G can be embedded in the Hahn group ℝ^Γ.
- $\mathbb{R}^{\Gamma} = \{g : \Gamma \to \mathbb{R} : Supp(g) \text{ is well-ordered}\}.$
- + is pointwise and < is lexicographic (from the left) in \mathbb{R}^{Γ} .

• We will consider the case when Γ is anti-well-ordered:

 $\Gamma\simeq lpha^{\star}=(lpha,>)$ (ordinal with reversed order).

- Thus, $G \subseteq \mathbb{R}^{\alpha^{\star}}$.
- Convex subgroups of G ($\gamma \leq \alpha$):

$$\mathcal{C}_{\gamma} = \{ g \in G | v(g) \leq \gamma \}$$
 and $D_{\gamma} = \{ g \in G | v(g) < \gamma \}.$

Truncation closed subfields

Let G be divisible, and let $\mathbb{R}(G) \subseteq F \subseteq_{tr} \mathbb{R}((G))$,

Given $\gamma \leq \alpha$ we denote

$$F_{\gamma} = F \cap \mathbb{R}((C_{\gamma})) \text{ and } \overline{F}_{\gamma} = F \cap \mathbb{R}((D_{\gamma})).$$

Thus

$$\mathbb{R}(\mathcal{C}_{\gamma})\subseteq \mathcal{F}_{\gamma}\subseteq_{tr}\mathbb{R}((\mathcal{C}_{\gamma})) ext{ and } \mathcal{F}_{lpha}=ar{\mathcal{F}}_{lpha}=\mathcal{F}.$$

Given $\gamma < \beta \leq \alpha$ one has a canonical order-preserving isomorphism:

$$D_{eta} \stackrel{\sim}{
ightarrow} D_{eta}/D_{\gamma} \stackrel{
ightarrow}{ imes} D_{\gamma}.$$

This induces a canonical isomorphism

$$\rho: \mathbb{R}((D_{\beta})) \to \mathbb{R}((D_{\gamma}))((D_{\beta}/D_{\gamma})).$$

- ρ preserves the truncation closed subfields,
- ρ is identical on $\mathbb{R}((D_{\gamma}))$.

We have

$$\bar{F}_{\gamma} \subseteq \rho(\bigcup_{i < \beta} F_i) \subseteq_{tr} \bar{F}_{\gamma}((D_{\beta}/D_{\gamma})).$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- R an integral domain, char(R) = 0 ($\mathbb{Z} \subseteq R$),
- *TH*_{∃,h}(*R*) the part of ∃-theory of *R* consisting of homogeneous formulae (in the language {0,1,+,·}).
- We call a formula homogeneous if its each atomic subformula has a form f(x) = 0 (or f(x) ≠ 0) where f ∈ Z[x] is homogeneous.

• k_0 - an archimedean field $(k_0 \subseteq \mathbb{R})$, $trdeg(\mathbb{R}/k_0) = 2^{\aleph_0}$.

- R an integral domain, char(R) = 0 ($\mathbb{Z} \subseteq R$),
- *TH*_{∃,h}(*R*) the part of ∃-theory of *R* consisting of homogeneous formulae (in the language {0,1,+,·}).
- We call a formula homogeneous if its each atomic subformula has a form f(x) = 0 (or f(x) ≠ 0) where f ∈ Z[x] is homogeneous.
- k_0 an archimedean field $(k_0 \subseteq \mathbb{R})$, $trdeg(\mathbb{R}/k_0) = 2^{\aleph_0}$.

Lemma 1. Let *R* be an integral domain, char(R) = 0, and let $X \neq \emptyset$ be a set of variables. Then

- a) $TH_{\exists,h}(R) \equiv TH_{\exists,h}(R[X]) \equiv TH_{\exists,h}(R[X]_0 \oplus \mathbb{Z}),$
- b) if R is normal then $Quot(R)[X]_0 \oplus R$ is normal.

Lemma 2.

a) Let $K \subseteq L \subseteq F \subseteq_{tr} K((G))$, $L \subseteq_{tr} K((G))$, and let $M \subseteq F \cap K((G^{\leq}))$ be an IP of F. Then $L \cap M$ is an IP of L.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

b) if M is normal then $L \cap M$ is normal.

In the following theorem we construct IP's for a class of ordered fields whose homogeneous theories are equivalent to $TH_{\exists,h}(k_0)$.

Theorem

Let G be a divisible ordered abelian (non-trivial) group with anti-well-ordered value set α^* . Let $\mathbb{R}(G) \subseteq F \subseteq_{tr} \mathbb{R}((G))$ and $|F_{\gamma}| > |\gamma| \ (\gamma \leq \alpha)$. Then, assuming GCH, there exists an IP M of F such that $TH_{\exists,h}(M) \equiv TH_{\exists,h}(k_0)$.

In the following theorem we construct IP's for a class of ordered fields whose homogeneous theories are equivalent to $TH_{\exists,h}(k_0)$.

Theorem

Let G be a divisible ordered abelian (non-trivial) group with anti-well-ordered value set α^* . Let $\mathbb{R}(G) \subseteq F \subseteq_{tr} \mathbb{R}((G))$ and $|F_{\gamma}| > |\gamma| \ (\gamma \leq \alpha)$. Then, assuming GCH, there exists an IP M of F such that $TH_{\exists,h}(M) \equiv TH_{\exists,h}(k_0)$.

The **proof** is by induction and is mainly based on the aforementioned iterated construction (Proposition 1).

- let $I = \{ \gamma \leq \alpha : i < \gamma \Rightarrow |F_i| < |F_\gamma| \}.$
- $\hat{\gamma}$ is the successor of γ in I ($\gamma = max(I) \Rightarrow \hat{\gamma} = \alpha + 1$).
- $\tilde{\gamma}$ the initial ordinal of $|F_{\gamma}|$. One has $\hat{\gamma} \leq \tilde{\gamma}$.

By induction on $\gamma \in I$ we construct a sequence of DOR's $(M_j \mid \gamma \leq j < \hat{\gamma})$ such that

- M_j be an IP of F_j ,
- the sequence $(M_j \mid j < \hat{\gamma})$ be a chain,
- $TH_{\exists,h}(M_j) \equiv TH_{\exists,h}(k_0).$

By induction on $\gamma \in I$ we construct a sequence of DOR's $(M_j \mid \gamma \leq j < \hat{\gamma})$ such that

- M_j be an IP of F_j ,
- the sequence $(M_j \mid j < \hat{\gamma})$ be a chain,
- $TH_{\exists,h}(M_j) \equiv TH_{\exists,h}(k_0).$

Induction Base. $\gamma = 0$. We have

$$\mathbb{R} \subseteq \bigcup_{i<\hat{0}} F_i \subseteq_{tr} \mathbb{R}((D_{\hat{0}})).$$

Set $K = \mathbb{R}$, $F = \bigcup_{i < \hat{0}} F_i$ in the Proposition 1 [conditions of Proposition hold with CH]. \Rightarrow

 \exists a subset $T \subseteq (\cup_{i < \hat{0}} F_i) \cap \mathbb{R}((D^{\leq}_{\hat{0}}))$ such that

- the elements of T are algebraically independent over k_0 ,
- $k_0[T]_0 \oplus \mathbb{Z}$ is an IP of $\bigcup_{i < \hat{0}} F_i$,
- $T \cap F_0 \neq \emptyset$ (can be provided by construction).

We have $M_i \stackrel{\text{def}}{=} F_i \cap (k_0[T]_0 \oplus \mathbb{Z})$ is an IP of F_i , $(M_i \mid i < \hat{0})$ is a chain and $TH_{\exists,h}(M_i) \equiv TH_{\exists,h}(k_0)$.

Induction Step. $\gamma \in I$, γ is limit. Let we have the following data:

a chain
$$(M_i | i < \gamma)$$
, where M_i is an IP of F_i ,

$$TH_{\exists,h}(M_i) \equiv TH_{\exists,h}(k_0).$$

We will construct a chain $(M_j|\gamma \leq j < \hat{\gamma})$ preserving the above conditions.

1)
$$\bar{M} \stackrel{def}{=} \cup_{i < \gamma} M_i \subseteq \bar{F}_{\gamma}$$
 is a discretely ordered subring and $TH_{\exists,h}(\bar{M}) \equiv TH_{\exists,h}(k_0)$.

2) Denote
$$L = \bigcup_{i < \hat{\gamma}} F_i$$
 and $B_{\gamma} = D_{\hat{\gamma}}/D_{\gamma}$.

Consider the above mentioned isomorphism $\rho : \mathbb{R}((D_{\hat{\gamma}})) \to \mathbb{R}((D_{\gamma}))((D_{\hat{\gamma}}/D_{\gamma}))$. We get

$$\bar{F}_{\gamma} \subseteq \rho(L) \subseteq_{tr} \bar{F}_{\gamma}((B_{\gamma})).$$
(3)

We are going to show that the conditions of Proposition 1 hold for the field extension (3) (we replace H by $Quot(\overline{M})$).

The Conditions of Proposition 1.

(a) we replace
$$K \curvearrowright \overline{F}_{\gamma}$$
, $F \curvearrowright \rho(L)$, $G \curvearrowright B_{\gamma}$.

- (b) $H = Quot(\overline{M})$ is a subfield and \overline{M} is an IP of \overline{F}_{γ} .
- (c) $\mu \stackrel{\text{def}}{=} trdeg(\bar{F}_{\gamma}/Quot(\bar{M})) = |L|$ [use GCH and the condition $|F_{\gamma}| > |\gamma|$].
- (d) $cf(\mu) > |S|$ for each well-ordered subset $S \subseteq B_{\gamma}^{<}$ [use the inequality $\hat{\gamma} \leq \tilde{\gamma}$].

The Conditions of Proposition 1.

(a) we replace
$$K \curvearrowright \overline{F}_{\gamma}$$
, $F \curvearrowright \rho(L)$, $G \curvearrowright B_{\gamma}$.

- (b) $H = Quot(\overline{M})$ is a subfield and \overline{M} is an IP of \overline{F}_{γ} .
- (c) $\mu \stackrel{\text{def}}{=} trdeg(\bar{F}_{\gamma}/Quot(\bar{M})) = |L|$ [use GCH and the condition $|F_{\gamma}| > |\gamma|$].
- (d) $cf(\mu) > |S|$ for each well-ordered subset $S \subseteq B_{\gamma}^{<}$ [use the inequality $\hat{\gamma} \leq \tilde{\gamma}$].
- Thus, \exists a subset $T \subseteq \rho(L) \cap \overline{F}_{\gamma}((B_{\gamma}^{\leq}))$ such that $Z \stackrel{def}{=} Quot(\overline{M})[T]_0 \oplus \overline{M}$ is an IP of $\rho(L)$ and the elements of T are algebraically independent over $Quot(\overline{M})$.
 - $\gamma \leq j < \hat{\gamma} \Rightarrow M_j \stackrel{def}{=} F_j \cap \rho^{-1}(Z)$ is an IP of F_j (see Lemma 2).
 - $\overline{M} \subseteq M_j$. Thus, $(M_j \mid j < \hat{\gamma})$ is a chain.
 - \exists an embedding $M_j \hookrightarrow Z$ over \overline{M} . Thus, $TH_{\exists,h}(M_j) \equiv TH_{\exists,h}(\overline{M}) \equiv TH_{\exists,h}(k_0)$ (see Lemma 1).

Theorem

(Same hypotheses as in Theorem 1).

1) The number of elementary non-equivalent IP's of F is continuum.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2) F has a normal IP.

Theorem

(Same hypotheses as in Theorem 1).

- 1) The number of elementary non-equivalent IP's of F is continuum.
- 2) F has a normal IP.

Proof.

 Let A be a subset of the set of prime numbers, and let k₀ = Q({2^{1/p}|p ∈ A}), then we get an IP, say M_A, of F such that TH_{∃,h}(M_A) ≡ TH_{∃,h}(k₀). Now, let ψ_n (n ∈ N) be the formula ∃x, y (x ≠ 0 ∧ xⁿ = 2yⁿ). For p a prime, we have p ∈ A ⇔ k₀ ⊨ ψ_p ⇔ M_A ⊨ ψ_p.
 Set k₀ = Q in the proof of Theorem 1 (use Lemmas 1,b and 2,b).

- If F is an RCF then its residue field k can be embedded in F, and F admits a cross-section.
- Thus we may assume that $k(G) \subseteq F$.
- Besides, there exists a truncation closed embedding $F \hookrightarrow k((G))$ over k(G) (G is the value group of F).

Thus the following can be deduced directly from Proposition 1.

Theorem

Let F be an RCF with the residue field \mathbb{R} and a value group G. Let G have an anti-well-ordered value set α^* with $\alpha \leq \omega_1$. Then F has a normal IP, and the number of elementary non-equivalent IP's of F is continuum.

Remarks

 The field F = R((G)) (where G has a value set anti-well-ordered) satisfies the conditions of Proposition 1.

Thus $\mathbb{R}((G))$ has continuumly many IP's (at least one of them is normal).

Let F = k(t)^r (with t ≪ 1) be the field mentioned in the Introduction (k ⊆ ℝ, trdeg(k) = ℵ₀).

Then the field extension $k \subseteq F \subseteq_{tr} k((\mathbb{Q}))$ satisfies the hypotheses of Proposition 1.

Given $k_0 \subseteq k$ and $trdeg(k/k_0) = \aleph_0$ one gets an IP M of F such that $TH_{\exists,h}(M) \equiv TH_{\exists,h}(k_0)$.

By letting $k_0 = \mathbb{Q}(\{2^{1/p} | p \in A\})$, we get continuumly many elementary non-equivalent IP's of F. The case $A = \emptyset$ corresponds to the normal one.

References

- Berarducci A., Otero M., A recursive nonstandard model of normal open induction, J. of Symbolic Logic, 61 (1996), no. 4, 1228-1241.
- Biljakovic D., Kochetov M., Kuhlmann S., Primes and irreducibles in truncation integer parts of real closed fields, in: Logic, Algebra and Arithmetic, Lecture Notes in Logic, 26, Association for Symbolic Logic, AK Peters, 42-65 (2006).
- Boughattas S., Résultats optimaux sur l'existence d'une partie entière dans les corps ordonnés, J. of Symbolic Logic, 58 (1993), no. 1, 326-333.
- Dales H.G., Woodin W.H., Super-real fields. Totally ordered fields with additional structure, London Mathematical Society Monographs, New Series 14. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.

- van den Dries L., Some model theory and number theory for models of weak systems of arithmetic, in: L. Pacholski et al., eds., Model Theory of Algebra and Arithmetic, Lecture Notes in Math. 834 (Springer, Berlin, 1980) 346-362.
- Fornasiero A., Embedding Henselian fields into power series, J. of Algebra 304 (2006), no. 1, 112-156.
- Macintyre A., Marker D., Primes and their residue rings in models of open induction, Annals of Pure and Applied Logic 43 (1989), no. 1, 57-77.
- 8. Mourgues M.H., Ressayre J.P., Every real closed field has an integer part, J. of Symbolic Logic 58 (1993), no. 2, 641-647.
- 9. Shepherdson J.C., A nonstandard model for a free variable fragment of number theory, Bulletin de l'académie Polonaise des sciences, 12 (1964), 79-86.
- Wilkie A., Some results and problems on weak systems of arithmetic, in: A. J. Macintyre et al., eds., Logic Colloquium 1977 (North-Holland, Amsterdam 1978) 285-296.