HENSELIAN RESIDUALLY p-ADICALLY CLOSED FIELDS

NICOLAS GUZY

Abstract

In (Arch. Math. 57 (1991), pp. 446-455), R. Farré proved a positivstellensatz for real-series closed fields. Here we consider p-valued fields $\left\langle K, v_{p}\right\rangle$ with a non-trivial valuation v which satisfies a compatibility condition between v_{p} and v. We use this notion to establish the p-adic analogue of real-series closed fields; these fields are called henselian residually p-adically closed fields. First we solve a Hilbert's Seventeenth problem for these fields and then, we introduce the notions of residually p-adic ideal and residually p-adic radical of an ideal in the ring of polynomials in n indeterminates over a henselian residually p-adically closed field. Thanks to these two notions, we prove a Nullstellensatz theorem for this class of valued fields. We finish the paper with the study of the differential analogue of henselian residually p-adically closed fields. In particular, we give a solution to a Hilbert's Seventeenth problem in this setting.

Keywords: Henselian residually p-adically closed fields, model completeness, Hilbert's Seventeenth problem, residually p-adic ideal, Nullstellensatz, valued D fields.

Mathematics Subject Classification: 03C10; 12J10; 12J12; 13N15.

1. Introduction

Let us recall that a valued field is a field K equipped with a surjective map v : $K \rightarrow \Gamma \cup\{\infty\}$, where $\Gamma:=v\left(K^{\times}\right)$is a totally ordered abelian group and v satisfies the following properties:

- $v(x)=\infty \Longleftrightarrow x=0$,
- $v(x y)=v(x)+v(y)$,
- $v(x+y) \geqslant \min \{v(x), v(y)\}$.

The subring $\mathcal{O}_{K}:=\{x \in K \mid v(x) \geqslant 0\}$ of K is called the valuation ring of $\langle K, v\rangle$, the value group is $v\left(K^{\times}\right)$, the residue field of K is $k_{K}:=\mathcal{O}_{K} / \mathcal{M}_{K}$ where $\mathcal{M}_{K}:=\{x \in$ $K \mid v(x)>0\}$ is the maximal ideal of \mathcal{O}_{K} and the canonical residue map is denoted by $\pi: \mathcal{O}_{K} \longmapsto k_{K}$. If K is a field equipped with two valuations v and w then we add a subscript v in order to distinguish the valuations rings, maximal ideals, residue fields and residue maps, respectively, of the valuation v with those of w (i.e. $\mathcal{O}_{K, v}, \mathcal{M}_{K, v}$, $k_{K, v}$ and π_{v}). Moreover if $\langle K, v\rangle$ is a valued field with an element of minimal positive value then that element is denoted by 1 .

To each valuation defined on K we can associate a binary relation \mathcal{D} which is interpreted by the set of 2-tuples (a, b) of K^{2} such that $v(a) \leqslant v(b)$. So this relation \mathcal{D} satisfies the following properties (\star):

[^0]- \mathcal{D} is transitive, $\neg \mathcal{D}(0,1)$,
- \mathcal{D} is compatible with + and.,
- and either $\mathcal{D}(a, b)$ or $\mathcal{D}(b, a)$ for all $a, b \in K$.

Such a relation is called a linear divisibility relation (a l.d. relation).
If A is a domain with fraction field K and \mathcal{D} is a relation which satisfies the properties (\star) then, by extending \mathcal{D} to K as follows:

$$
\mathcal{D}\left(\frac{a}{b}, \frac{c}{d}\right) \Longleftrightarrow \mathcal{D}(a d, b c) \text { with } a, b, c, d \in A \text { and } b, d \neq 0
$$

we get that the l.d. relation \mathcal{D} on K induces a valuation v on K by defining $v(a) \leqslant$ $v(b)$ if $\mathcal{D}(a, b)$. As for the valuation rings, we add a subscript v to its corresponding 1.d. relation \mathcal{D}_{v} if necessary.

If $\langle K, v\rangle$ is a valued field then we denote its Henselization by $\left\langle K^{h}, v^{h}\right\rangle$. For general valuation theory, the reader can be refer to [15].

In this paper, we are dealing with notions of p-valued fields, p-valuations and p adically closed fields which are all assumed of p-rank 1 for some prime number p following the terminology of [14]. We are interested in henselian residually p-adically closed fields which is the p-adic counterpart of real-series closed fields (see [4] and [5, chapter 1] for a brief history of results about real-series closed fields).

First we define a theory analogous to the theory of real-series closed fields in a language including divisibility predicates $\mathcal{D}_{v_{p}}$ and \mathcal{D}_{v}. Each divisibility predicate corresponds to a valuation and these two valuations are connected with a compatibility condition as introduced in [7, Definition 2.2]. This theory is denoted by $H R p C F$ and its models are called henselian residually p-adically closed fields.

Then we prove an analogue of the Hilbert's Seventeenth problem for henselian residually p-adically closed fields by using the same ideas as in [4]. We introduce the field analogue of the notion of M-Kochen ring which was considered in Section 3 of [7] for valued domains. It allows us to characterize the intersection of the valuation rings of p-valuations which extend a fixed p-valuation v_{p} such that $v_{p}(M) \geqslant 0$ for some particular subset M. Since we want to use a model completeness result, we have to identify the subset M which is required in the solution of this problem for henselian residually p-adically closed fields.

In the third section, we follow the lines of the work [17] in order to prove a Nullstellensatz theorem for henselian residually p-adically closed fields. To this effect, we define the notions of residually p-adic ideal and residually p-adic radical of an ideal in the polynomial ring in n indeterminates over a model of $H R p C F$. Generally it suffices to adapt the proofs of [17] by replacing the role of the classical Kochen ring by our M-Kochen ring.

Finally, in the last section, we study a special class of D-henselian valued fields (first considered in [16]) which uses the results of [6] and [8]. In [6], we established and axiomatized the model-companion of the theory of differential p-valued fields which is denoted by $p C D F$ and whose models are called p-adically closed differential fields. It is a p-adic adaptation of the theory of closed ordered differential field (see [18]) which is denoted by $C O D F$. In [8], we study D-henselian valued fields with residue differential field which is a model of $C O D F$ and with a \mathbb{Z}-group as value group, i.e. a
differential analogue of the theory of real-series closed fields. In particular, we prove a positivstellensatz result for these D-henselian valued fields.

Here we adapt these results to the p-adic case by using $p C D F$, i.e. we are interested in the valued D-field analogue of $H R p C F$. So we prove a Hilbert's Seventeenth problem for D-henselian valued fields whose residue field is a model of $p C D F$ and whose value group is a \mathbb{Z}-group. The model-theoretic tool that we need is a theorem of quantifier elimination in [8]; it enables us to prove the model completeness of the theory of these D-henselian valued fields in a suitable language by using linear divisibility predicates.

2. Hilbert's seventeenth problem for henselian residually p-adically CLOSED FIELDS

We begin this section with a notion which is the p-adic analogue of the convexity of a valuation in the case of real-series closed fields.

Definition 2.1. Let $\left\langle K, v_{p}, v\right\rangle$ be a p-valued field with v_{p} its p-valuation and v a non-trivial valuation on K. We say that v is compatible with v_{p} if the following holds

$$
\forall x, y\left[v_{p}(x) \leqslant v_{p}(y) \Rightarrow v(x) \leqslant v(y)\right] .
$$

Let us recall a well-known fact on p-valued fields.
Lemma 2.2. Let $\left\langle K, v_{p}\right\rangle$ be a p-valued field and let x be an element of K. If there exists an element y in K such that $y^{\epsilon}=1+p x^{\epsilon}$, with $\epsilon=2$ if $p \neq 2$ and $\epsilon=3$ otherwise, then $v_{p}(x) \geqslant 0$. Conversely if $\left\langle K, v_{p}\right\rangle$ is henselian and $v_{p}(x) \geqslant 0$ then there exists an element y in K such that $y^{\epsilon}=1+p x^{\epsilon}$ with ϵ as before.

Proof. See Lemma 1.5 in [1].
Lemma 2.3. Let $\left\langle K, v_{p}\right\rangle$ be a p-valued field and let v be a non-trivial henselian valuation on K with residue field $k_{K, v}$ of characteristic zero. Then v is compatible with v_{p}.

Proof. Let x, y in K be such that $v(x)<v(y)$. Hence $\frac{y}{p . x} \in \mathcal{M}_{K, v}$ since the characteristic of $k_{K, v}$ is zero. Let us consider the polynomial $f(X)=X^{\epsilon}-\left(1+p \cdot\left(\frac{y}{p . x}\right)^{\epsilon}\right)$ with ϵ as in Lemma 2.2. So $f(X)$ has coefficients in $\mathcal{O}_{K, v}$. Moreover $\pi(f)(X)$ is equal to $X^{\epsilon}-1$; hence 1 is a simple residue root of $f(X)$. By Hensel's Lemma applied to v, $f(X)$ has a root z such that $\pi(z)=1$. So, by Lemma 2.2 , we get that $v_{p}(p . x) \leqslant v_{p}(y)$, which implies $v_{p}(x)<v_{p}(y)$.

Now we recall some definitions and results from [7], namely the notions of p-valued and p-convexly valued domains. It is useful in the next theorems for the following reasons:

- if $\left\langle K, v_{p}, v\right\rangle$ is a p-valued field with v a non-trivial valuation on K then $\mathcal{O}_{K, v}$ is a p-valued domain,
- moreover, if v is compatible with v_{p} and $\operatorname{char}\left(k_{K, v}\right)=0$ then $\mathcal{O}_{K, v}$ is a p convexly valued domain.

Definition 2.4. Let A be a domain containing \mathbb{Q}. We say that A is a p-valued domain if A is not a field and its fraction field $Q(A)$ is p-valued.

Definition 2.5. Let F be a p-valued field with v_{p} its p-valuation and let $A \subseteq B$ be two subsets of F. We say that A is p-convex in B if for all $a \in A$ and $b \in B$, $v_{p}(a) \leqslant v_{p}(b)$ implies $b \in A$.

With our terminology, we can state easy results.
Lemma 2.6. Let $\left\langle F, v_{p}\right\rangle$ be a p-valued field and let A be a p-valued domain which is p-convex in F. Then A is a valuation ring and $F=Q(A)$.
Proof. See Lemma 2.3 in [7].
Notation 2.7. In the sequel, if A is a valuation ring then we denote the maximal ideal and the residue field of A by \mathcal{M}_{A} and k_{A} respectively. The previous lemma shows that any p-convex subdomain A of a p-valued field F supports a valuation v which corresponds to a l.d. relation \mathcal{D}_{v} on the domain A. So the notations \mathcal{M}_{A} and k_{A} are always relative to this valuation v. If A is a ring then we denote by A^{\times}the set of units of A and if B is a subset of A then we denote by B^{\bullet} the set $B \backslash\{0\}$.
Definition 2.8. A p-convexly valued domain A is a p-valued domain such that A is a valuation ring and \mathcal{M}_{A} is p-convex in A.
Remark 2.9. Equivalent properties characterize p-convexly valued domains A (see Lemma 2.5 of [7]); for example,

$$
A \models \forall x, y\left(v_{p}(x) \leqslant v_{p}(y) \rightarrow \exists z(x z=y)\right),
$$

which motivates Definition 2.1.
Another equivalent property is that A is a valuation ring and for every $a \in \mathcal{M}_{A}$, $v_{p}(a)>0$.

Let \mathcal{L}_{p} be an expansion of the language of rings $\mathcal{L}_{\text {rings }} \cup\left\{\mathcal{D}_{v_{p}}, \mathcal{D}_{v}\right\}$ such that $\mathcal{D}_{v_{p}}$ will be interpreted as a l.d. relation with respect to a p-valuation v_{p} and \mathcal{D}_{v} as a l.d. relation with respect to a valuation v. The \mathcal{L}_{p}-theory of p-convexly valued domains is denoted by $p C V R$. An axiomatization of $p C V R$ in \mathcal{L}_{p} can be found in Section 2 of [7].

Now we recall a part of Lemma 2.9 in [7].
Lemma 2.10. Let \mathcal{A}, \mathcal{B} be two \mathcal{L}_{p}-structures which are models of $p C V R$ and B is a p-convexly valued domain extension of A (i.e. $\left\langle A, \mathcal{D}_{v_{p}}\right\rangle \subseteq\left\langle B, \mathcal{D}_{v_{p}}\right\rangle$ or $Q(A) \subseteq Q(B)$ as p-valued fields). Then the following are equivalent:
(1) $\mathcal{A} \subseteq_{\mathcal{L}_{p}} \mathcal{B}$;
(2) $A \cap \mathcal{M}_{B}=\mathcal{M}_{A}$;

Remark 2.11. By Lemma 2.10 in [7], we know that if A is a p-convexly valued domain then $v_{p}\left(A^{\times}\right)$is a convex subgroup of $v_{p}\left(Q(A)^{\times}\right)$. Hence if A is a p-convexly valued domain then, by p-convexity of \mathcal{M}_{A} in A, we have $v_{p}\left(A^{\times}\right)<v_{p}\left(\mathcal{M}_{A}\right)$.

So we can define a p-valuation on the residue field k_{A} of A, denoted by \widetilde{v}_{p}, as follows:

- if $x=0$ in k_{A} then $\widetilde{v}_{p}(x)=\infty$;
- otherwise if $x \neq 0$ in k_{A}, we take $y \in A^{\times}$such that $\pi_{v}(y)=x$ and define $\widetilde{v}_{p}(x)$ as $v_{p}(y)$ (where v is the valuation with respect to A).
Since $v_{p}\left(A^{\times}\right)<v_{p}\left(\mathcal{M}_{A}\right), \widetilde{v}_{p}$ is well-defined and $\left\langle k_{A}, \widetilde{v}_{p}\right\rangle$ is a p-valued field.
The two next lemmas will allow us to extend p-convexly valued domains in the most natural way as possible.

Lemma 2.12. Let A be a p-valued domain and let $\left\langle K, v_{p}\right\rangle$ be a p-valued field extension of $Q(A)$ such that there exists an element of K of value lower than $v_{p}\left(A^{\bullet}\right)$.

Then there exists a minimal p-convexly valued domain pcH(A,K) containing A whose fraction field is K. Furthermore, if A is a p-convexly valued domain then $A \subseteq_{\mathcal{L}_{p}} p c H(A, K)$.
Proof. See Lemma 2.14 in [7] where $p c H(A, K)$ is defined as follows

$$
\left\{k \in K: \quad \exists a \in A \text { such that } K \models v_{p}(a) \leqslant v_{p}(k)\right\} .
$$

Lemma 2.13. Let A be a p-convexly valued domain and let $\widetilde{Q(A)}$ be a p-adic closure of $Q(A)$ for the p-valuation v_{p} on $Q(A)$.

Then there exists a p-convexly valued domain \widetilde{A} such that

- $A \subseteq_{\mathcal{L}_{p}} \widetilde{A}$, the valuation v with respect to \widetilde{A} is henselian,
- its residue field $k_{\widetilde{A}}$ is p-adically closed, its value group is divisible
- and its fraction field is $\widetilde{Q(A)}$.

Proof. See Lemma 2.15 in [7].
Now we recall the definition of the Kochen's operator which plays an important role in the characterization of p-valued field extensions (see Chapter 6 in [14]).

Definition 2.14. The following operator $\gamma_{p}(X)$ is called the Kochen's operator:

$$
\gamma_{p}(X)=\frac{1}{p} \cdot \frac{X^{p}-X}{\left(X^{p}-X\right)^{2}-1} .
$$

Let us introduce the notion of M-Kochen ring defined in Definition 3.6 in [7]. It yields, in Theorem 2.21, a characterization of the intersection of the valuation rings of p-valuations which extend a given p-valuation v_{p} such that $v_{p}(M) \geqslant 0$ for some particular subset M.

Definition 2.15. For any field extension L of a p-valued $\left\langle K, v_{p}\right\rangle$ and any subset M of L, the M-Kochen ring $R_{\gamma_{p}}^{M}(L)$ is defined as the subring of L consisting of quotients of the form

$$
a=\frac{b}{1+p d} \text { with } b, d \in \mathcal{O}_{K, v_{p}}\left[\gamma_{p}(L), M\right] \text { and } 1+p d \neq 0
$$

where $\mathcal{O}_{K, v_{p}}\left[\gamma_{p}(L), M\right]$ denotes the subring of L generated by $\gamma_{p}(L) \backslash\{\infty\}$ and M over the ring $\mathcal{O}_{K, v_{p}}$.

Remark 2.16. If $\left\langle K, v_{p}\right\rangle$ is a henselian p-valued field then $\mathcal{O}_{K, v_{p}}$ is equal to $\gamma_{p}(K)$ (see Remark 1 in [11]). In this case, the elements of the M-Kochen ring $R_{\gamma_{p}}^{M}(L)$ (for a field extension L of K) have the following form $a=\frac{b}{1+p d}$ with $b, d \in \mathbb{Z}\left[\gamma_{p}(L), M\right]$ and $1+p d \neq 0$. Let us note that the fraction field of $R_{\gamma_{p}}^{M}(L)$ is L (see Merckel's Lemma in [14, Appendix]).
Definition 2.17. Let $\mathcal{L}_{p, a}$ be the following language $\mathcal{L}_{p} \cup\{a\}$. Let $\left\langle K, v_{p}, v, a\right\rangle$ be a p valued field with v_{p} its p-valuation, a non-trivial valuation v on K and a distinguished element a of K.

We say that K is a henselian residually p-adically closed field if $v\left(K^{\times}\right)$is a \mathbb{Z}-group with $v(a)=1, v$ is henselian and its residue field $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle$ is p-adically closed (see Remark 2.11).

We will denote this $\mathcal{L}_{p, a}$-theory $\operatorname{Th}(K)$ by $H R p C F$.
Clearly, a canonical model of $H R p C F$ is the field of Laurent series over \mathbb{Q}_{p}, denoted by $\mathbb{Q}_{p}((t))$ (t plays the role of the distinguished element $\left.a\right)$.

Remark 2.18. More generally if we consider a p-adically closed field K with its p valuation v_{p} then we can obtain a henselian p-adically closed field by considering the field of Laurent series $K((t))$ over K with its t-adic valuation compatible with the following natural p-valuation w_{p} : for any $f:=\sum_{i \geqslant z} f_{i} t^{i}$ with $f_{z} \neq 0$, we define $w_{p}(f):=\left(z, v_{p}\left(f_{z}\right)\right) \in \mathbb{Z} \times v_{p}\left(K^{\times}\right)$, lexicographically ordered.

Let us consider a p-valued field $\left\langle K, v_{p}\right\rangle$ with its p-valuation v_{p} henselian and let assume moreover that its value group contains a non-trivial smallest convex subgroup G such that $v\left(K^{\times}\right) / G$ (equipped with its induced ordering) has a smallest positive element. Then $\left\langle K, v_{p}, w\right\rangle$ can be extended to a model of $H R p C F$ where w is the coarse valuation with respect to G. It suffices for this to apply Lemma 2.23 like in Theorem 2.28.

In the theory of henselian residually p-adically closed fields, another operator $\gamma(X)$ (defined in the following lemma) will play an important role as the one of Kochen's operator in the p-adic field case (see [11]). It enables us to determine whenever an element of the maximal ideal of a valued field $\langle K, v\rangle$ has the least positive value.
Lemma 2.19. Let $\langle K, v\rangle$ be a valued field and let a be a non-zero element of K. Let γ be the operator defined by $\gamma(X)=\frac{X}{X^{2}-a}$. Then the following are equivalent:
(1) $v(a)=1$,
(2) $\gamma(K) \subseteq \mathcal{O}_{K}$ and $a \in \mathcal{M}_{K}$.

Proof. See Lemma 2.3 in [4].
Lemma 2.20. Let $\langle K, v\rangle$ be a henselian valued field such that $v(a)=1$. Then $\mathcal{O}_{K, v}=\gamma(K)$.

Proof. By Lemma 2.19, we have that $\gamma(K) \subseteq \mathcal{O}_{K}$ and $a \in \mathcal{M}_{K}$. Let y be in \mathcal{O}_{K} and let us consider the polynomial $f(X)=X-y\left(X^{2}-a\right)$. Then 0 is a simple residue root of f and by Hensel's Lemma, there exists an element x of $\mathcal{O}_{K, v}$ such that $f(x)=0$; hence $y=\gamma(x)$.

This is the content of Theorem 3.11 in [7].
Theorem 2.21. Let L be a field extension of a p-valued field $\left\langle K, v_{p}\right\rangle$ and let M be a subset of L such that $v_{p}\left((M \cap K)^{\bullet}\right) \geqslant 0$. Assume that there exists a p-valuation w_{p} on L such that $M \subseteq \mathcal{O}_{L, w_{p}}$.

Then the subring $R_{\gamma_{p}}^{M}(L)$ of L is the intersection of the valuation rings $\mathcal{O}_{L, v}$ where v ranges over the p-valuations of L which extend the one of K such that M belongs to $\mathcal{O}_{L, v}$.

The two next lemmas allow us to extend the \mathcal{L}_{p}-structure of a p-valued field $\left\langle K, v_{p}, v\right\rangle$ with a valuation v compatible with v_{p} to particular valued field extensions $\langle L, w\rangle$.

In the following proofs, we use the notations of Remark 2.11: if $\left\langle K, v_{p}, v\right\rangle$ is a p-valued field such that the non-trivial valuation v is compatible with v_{p} and $\operatorname{char}\left(k_{K, v}\right)=0$ then $\mathcal{O}_{K, v}$ is a p-convexly valued domain and $\left\langle k_{\mathcal{O}_{K, v}}, \widetilde{v}_{p}\right\rangle$ is p-valued. Let us note that $k_{\mathcal{O}_{K, v}}=k_{K, v}$.

Lemma 2.22. Let $\left\langle K, v_{p}, v\right\rangle$ be a p-valued field such that v is a non-trivial valuation compatible with v_{p} and char $\left(k_{K, v}\right)=0$, let $\langle L, w\rangle$ be a valued field extension of $\langle K, v\rangle$ with $v\left(K^{\times}\right)=w\left(L^{\times}\right)$and let \bar{w}_{p} be a p-valuation on $k_{L, w}$ such that $\left\langle k_{L, w}, \bar{w}_{p}\right\rangle$ is a p-valued field extension of $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle$. Then there exists a p-valuation w_{p} on L such that w is compatible with w_{p} and $\widetilde{w}_{p}=\bar{w}_{p}$.

Proof. First we define a subring $\mathcal{O}_{L, w_{p}}$ of $\mathcal{O}_{L, w}$ and then we show that it is a valuation ring and that the corresponding valuation w_{p} is a p-valuation satisfying the required properties.

We define the subring $\mathcal{O}_{L, w_{p}}$ of $\mathcal{O}_{L, w}$ as follows: let $x \in L$, we say that $x \in \mathcal{O}_{L, w_{p}}$ iff the value $w(x)$ is strictly positive or $w(x)=0$ and $\bar{w}_{p}\left(\pi_{w}(x)\right) \geqslant 0$. Clearly, $\mathcal{O}_{L, w_{p}}$ is a valuation ring of L, the corresponding valuation w_{p} is a p-valuation on L since \bar{w}_{p} is a p-valuation on $k_{L, w}$; and the compatibility of w with w_{p} comes from the definition.

If y is an element of $k_{L, w}$ such that $y=\pi_{w}(x) \neq 0$ for some x in $\mathcal{O}_{L, w}^{\times}$then $\widetilde{w}_{p}(y)$ is defined as $w_{p}(x)$. By definition, $w_{p}(x) \geqslant 0$ iff $\bar{w}_{p}\left(\pi_{w}(x)\right)=\bar{w}_{p}(y) \geqslant 0$. So we get that \bar{w}_{p} coincides with \widetilde{w}_{p}.

The next lemma is based on the previous one and a construction used by R. Farré in Proposition 1.3 of [4].
Lemma 2.23. Let $\left\langle K, v_{p}, v\right\rangle$ be a p-valued field such that v is a non-trivial valuation compatible with v_{p} and char $\left(k_{K, v}\right)=0$ and let H be an ordered abelian group such that $v\left(K^{\times}\right) \subseteq H \subseteq \widehat{v\left(K^{\times}\right)}$, the divisible hull of $v\left(K^{\times}\right)$.

Then there exists an algebraic valued field extension $\left\langle L, w_{p}, w\right\rangle$ of $\left\langle K, v_{p}, v\right\rangle$ such that $\langle L, w\rangle$ is henselian, $\left\langle k_{L, w}, \widetilde{w}_{p}\right\rangle$ is p-adically closed and $w\left(L^{\times}\right)=H$.
Proof. First, we take a henselian valued field extension $\langle L, w\rangle$ of $\langle K, v\rangle$ such that its residue field is a p-adic closure $\left\langle\widehat{k_{K}}, \widehat{\widetilde{v}}_{p}\right\rangle$ of $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle$ and $v\left(K^{\times}\right)=w\left(L^{\times}\right)$(see [15, p. 164]). By applying Lemma 2.22, we take a p-valuation w_{p} on L extending v_{p} such that w is compatible with w_{p} and $\widetilde{w}_{p}=\widehat{\widetilde{v}}_{p}$. Let $\left\langle\widehat{L}, \widehat{w}_{p}\right\rangle$ be a p-adic closure of $\left\langle L, w_{p}\right\rangle$.

Since $\mathcal{O}_{L, w}$ is a p-convexly domain (with respect to w_{p}), we can apply Lemma 2.13 to find a p-convexly valued domain $\widehat{\mathcal{O}}$ with fraction field \widehat{L} such that $\mathcal{O}_{L, w} \subseteq_{\mathcal{L}_{p}} \widehat{\mathcal{O}}$.

So $\left\langle\widehat{L}, \widehat{w}_{p}, \widehat{w}\right\rangle$ is an \mathcal{L}_{p}-extension of $\left\langle K, v_{p}, v\right\rangle$ where \widehat{w} is the valuation corresponding to the valuation ring $\widehat{\mathcal{O}}$. Moreover the valuation \widehat{w} on \widehat{L} is henselian and so, by Lemma 2.3, \widehat{w} is compatible with $\widehat{w_{p}}$. By construction, the value group of $\langle\widehat{L}, \widehat{w}\rangle$ is the divisible hull $\widehat{v\left(K^{\times}\right)}$of $v\left(K^{\times}\right)$and $\left\langle k_{\widehat{L}, \widehat{w}}, \widetilde{\widehat{w}_{p}}\right\rangle=\left\langle\widehat{k_{K}}, \widehat{\widehat{v}}_{p}\right\rangle$. We finally take a field extension L_{0} of L into \widehat{L} maximal with the property $v\left(L_{0}^{\times}\right) \subseteq H$. We will have finished if we prove $v\left(L_{0}^{\times}\right)=H$. Otherwise let h be an element of $H \backslash v\left(L_{0}^{\times}\right)$and n its order into $H / v\left(L_{0}^{\times}\right)$. Taking $b \in L_{0}$ with $v(b)=n \cdot h$ and $c=\sqrt[n]{b} \in \widehat{L}$ we have $v(c)=h$. We then note that the following natural inequalities

$$
n \leqslant\left(v\left(L_{0}^{\times}\right)+(h): v\left(L_{0}^{\times}\right)\right) \leqslant\left(v\left(L_{0}(c)^{\times}\right): v\left(L_{0}^{\times}\right)\right) \leqslant\left[L_{0}(c): L_{0}\right]
$$

are in fact equalities and therefore $v\left(L_{0}(c)^{\times}\right)=v\left(L_{0}^{\times}\right)+(h) \subseteq H$, contradicting the maximality of L_{0}.

Now we show the definability of the p-valuation v_{p} in henselian residually p-adically closed fields.

Lemma 2.24. Let $\left\langle K, v_{p}, v\right\rangle$ be a henselian residually p-adically closed field. Then the membership to the valuation ring $\mathcal{O}_{K, v_{p}}$ is existentially definable in the language $\mathcal{L}_{\mathcal{D}}:=\mathcal{L}_{\text {rings }} \cup\{\mathcal{D}\}$.

Proof. By definition of $H R p C F,\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle$ is p-adically closed with respect to \widetilde{v}_{p} and $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle \models \forall z\left[\widetilde{v}_{p}(z) \geqslant 0 \Longleftrightarrow \exists y\left(y^{\epsilon}=1+p z^{\epsilon}\right)\right]$ with ϵ choosen as in the statement of Lemma 2.3. Since v is compatible with v_{p}, the equivalent properties of p-convexly valued domains give us $v_{p}\left(\mathcal{M}_{K, v}\right)>0$ (see Remark 2.9).

If $v(x)=0$ then $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle \models \exists y\left[y^{\epsilon}=1+p \pi_{v}(x)^{\epsilon}\right] \vee \exists w\left[w^{\epsilon}=1+p \pi_{v}\left(x^{-1}\right)^{\epsilon}\right]$. If $\widetilde{v}_{p}\left(\pi_{v}(x)\right) \geqslant 0$ then $\widetilde{v}_{p}(y)=0$ (otherwise we deal with x^{-1} and w); hence if z is an element of K such that $\pi_{v}(z)=y$ then z is a simple residue root of $f(Y)=$ $Y^{\epsilon}-\left(1+p x^{\epsilon}\right)$. By Hensel's Lemma applied to v, we get that $K \models \exists w\left[w^{\epsilon}=1+p x^{\epsilon}\right]$; i.e. $v_{p}(x) \geqslant 0$.

So we conclude that $v_{p}(x) \geqslant 0$ iff

$$
v(x)>0 \vee\left[v(x)=0 \wedge \exists y\left(y^{\epsilon}=1+p x^{\epsilon}\right)\right] \vee\left[v(x)=0 \wedge \exists z\left(z^{\epsilon}=x^{\epsilon}+p\right)\right]
$$

Remark 2.25 . Since the theory of p-adically closed fields $p C F$ is model complete in the language of fields and the theory of \mathbb{Z}-groups is model complete in the language of abelian totally ordered groups $\{+,-, \leqslant, 0,1\}$, we get that the theory $H R p C F$ is model complete in $\mathcal{L}_{\mathcal{D}} \cup\{\underline{a}\}:=\mathcal{L}_{\mathcal{D}, a}$ by classical Ax-Kochen-Ersov principle for valued fields of equicharacteristic zero (see, for example, the results from [3]).

Moreover, for henselian residually p-adically closed fields, we conclude that the p-valuation v_{p} is henselian since it holds for $\mathbb{Q}^{h}(t)^{h}$ (with \mathbb{Q}^{h} is the Henselization of \mathbb{Q} with respect to its natural p-valuation v_{p}) and \mathcal{D}_{p} is existentially definable in $\mathcal{L}_{\mathcal{D}, a}$ (see Lemma 2.24).

Lemma 2.26. In the $\mathcal{L}_{\mathcal{D}, a}$-theory of henselian residually p-adically closed fields, the negations of nth power predicates P_{n} are existentially definable in the language of rings with the distinguished element a.

Proof. Let K be a model of $H R p C F$. We consider a non-zero element x in K such that $v(x) \geqslant 0$ (otherwise if $v(x)<0$ then we use that $K \models P_{n}(x) \Longleftrightarrow P_{n}\left(x^{-n+1}\right)$). Then for each natural number, we get that

$$
K \models \exists y\left[\bigvee_{i=0}^{n-1} v(x)=v\left(a^{i} y^{n}\right)\right] \text { since } v\left(K^{\times}\right) \text {is a } \mathbb{Z} \text {-group with } v(a)=1
$$

Since $\mathcal{O}_{K, v}$ satisfies Hensel's Lemma and $k_{K, v}$ is p-adically closed, this is equivalent to

$$
k_{K, v} \models \exists z\left[\bigvee_{i=0}^{n-1} \bigvee_{q \in \Delta_{n}} z^{n}=q \cdot \pi_{v}\left(x \cdot a^{-i} \cdot y^{-n}\right)\right]
$$

where $\Delta_{n}=\left\{q \in \mathbb{N} \mid q=\lambda p^{r}, 0 \leqslant r<n, \lambda \in \Lambda_{n}\right\}$ and $\Lambda_{n}=\{\lambda \in \mathbb{N} \mid 1 \leqslant \lambda \leqslant$ $\left.p^{v_{p}(n)+1}, p \nmid \lambda\right\}$ (see [1]). So we get that $K=\bigcup_{i=0}^{n-1} \bigcup_{q \in \Delta_{n}} q a^{i} K^{n}$ (and the union is disjoint).

Now we state and prove the analogue of the Hilbert's Seventeenth problem for a henselian residually p-adically closed field K. In the sequel, we denote the ring of polynomials in n indeterminates over K by $K[\underline{X}]$ and its fraction field by $K(\underline{X})$.

Before stating the theorem, we recall a lemma from [11].
Lemma 2.27. Let D be a divisible totally ordered abelian group with d a positive element in D. Let H be a subgroup of D which is maximal with respect to the property that $d=1$ in H. Then H forms a \mathbb{Z}-group.

Now we define the following subsets of $K(\underline{X})$: the subring $A:=\langle\gamma(K(\underline{X}))\rangle$ of $K(\underline{X})$ generated by $\gamma(K(\underline{X}))$ and $M:=A \cdot \mathcal{M}_{K, v}$.
Theorem 2.28. Let $\left\langle K, v_{p}, v\right\rangle$ be a henselian residually p-adically closed field and let f be in $K(\underline{X})$. Assume that $v_{p}(f(\bar{x})) \geqslant 0$ for every $\bar{x} \in K^{n}$ such that $f(\bar{x})$ is defined (*).

Then f belongs to the M-Kochen ring $R_{\gamma_{p}}^{M}(K(\underline{X}))$ of $K(\underline{X})$.
Proof. Suppose that f does not belong to $R_{\gamma_{p}}^{M}(K(\underline{X}))$. Since there exists a p-valuation v_{p} on $K(\underline{X})$ which extends the one of K such that $v_{p}(M) \geqslant 0$ (see Remark 2.29), we can extend the p-valuation v_{p} on K to a p-valuation w_{p} on $K(\underline{X})$ such that $w_{p}(M) \geqslant 0$ and $w_{p}(f)<0$ by applying Lemma 2.21.

Let us consider $B=p c H(A, K(\underline{X}))$. Since B is not a field, Lemma 2.12 yields that B is a p-convexly valued domain whose fraction field is $K(\underline{X})$. In the following, we denote by w the valuation on $K(\underline{X})$ corresponding to the valuation ring B. Since $a \in \mathcal{M}_{K, v}$ and $v_{p}\left(A \cdot \mathcal{M}_{K, v}\right) \geqslant 0$, we get that $v_{p}\left(a^{-1}\right)<v_{p}(A)$; hence $a \in \mathcal{M}_{B}$. Since $\gamma(K(\underline{X})) \subseteq B,\langle K(\underline{X}), w\rangle$ is a valued field such that $w(a)=1$ (see Lemma 2.19). The following statement of Lemma 2.10 shows us that $\mathcal{O}_{K, v} \subseteq_{\mathcal{L}_{\mathcal{D}, a}} B$:

$$
\mathcal{M}_{B} \cap \mathcal{O}_{K, v}=\mathcal{M}_{K, v}
$$

Indeed, the inclusion \subseteq is trivial and for the other one, we know that B satisfies $v_{p}\left(m^{-1}\right)<v_{p}(h)$ for any $m \in \mathcal{M}_{K, v}$ and any $h \in A$ and by definition of B, it implies that $m^{-1} \notin p c H(A, K(\underline{X}))=B$; so the conclusion follows.

Since $\mathcal{O}_{K, v}=\gamma(K) \subseteq \gamma(K(\underline{X})) \subseteq B=\mathcal{O}_{K(\underline{X}), w}$ (see Lemma 2.20) and $\mathcal{M}_{K, v}=$ $a \cdot \mathcal{O}_{K, v} \subseteq a \cdot \mathcal{O}_{K(\underline{X}), w}=\mathcal{M}_{B}$ by Lemma 2.19, we conclude

$$
\left\langle K, \mathcal{D}_{v_{p}}, \mathcal{D}_{v}, a\right\rangle \subseteq_{\mathcal{L}_{p, a}}\left\langle K(\underline{X}), \mathcal{D}_{w_{p}}, \mathcal{D}_{w}, a\right\rangle .
$$

Now we use Proposition 2.23 applied to Lemma 2.27 in order to obtain an extension $\left\langle L, \bar{w}_{p}, \bar{w}\right\rangle$ of $\left\langle K(\underline{X}), w_{p}, w\right\rangle$ such that $\langle L, \bar{w}\rangle$ henselian, $\left\langle k_{L, \bar{w}}, \widetilde{\bar{w}}_{p}\right\rangle$ is p-adically closed, $\left\langle L, \bar{w}_{p}\right\rangle$ is a p-valued extension of $\left\langle K(\underline{X}), w_{p}\right\rangle$ and $\bar{w}\left(L^{\times}\right)$is a \mathbb{Z}-group with $\bar{w}(a)=$ $1_{\bar{w}\left(L^{\times}\right)}$.

By applying Ax-Kochen-Ersov transfer theorem for henselian valued fields of equicharacteristic zero, we deduce that $\left\langle K, \mathcal{D}_{v}, a\right\rangle \prec\left\langle L, \mathcal{D}_{\bar{w}}, a\right\rangle$ in the language $\mathcal{L}_{\mathcal{D}, a}$. Keeping in mind that, as well in K as in L, the p-valuations are existentially definable in the language $\mathcal{L}_{\text {rings }} \cup\{\mathcal{D}\}$, we have that $\left\langle K, \mathcal{D}_{v_{p}}, \mathcal{D}_{v}, a\right\rangle \prec_{\mathcal{L}_{p, a}}\left\langle L, \mathcal{D}_{\bar{w}_{p}}, \mathcal{D}_{\bar{w}}, a\right\rangle$. But $\bar{w}_{p}(f)<0$ in L implies $\bar{w}_{p}(f(\underline{X}))<0$ and hence the formula ϕ expressing $\exists \bar{x}(f(\bar{x}))$ is defined and $\bar{w}_{p}(f(\bar{x}))<0$ holds in L. By the elementary inclusion, ϕ holds in $\left\langle K, v_{p}, v\right\rangle$ showing that $\left(^{*}\right)$ is false.
Remark 2.29. In the previous theorem, we have to find a p-valuation v_{p} on $K(\underline{X})$ which extends the one of K such that $v_{p}(M) \geqslant 0$, i.e. $v_{p}\left(A \cdot \mathcal{M}_{K, v}\right) \geqslant 0$. We take a $|K|^{+}$-saturated $\mathcal{L}_{p, a}$-elementary extension L of K and so, we satisfy in L the n type required for X_{1}, \cdots, X_{n}. This n-type is consistent since in L, we have that $\gamma(L) \subseteq \mathcal{O}_{L, v}$ and so $A(L) \cdot \mathcal{M}_{L, v} \subseteq \mathcal{M}_{L, v} \subseteq \mathcal{O}_{L, v_{p}}$ where the subring $A(L)$ of L generated by $\gamma(L)$ is equal to $\mathcal{O}_{L, v}$.

3. Nullstellensatz for henselian residually p-adically closed fields

In this section, we introduce the notion of residually p-adic ideal and the one of residually p-adic radical of an ideal in $K[\underline{X}]$ over a henselian residually p-adically closed field K, by analogy with these notions in the p-adic case (see [17]). These two notions are related to the M-Kochen ring with the previous subset M of $K(\underline{X})$, i.e. $A \cdot \mathcal{M}_{K, v}$ where $A:=\langle\gamma(K(\underline{X}))\rangle$ is the subring of $K(\underline{X})$ generated by $\gamma(K(\underline{X}))$. We will closely follow the work of A. Srhir in order to prove a Nullstellensatz theorem for henselian residually p-adically closed fields.

Definition 3.1. Let $\left\langle K, v_{p}, v, a\right\rangle$ be a p-valued field with v a non-trivial valuation and let a be a non-zero element of K.

We call such a field residually p-valued if v is compatible with $v_{p}, k_{K, v}$ is of characteristic zero and $v(a)=1$.

Definition 3.2. Let $\left\langle K, v_{p}, v, a\right\rangle$ be a residually p-valued field and let L be a field extension of K.

We say that L is a formally residually p-valued field over K if L admits a p valuation w_{p} which extends the given p-valuation v_{p} on K and a valuation w such that $\left\langle L, w_{p}, w\right\rangle$ is residually p-valued and $K \subseteq_{\mathcal{L}_{p}} L$; i.e. $\left\langle L, w_{p}, w\right\rangle$ is a residually p-valued field extension.

Remark 3.3. If $\left\langle K, v_{p}, v, a\right\rangle$ is a residually p-valued field then $K(X)$ is formally residually p-valued over K. It suffices to extend the two valuations v_{p} and v as follows.

Let f be an element of $K[X]$, i.e. $f=\sum_{i=k}^{N} f_{i} X^{i}$ for some natural numbers $0 \leqslant k \leqslant N$ with $f_{k} \neq 0 ; k$ is called the initial degree of f. Then we let $w(f):=$ $\left(k, v\left(f_{k}\right)\right) \in \mathbb{N} \times v\left(K^{\times}\right)$and so, we extend w to the field of rational functions $K(X)$ by letting $w(g / h):=w(g)-w(h) \in \mathbb{Z} \times v\left(K^{\times}\right)$(lexicographically ordered) where g, $h \in K[X]$ and $h \neq 0$. We proceed similarly for w_{p} which is a p-valuation on $K(X)$ extending the one of K. Let us show that w is compatible with w_{p} on $K(X)$. So we consider elements $f / g, s / t \in K(X)$ such that $w_{p}(f / g) \leqslant w_{p}(s / t)$. We have to distinguish two cases:

- the difference of the initial degrees of (f, g) and (s, t) is the same and so, we conclude by using the compatibility of v with v_{p};
- the difference of the initial degrees of (f, g) is strictly less than the one of (s, t) and the conclusion follows from the definition of w and the lexicographic order of $\mathbb{Z} \times v\left(K^{\times}\right)$.
By induction, we get the same result for $K(\underline{X})$.
In [7, Theorem 3.4], we showed the following
Theorem 3.4. Let L be a field extension of the p-valued field $\left\langle K, v_{p}\right\rangle$ and let M be a subset of L such that $v_{p}\left((M \cap K)^{\bullet}\right) \geqslant 0$.

A necessary and sufficient condition for L to be a p-valued field extension of K such that $v_{p}\left(M^{\bullet}\right) \geqslant 0$ is that

$$
\frac{1}{p} \notin \mathcal{O}_{K, v_{p}}\left[\gamma_{p}(L), M\right] .
$$

So we can deduce the following
Proposition 3.5. Let L be a field extension of a residually p-valued field $\left\langle K, v_{p}, v, a\right\rangle$. Then L is formally residually p-valued over K iff $\frac{1}{p} \notin \mathcal{O}_{K, v_{p}}\left[\gamma_{p}(L), M\right]$ where M is equal to $A . \mathcal{M}_{K, v}$ and $A:=\langle\gamma(L)\rangle$ is the subring of L generated by $\gamma(L)$.
Proof. The implication (\Rightarrow) is trivial. Indeed, if we assume that $\left\langle L, w_{p}, w, a\right\rangle$ is a residually p-valued field extension of K then we get that $v_{p}\left(\mathcal{O}_{K, v_{p}}\left[\gamma_{p}(L), M\right]\right) \geqslant 0$ since $w_{p}\left(\gamma_{p}(L)\right) \geqslant 0\left(\right.$ see Lemma 6.2 in [14]), $\gamma(L) \subseteq \mathcal{O}_{L, w}$ and so, $A \cdot \mathcal{M}_{L, w} \subseteq$ $\mathcal{M}_{L, w} \subseteq \mathcal{O}_{L, w_{p}}$ (because w is compatible with w_{p}).

For the other one, there exists a p-valuation w_{p} on L such that $w_{p}(M) \geqslant 0$ by Theorem 3.4. It suffices to follow the same proof as the one of Theorem 2.28 in order to build a valuation w on L such that w is compatible with w_{p} and $w(a)=1$.

In Section 2, we have already defined the notion of M-Kochen ring $R_{\gamma_{p}}^{M}(L)$ for a field extension L of a p-valued field $\left\langle K, v_{p}\right\rangle$.

For the rest of the section, we assume that K is a henselian residually p-adically closed field and that M is the subset of any field extension L as in the previous proposition. Hence we have that the elements of the M-Kochen ring $R_{\gamma_{p}}^{M}(L)$ over L have the following form $a=\frac{b}{1+p d}$ with $b, d \in \mathbb{Z}\left[\gamma_{p}(L), M\right]$ and $1+p d \neq 0$ since the p-valuation v_{p} is henselian (see Remark 2.16).

Proposition 3.6. Let L be a field extension of K. Then L is a formally residually p-valued field over K iff $\frac{1}{p} \notin R_{\gamma_{p}}^{M}(L)$.

Proof. We assume that L is formally residually p-valued over K. If $\frac{1}{p} \in R_{\gamma_{p}}^{M}(L)$ then there exist $t, s \in \mathbb{Z}\left[\gamma_{p}(L), M\right]$ such that $\frac{1}{p}=\frac{t}{1+p s}$. Thus we have $p(t-s)=1$. This contradicts Proposition 3.5.

Conversely assume that $\frac{1}{p} \notin R_{\gamma_{p}}^{M}(L)$. Since $\mathbb{Z}\left[\gamma_{p}(L), M\right] \subseteq R_{\gamma_{p}}^{M}(L)$, one has $\frac{1}{p} \notin$ $\mathbb{Z}\left[\gamma_{p}(L), M\right]$.

Now we prove the analogue of Corollary 1.6 in [17].
Corollary 3.7. Let L be a henselian residually p-adically closed field such that $K \subseteq_{\mathcal{L}_{\mathcal{D}, a}}$ L. Let I be an ideal of $K[\underline{X}]$ generated by f_{1}, \cdots, f_{r} and let g be a polynomial not in I. Let $\Phi: K[\underline{X}] / I \longmapsto L$ be a K-homomorphism such that $\Phi(\bar{g}) \neq 0$. Then there exists a K-homomorphism $\Psi: K[\underline{X}] / I \longmapsto K$ such that $\Psi(\bar{g}) \neq 0$.

Proof. We put $x_{1}=\Phi\left(X_{1}+I\right), \cdots, x_{n}=\Phi\left(X_{n}+I\right)$ and $\bar{x}:=\left(x_{1}, \cdots, x_{n}\right)$. Then $\bar{x} \in L^{n}, f_{1}(\bar{x})=\cdots=f_{r}(\bar{x})=0$ and $g(\bar{x}) \neq 0$. This statement can be expressed by an elementary $\mathcal{L}_{\mathcal{D}, a}$-sentence with parameters from K which holds in L. Since the $\mathcal{L}_{\mathcal{D}, a}$-theory $H R p C F$ is model complete, we infer that this statement also holds in K. Thus there exists $\bar{y} \in K^{n}$ such that $f_{1}(\bar{y})=\cdots=f_{r}(\bar{y})=0$ and $g(\bar{y}) \neq 0$.

Now Definition 3.1 of [17] motivates the following definition of a residually p-adic ideal in $K[\underline{X}]$.

Definition 3.8. Let I be an ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. We say that I is a residually p-adic ideal of $K[\underline{X}]$ if for any $g \in K[\underline{X}]$, for any $m \in \mathbb{N}^{\bullet}$ and for any $\lambda_{1}, \cdots, \lambda_{r} \in R_{\gamma_{p}}^{M}(K(\underline{X})) . K[\underline{X}]$ such that $g^{m}=\lambda_{1} f_{1}+\cdots+\lambda_{r} f_{r}$ then we have $g \in I$, where $R_{\gamma_{p}}^{M}(K(\underline{X})) \cdot K[\underline{X}]$ is the subring of $K(\underline{X})$ generated by $R_{\gamma_{p}}^{M}(K(\underline{X}))$ and $K[\underline{X}]$.

Remark 3.9. As in Remark 3.2 in [17], this definition does not depend on the choice of the basis f_{1}, \cdots, f_{r} of the ideal I. If \bar{a} is an element of K^{n} then the maximal ideal $K[\underline{X}]$ defined by $\mathcal{M}_{\bar{a}}:=\{f \in K[\underline{X}] \mid f(\bar{a})=0\}$ is a residually p-adic ideal of $K[\underline{X}]$.
Notation 3.10. If I is an ideal of $K[\underline{X}]$, we will denote by $\mathcal{Z}(I)$ the algebraic set of K^{n} defined by $\mathcal{Z}(I):=\left\{\bar{x} \in K^{n} \mid f(\bar{x})=0 \quad \forall f \in I\right\}$ and by $\mathcal{I}(\mathcal{Z}(I)):=\{f \in$ $K[\underline{X}] \mid f(\bar{x})=0 \quad \forall \bar{x} \in \mathcal{Z}(I)\}$.

If, in addition, I is a prime ideal of $K[\underline{X}]$, then we shall denote by - the residue map with respect to I and by $K(I)$ the residue field of I, i.e. the fraction field of the domain $K[\underline{X}] / I$.
Proposition 3.11. Let I be an ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. Then the ideal $\mathcal{I}(\mathcal{Z}(I))$ is a residually p-adic ideal.
Proof. Let g be a polynomial in $K[\underline{X}], m \in \mathbb{N}^{\bullet}$ and $\lambda_{1}, \cdots, \lambda_{r} \in R_{\gamma_{p}}^{M}(K(\underline{X})) \cdot K[\underline{X}]$ such that $g^{m}=\lambda_{1} f_{1}+\cdots+\lambda_{r} f_{r}$. We have to show that $g \in \mathcal{I}(\mathcal{Z}(I))$. Let \bar{x} be in $\mathcal{Z}(I)$. We consider the following K-rational place $\phi: K(\underline{X}) \longmapsto K \cup\{\infty\}$ such that $\phi\left(X_{i}\right)=x_{i}$ for $1 \leqslant i \leqslant n$. Since $f_{j} \in I$, we have $\phi\left(f_{j}\right)=0$ for all $1 \leqslant i \leqslant r$.

Claim: for any $\lambda \in R_{\gamma_{p}}^{M}(K(\underline{X})) \cdot K[\underline{X}]$, we have $\phi(\lambda) \neq \infty$.
By Lemma 2.19, we have that for any $h \in K(\underline{X}), \phi(\gamma(h)) \neq \infty$ and by Lemma 2.1 in [10], for any $\lambda \in R_{\gamma_{p}}^{\emptyset}(K(\underline{X})), \phi(\lambda) \neq \infty$. So by definition of $R_{\gamma_{p}}^{M}(K(\underline{X}))$ and the fact that $\phi\left(X_{i}\right) \neq \infty$, we get the claim.

Now from the Claim, we deduce that $\phi(g)=0$, i.e. $g(\bar{x})=0$. It follows that $g \in \mathcal{I}(\mathcal{Z}(I))$. Hence $\mathcal{I}(\mathcal{Z}(I))$ is a residually p-adic ideal.

The next proposition gives a characterization of residually p-adic ideals in terms of formally residually p-valued field over K. So we get the analogue of Proposition 3.6 in [17].

Proposition 3.12. Let I be a prime ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. Then I is a residually p-adic ideal if and only if its residue field $K(I)$ is formally residually p-valued over K.
Proof. We assume that the residue field $K(I)$ of I is not formally residually p-valued over K. By Theorem 3.4, one has $\frac{1}{p} \in R_{\gamma_{p}}^{M^{\prime}}(K(I))$ where $A^{\prime}:=\langle\gamma(K(I))\rangle$ is the subring of $K(I)$ generated by $\gamma(K(I))$ and M^{\prime} is equal to $A^{\prime} . \mathcal{M}_{K, v}$.

More precisely there exist \bar{f} / \bar{g} and \bar{h} / \bar{l} in $\mathbb{Z}\left[\gamma_{p}(K(I)), M^{\prime}\right]$ such that $\frac{1}{p}=\frac{\bar{f} / \bar{g}}{1+p h / l}$. One can choose f / g and h / l such that $f / g, h / l \in \mathbb{Z}\left[\gamma_{p}(K(\underline{X})), M\right]$ where M is equal to $A \cdot \mathcal{M}_{K, v}$ with A the subring of $K(\underline{X})$ generated by $\gamma(K(\underline{X}))$. We obtain the equality $\overline{g l+p(g h-f l)}=0$, i.e. $g l+p(g h-f l) \in I$. It follows that there exist $\alpha_{1}, \cdots, \alpha_{r} \in K[\underline{X}]$ such that $g l+p(g h-f l)=\sum_{i=1}^{r} \alpha_{i} f_{i}$. By Remark 3.3 and Proposition 3.5, we have $1+p(h / l-f / g) \neq 0$. So we can write $g l=\sum_{i=1}^{r} \lambda_{i} f_{i}$ with $\lambda_{i}:=\frac{\alpha_{i}}{1+p(h / l-f / g)}$ for $1 \leqslant i \leqslant r$. Since $f / g, h / l \in \mathbb{Z}\left[\gamma_{p}(K(\underline{X})), M\right]$, we have $\lambda_{i} \in R_{\gamma_{p}}^{M}(K(\underline{X})) \cdot K[\underline{X}]$ for all $1 \leqslant i \leqslant r$. Hence we have $g l=\lambda_{1} f_{1}+\cdots+\lambda_{r} f_{r}$. Since I is a residually p-adic ideal, we get $g l \in I$. On the other hand, $g \notin I$ and $l \notin I$ imply $g l \notin I$. This is a contradiction.

Conversely assume that the residue field $K(I)$ is formally residually p-valued over K. We first prove $I=\mathcal{I}(\mathcal{Z}(I))$ and then we conclude from Proposition 3.11 that I is residually p-adic.

Let $f \notin I$. As in Theorem 2.28, we can take an extension $\left\langle L, \bar{w}_{p}, \bar{w}\right\rangle$ of $K(I)$ which is a model of $H R p C F$ such that $f \neq 0$ in L. By using Corollary 3.7, there exists a K-homomorphism $\Psi: K[\underline{X}] / I \longmapsto K$ such that $\Psi(f) \neq 0$. We put $x_{1}:=$ $\Psi\left(\bar{X}_{1}\right), \cdots, x_{n}:=\Psi\left(\bar{X}_{n}\right)$ and $\bar{x}:=\left(x_{1}, \cdots, x_{n}\right) \in K^{n}$. Then we have $\bar{x} \in \mathcal{Z}(I)$ and $f(\bar{x}) \neq 0$. Thus $f \notin \mathcal{I}(\mathcal{Z}(I))$. Hence $I=\mathcal{I}(\mathcal{Z}(I))$.

As in Example 3.7 in [17], for any integer i such that $1 \leqslant i \leqslant n$, the prime ideal $\left(X_{1}, \cdots, X_{i}\right)$ of $K\left[X_{1}, \cdots, X_{n}\right]$ is a residually p-adic ideal. The next proposition may be considered as the residually p-adic counterpart of Proposition 3.8 in [17].
Proposition 3.13. Let I be a residually p-adic ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. Then one has the following properties:

- I is a radical ideal of $K[\underline{X}]$,
- All the minimal prime ideals of $K[\underline{X}]$ containing I are residually p-adic ideals.

Proof. The proof is the same as the one in [17] with Λ replaced by $R_{\gamma_{p}}^{M}(K(\underline{X}))$.

Now we give the geometric characterization of residually p-adic ideals which is the analogue of Theorem 3.9 in [17].
Theorem 3.14. Let I be an ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. Then I is a residually p-adic ideal if and only if $I=\mathcal{I}(\mathcal{Z}(I))$.

Proof. If $I=\mathcal{I}(\mathcal{Z}(I))$ then, by Proposition 3.11, I is a residually p-adic ideal.
Conversely suppose that I is a residually p-adic ideal. First assume that I is prime. Then, by Lemma 3.12, the residue field $K(I)$ of I is formally residually p-valued over K. Therefore $I=\mathcal{I}(\mathcal{Z}(I))$ (see the second part of the proof in Proposition 3.12). Second, if I is any residually p-adic ideal then I is clearly a radical ideal of $K[\underline{X}]$. Thus $I=\bigcap_{i=1}^{k} I_{i}$ where I_{i} are the minimal prime ideals of I in $K[\underline{X}]$. So we know, by Proposition 3.13, that I_{1}, \cdots, I_{k} are residually p-adic ideals of $K[\underline{X}]$. Hence $I=\bigcap_{i=1}^{k} \mathcal{I}\left(\mathcal{Z}\left(I_{i}\right)\right)=\mathcal{I}(\mathcal{Z}(I))$.

The next result provides a residually p-adic analogue of Corollary 3.10 in [17].
Corollary 3.15. Let I be an ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. Then the ideal $\mathcal{I}(\mathcal{Z}(I))$ is the smallest residually p-adic ideal of $K[\underline{X}]$ containing I.
Proof. We know, from Proposition 3.11, that $\mathcal{I}(\mathcal{Z}(I))$ is a residually p-adic ideal of $K[\underline{X}]$ containing I. Moreover, if I_{1} is a residually p-adic ideal of $K[\underline{X}]$ such that $I \subseteq I_{1}$, then we have that $\mathcal{I}(\mathcal{Z}(I)) \subseteq \mathcal{I}\left(\mathcal{Z}\left(I_{1}\right)\right)$. Since I_{1} is a residually p-adic ideal, we conclude from Theorem 3.14 that $I_{1}=\mathcal{I}\left(\mathcal{Z}\left(I_{1}\right)\right)$. Thus $\mathcal{I}(\mathcal{Z}(I)) \subseteq I_{1}$. Hence the ideal $\mathcal{I}(\mathcal{Z}(I))$ is the smallest residually p-adic ideal of $K[\underline{X}]$ containing I.

Now we give the definition of the residually p-adic radical of an ideal $I \subseteq K[\underline{X}]$ and some of its algebraic properties.
Definition 3.16. Let I be an ideal of $K[\underline{X}]$ generated by the polynomials f_{1}, \cdots, f_{r}. The residually p-adic radical of I is the subset of $K[\underline{X}]$ defined by

$$
\sqrt[p]{I}:=\left\{g \in K[\underline{X}] \mid \exists m \in \mathbb{N}^{\bullet} \text { and } \exists \lambda_{1}, \cdots, \lambda_{r} \in R_{\gamma_{p}}^{M}(K(\underline{X})) \cdot K[\underline{X}]: g^{m}=\sum_{i=1}^{r} \lambda_{i} f_{i}\right\} .
$$

As in the definition of residually p-adic ideal, the residually p-adic radical of a polynomial ideal is independent of the choice of the basis of the ideal. By replacing the ring Λ by $R_{\gamma_{p}}^{M}(K(\underline{X}))$ in the proof of the Proposition 4.3 in [17], we see that $\sqrt[p]{I}$ is the smallest residually p-adic ideal of $K[\underline{X}]$ containing I. Let us remark that an ideal I of $K[\underline{X}]$ is a residually p-adic ideal if and only if $I=\sqrt[p]{I}$.
Proposition 3.17. Let I be an ideal of $K[\underline{X}]$. Then $\sqrt[p]{I}$ is the intersection of all the residually p-adic prime ideals of $K[\underline{X}]$ containing I.
Proof. It suffices to replace $\Lambda . K[\underline{X}]$ by $R_{\gamma_{p}}^{M}(K(\underline{X})) . K[\underline{X}]$ in the proof of Proposition 4.5 in [17].

Now we are able to prove the Nullstellensatz for henselian residually p-adically closed fields.

Theorem 3.18. Let I be an ideal of $K[\underline{X}]$. Then $\sqrt[p]{I}=\mathcal{I}(Z(I))$.

Proof. Immediate consequence of Corollary 3.15 and the fact that $\sqrt[p]{I}$ is the smallest residually p-adic ideal of $K[\underline{X}]$ containing I.

The following result gives a correspondence between algebraic sets of K^{n} and residually p-adic ideals of $K[\underline{X}]$. Thus we provide a residually p-adic analogue of Proposition 5.2 in [17].
Proposition 3.19. There exists a one to one correspondence between algebraic sets of K^{n} and residually p-adic ideals of $K[\underline{X}]$.
Proof. It suffices to use, in the proof of [17], Theorem 3.14 instead of Theorem 3.9 in [17].

As an immediate consequence of this proposition, we obtain the following corollary.
Corollary 3.20. There exists a one to one correspondence between irreducible algebraic sets of K^{n} and residually p-adic prime ideals of $K[\underline{X}]$.

Corollary 3.21. There exists a one to one correspondence between points of K^{n} and residually p-adic maximal ideals of $K[\underline{X}]$.

Proof. Let \mathcal{M} be a residually p-adic maximal ideal of $K[\underline{X}]$. Then, according to Proposition 3.12, the field $K(\mathcal{M})$ is formally residually p-valued over K. As in Theorem 2.28, we can take an extension $\left\langle L, \bar{w}_{p}, \bar{w}, a\right\rangle$ of this field which is a model of $H R p C F$. Hence we have a K-homomorphism $\Phi: K[\underline{X}] / \mathcal{M} \longmapsto L$. Then, by model completeness of the $\mathcal{L}_{\mathcal{D}, a}$-theory of henselian residually p-adically closed fields or more precisely, by Corollary 3.7 , we obtain a K-homomorphism $\Psi: K[\underline{X}] / \mathcal{M} \longmapsto K$. We put $x_{i}=\Psi\left(\overline{X_{i}}\right)$ for $1 \leqslant i \leqslant n$ and $\bar{x}=\left(x_{1}, \cdots, x_{n}\right)$. If $f \in \mathcal{M}$ then $f(\bar{x})=\Psi(\bar{f})=0$ i.e. $\bar{x} \in \mathcal{Z}(\mathcal{M})$. Therefore $\mathcal{M} \subseteq \mathcal{I}(\{\bar{x}\})$. Hence $\mathcal{M}=\mathcal{I}(\{\bar{x}\})$ since \mathcal{M} is a maximal ideal.

Conversely, let $\bar{a} \in K^{n}$. By Remark 3.9, the maximal ideal $\mathcal{M}_{\bar{a}}$ defined by $\mathcal{M}_{\bar{a}}:=$ $\{f \in K[\underline{X}] \mid f(\bar{a})=0\}$ is a residually p-adic maximal ideal of $K[\underline{X}]$.

Now we define in a similar way as in [2] the model-theoretic radical ideal of an ideal in $K[\underline{X}]$. Our goal is to show by using the arguments of the previous results that the algebraic and model-theoretic notions of radical coincide.

Definition 3.22. Let I be an ideal of $K[\underline{X}]$. The model-theoretic radical ideal of I is defined as the following polynomial ideal, denoted by $\operatorname{HRpCF}^{\operatorname{Rad}(I)}$

$$
\operatorname{HRpCF} \operatorname{Rad}(I):=\bigcap_{p \in \mathcal{P}} P
$$

where \mathcal{P} is the following set
$\left\{P\right.$ ideal of $K[\underline{X}]$ containing I such that $K[\underline{X}] / P$ can be \mathcal{L}_{p}-embedded over K in a model L of $H R p C F\}$.

Note that if P is in \mathcal{P} then P is prime.
Now we prove the theorem which was previously announced.
Theorem 3.23. Under the previous assumptions and notations, ${ }_{H R p C F} R a d(I)=\sqrt[p]{I}$.

Proof. Let f_{1}, \ldots, f_{r} be generators of the ideal I in $K[\underline{X}]$.
 $\operatorname{HRpCF}^{\operatorname{Rad}}(I)$. Thus there exists a prime ideal J in $K[\underline{X}]$ containing I but not g such that

$$
K \subseteq_{\mathcal{L}_{p}} L
$$

where $L \models H R p C F$ and $K[\underline{X}] / J \subseteq L$. By model completeness of the \mathcal{L}_{p}-theory $H R p C F$, we get that $g \notin \mathcal{I}(\mathcal{Z}(I))$. Furthermore, by Theorem 3.18, we get that $g \notin \sqrt[p]{I}$.
(2) Second we prove the other inclusion and we assume that $g \notin \sqrt[p]{I}$. Now it suffices to follow the ideas in the proof of Theorem 4.4 in [7].

Let S be the following multiplicative subset of $K[\underline{X}]$

$$
\left\{g^{m}: m \in \mathbb{N}\right\}
$$

We consider the following set \mathcal{J} of ideals in $K[\underline{X}]$

$$
\mathcal{J}=\{J \supseteq I \text { proper residually } p \text {-adic ideal of } K[\underline{X}] \text { such that } J \text { is disjoint of } S\} .
$$

Clearly \mathcal{J} is non-emty since $\sqrt[p]{I}$ belongs to \mathcal{J}. By Zorn's Lemma, there exists a maximal element J in \mathcal{J}. So J is a proper residually p-adic ideal in $K[\underline{X}]$ containing I such that $J \cap S=\emptyset$. Let us show that J is prime. Assume that $f \cdot h \in J$ for some $f, h \in K[\underline{X}] \backslash J$. By maximality of $J \in \mathcal{J}$, we get that $\sqrt[p]{\langle f, J\rangle} \cap S \neq \emptyset$ and $\sqrt[p]{\langle h, J\rangle} \cap S \neq \emptyset$. So we have that

$$
g^{k_{1}}=\lambda f+\sum_{i=1}^{l} \lambda_{i} \cdot j_{i} \text { and } g^{k_{2}}=\lambda^{\prime} h+\sum_{i=1}^{l} \lambda_{i}^{\prime} \cdot j_{i}
$$

where j_{1}, \ldots, j_{l} are generators of $J, \lambda, \lambda^{\prime}, \lambda_{i}, \lambda_{i}^{\prime}$ belongs to $R_{\gamma_{p}(K(\underline{X}))}^{M} \cdot K[\underline{X}]$ and $k_{1}, k_{2} \in$ \mathbb{N}. So we obtain that $g^{k_{1}+k_{2}}$ belongs to J since J is residually p-adic.

By Proposition 3.12, $K(I)$ is formally residually p-valued over K. As in the proof of Proposition 3.12, we can take an extension $\left\langle L, \bar{w}_{p}, \bar{w}\right\rangle$ of $K(I)$ which is a model of $H R p C F$ and $K \subseteq_{\mathcal{L}_{p}} L$ with $g \neq 0$ in L. So by definition of $\operatorname{HRpCF}^{\operatorname{Rad}(I) \text {, we have }}$ that $g \notin{ }_{\mathrm{HRpCF}} \operatorname{Rad}(I)$.

4. Hilbert's seventeenth problem for a class of 0 - D-henselian fields

In this section, we keep previous notations and conventions; the usual terminology in differential algebra can be found in [13].

In Section 5 of [6], we introduce the theory of p-adically closed differential fields which is the model-companion of the universal theory of differential p-valued fields in the differential Macintyre's language (see [12]), i.e. $\mathcal{L}_{\mathcal{D}_{p}, p_{\omega}}^{D}:=\mathcal{L}_{\text {fields }} \cup\left\{D, \mathcal{D}_{p}, p_{n}\right.$: $n \in \mathbb{N} \backslash\{0,1\}\}$ where \mathcal{D}_{p} will be interpreted as a l.d. relation with respect to a p-valuation v_{p}, the p_{n} are predicates for nth powers and D is a unary function interpreted as a derivation. This $\mathcal{L}_{\mathcal{D}_{p}, p_{\omega}}^{D}$-theory admits quantifier elimination and is denoted by $p C D F$.

Let us recall an axiomatization of $p C D F$.
(1) Axioms for differential p-valued fields where \mathcal{D}_{p} is the l.d. relation with respect to the p-valuation v_{p} and D is a derivation,
(2) Hensel's Lemma with respect to the p-valuation v_{p} and the value group is a \mathbb{Z}-group,
(3) $\forall x\left[p_{n}(x) \Longleftrightarrow \exists y\left(y^{n}=x\right)\right]$,
(4) $(D L)$-scheme of axioms (following the terminology in Section 3 of [6]): for any positive integer n, for any differential polynomial $f\left(X, \cdots, X^{(n)}\right)$ of order n with coefficients in the valuation ring $\mathcal{O}_{v_{p}}\left(:=\left\{x \mid \mathcal{D}_{p}(1, x)\right\}\right)$,

$$
\begin{aligned}
\forall \epsilon \forall b_{0}, \cdots, b_{n} & \left\{\bigwedge_{i=0}^{n} \mathcal{D}_{p}\left(1, b_{i}\right) \wedge f^{*}\left(b_{0}, \cdots, b_{n}\right)=0 \wedge\left(\frac{\partial}{\partial X^{(n)}} f^{*}\right)\left(b_{0}, \cdots, b_{n}\right) \neq 0\right. \\
& \left.\Rightarrow \exists y\left[\mathcal{D}_{p}(1, y) \wedge f(y)=0 \wedge \bigwedge_{i=0}^{n} \mathcal{D}_{p}\left(\epsilon, y^{(i)}-b_{i}\right)\right]\right\}
\end{aligned}
$$

where f^{*} is the differential polynomial f seen as an ordinary polynomial in the differential indeterminates $X, \cdots, X^{(n)}$.
By using $p C D F$ as differential residue field theory and the theory of \mathbb{Z}-groups as value group theory, we can introduce the valued D-field analogue of the theory of henselian residually p-adically closed fields. For this purpose, we adapt the setting of the work [16] to our p-adic case.

First we recall the structure of the canonical example of valued D-field whose the theory will be studied in a residually p-adic setting (see also Section 6 in [16]).

We consider a differential field $\langle\mathbf{k}, \delta\rangle$ which is a model of $p C D F$-hence it is linearly differentially closed and admits quantifier elimination in the language $\mathcal{L}_{\mathcal{D}_{p}, p_{\omega}}^{D}$ (see [6])and a \mathbb{Z}-group \mathbf{G}. It is a well-known fact that $\operatorname{Th}(\mathbf{G})$ admits quantifier elimination in the language of abelian totally ordered groups with additional unary predicates of divisibility $\{n \mid \cdot\}_{n \in \omega}$ which means:

$$
\forall g \in \mathbf{G}[n \mid g \Longleftrightarrow \exists g^{\prime} \in \mathbf{G}(\underbrace{g^{\prime}+\cdots+g^{\prime}}_{n \text { times }}=g)] .
$$

We are interested in the field $\mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ of generalized power series. The set $\mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ is defined by $\{f: \mathbf{G} \longmapsto \mathbf{k}: \operatorname{supp}(f):=\{g \in \mathbf{G}: f(g) \neq 0\}$ is well-ordered in the ordering induced by $\mathbf{G}\}$. Each element of $\mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ can be viewed as a formal power series $\sum_{g \in \mathbf{G}} f(g) t^{g}$ with the addition and the multiplication defined as follows: $(f+h)(g):=f(g)+h(g)$ and $(f . h)(g):=\sum_{g^{\prime}+g^{\prime \prime}=g} f\left(g^{\prime}\right) h\left(g^{\prime \prime}\right)$ for any $g \in \mathbf{G}$.

The canonical valuation v on $\mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ is defined as min $\operatorname{supp}(f)$ for any $f \in \mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ and the canonical derivation D is defined as follows: $(D f)(g):=\delta(f(g))$.

Moreover, the three-sorted theory of this valued D-field in the corresponding threesorted language is called the theory of (\mathbf{k}, \mathbb{Z}) - D-henselian valued fields. Now we give an axiomatization of this theory, for a model $\langle K, k, \Gamma\rangle$:

Axiom 1. K and k are differential fields of characteristic zero and $\forall \eta\left[p_{n}(\eta) \Longleftrightarrow\right.$ $\left.\exists \delta\left(\delta^{n}=\eta\right)\right]$.

Axiom 2. K is a valued field whose value group $v\left(K^{\times}\right)$is equal to Γ via the valuation map v and whose residue field $\pi\left(\mathcal{O}_{K}\right)$ is equal to k via the residue map π.

Axiom 3. $\forall x \in K\{[v(D x) \geqslant v(x)] \wedge[\pi(D x)=D \pi(x)]\}$ and $\forall x \exists y[D y=0 \wedge v(y)=v(x)]$.

Axiom 4 (D-Hensel's Lemma). If $P \in \mathcal{O}_{K}\{X\}$ is a differential polynomial over $\mathcal{O}_{K}, b \in \mathcal{O}_{K}$ and $v(P(b))>0=v\left(\frac{\partial}{\partial X^{(i)}} P(b)\right)$ for some i, then there is some $c \in K$ with $P(c)=0$ and $v(b-c) \geqslant v(P(b))$.

Axiom 5. $\Gamma \equiv \mathbf{G}$ and $k \equiv \mathbf{k}$.
If $\langle K, D, v\rangle$ is a valued field $\langle K, v\rangle$ with a derivation D which satisfies $\forall x[v(D x) \geqslant$ $v(x)]$ then we say that K is a valued D-field. Moreover, if K satisfies Axiom 4 then the valuation v is said D-henselian.

Now we define the theory of henselian residually p-adically closed D-fields.
Definition 4.1. We will call $\left\langle K, D, v_{p}, v, a\right\rangle$ a henselian residually p-adically closed D-field if $\left\langle K, D, v_{p}\right\rangle$ is a p-valued differential field with a D-henselian valuation v such that its differential residue field $\left\langle k_{K, v}, \widetilde{v}_{p}\right\rangle$ is a model of $p C D F$ and its value group is a \mathbb{Z}-group with $v(a)=1$ and $D(a)=0$.

In the canonical example $\mathbf{k}\left(\left(t^{\mathbf{G}}\right)\right)$ of this class of D-henselian valued fields, t plays the role of a in Definition 4.1.

Now we apply Corollary 3.14 of [8] in order to prove a model completeness result for the theory of henselian residually p-adically closed D-fields which can be expressed in the first-order language $\mathcal{L}_{D, p, a}:=\mathcal{L}_{p, a} \cup\{D\}$. We denote this $\mathcal{L}_{D, p, a}$ - theory by $H R p C D F$. This model-theoretic result will be needed in the proof of Theorem 4.4 which is a differential Hilbert's Seventeenth problem for henselian residually p-adically closed D-fields.

Proposition 4.2. The $\mathcal{L}_{D, p, a}-$ theory $H R p C D F$ is model complete.
Proof. It is well-known that the theory of \mathbb{Z}-groups admits quantifier elimination in the language \mathcal{L}_{V} of totally ordered abelian groups with divisibility predicates and that the theory $p C D F$ admits quantifier elimination in the differential Macintyre's language $\mathcal{L}_{R}:=\mathcal{L}_{\mathcal{D}_{p}, p_{\omega}}^{D}$. We have to show that any formula is equivalent to an existential formula. So we consider an $\mathcal{L}_{D, p, a}$-formula $\phi(\bar{x})$ where \bar{x} are the free variables. By using [8, Appendix], we can translate this $\mathcal{L}_{D, p, a}$-formula to an $\left(\mathcal{L}_{D}, \mathcal{L}_{V}, \mathcal{L}_{R}\right)$-formula $\phi_{*}(\bar{x})$ where $\mathcal{L}_{D}:=\mathcal{L}_{\text {rings }} \cup\left\{D, a ; P_{n}, n \in \mathbb{N} \backslash\{0,1\}\right\}$ such that D is a derivation and the P_{n} 's are the nth powers predicates. Now we apply Corollary 4.2 in [8] to obtain an $\left(\mathcal{L}_{D}, \mathcal{L}_{V}, \mathcal{L}_{R}\right)$-quantifier-free formula $\psi_{*}(\bar{x})$ equivalent to $\phi_{*}(\bar{x})$. Since the divisibility predicates $n \mid$. of the language of \mathbb{Z}-groups are existentially definable in the language $\{+,-, \leqslant, 0,1\}$ and the p-valuation v_{p}, the predicates for the nth powers and their negations are existentially definable in the language of fields in $p C D F$, we get by using Lemma 2.26 and the reciprocal translation of [8, Appendix], an existential $\mathcal{L}_{D, p, a}$-formula $\psi(\bar{x})$ equivalent to $\phi(\bar{x})$ (we also used $v(a)=1$).
Lemma 4.3. Let $\left\langle K, D, v_{p}, v, a\right\rangle$ be a valued D-field which is residually p-valued. Then we can extend $\left\langle K, D, v_{p}, v, a\right\rangle$ to a model $\left\langle L, D, w_{p}, w, a\right\rangle$ of $H R p C D F$.
Proof. We know that if H is a discrete totally ordered abelian group and $\alpha=1_{H}$ is the least positive element of H then there exists G an extension of H contained in \widetilde{H}, the
divisible hull of H such that G is a \mathbb{Z}-group with least positive element α (see Lemma 4 in [11]). First we build an henselian unramified valued D-field extension K^{\prime} of K such that its residue differential field is a model of $p C D F$. Since $p C D F$ is the model companion of the theory of differential p-valued fields, we can consider a p-valued extension k^{\prime} of k_{K} which is a model of $p C D F$. By using the existence part of Lemma 7.12 in [16], we obtain our extension K^{\prime}. Moreover, by Lemma 2.22 , we can equip K^{\prime} with a p-valuation which extends the one of K, is compatible with the valuation on K^{\prime} and induces the p-valuation on k^{\prime} (moreover, we can assume K^{\prime} henselian). Then we build a p-valued totally ramified valued D-field extension $K^{\prime \prime}$ of K^{\prime} such that its value group $v\left(K^{\prime \prime \times}\right)$ is equal to G. To this effect, it suffices to use Lemma 2.23 and to apply the calculations in Proposition 7.17 in [16]. Hence we obtain a totally ramified valued D-field extension. Now by using the same construction as in Proposition 3.12 of [8] and the first step of the proof, we obtain an unramified valued D-field extension $K^{\prime \prime \prime}$ of $K^{\prime \prime}$ which has enough constants and its differential residue field is a model of $p C D F$.

To finish the proof, we proceed as in [16], more precisely we use Lemma 7.25 of [16] to produce the necessary pseudo-convergent sequence in $K^{\prime \prime \prime}$ and then use Proposition 7.32 of [16] to actually find a solution in an immediate valued D-field extension. So we obtain the required valued D-field extension L. Since the extension is immediate, the valuation v is henselian on L and $k_{L, v} \models p C D F$ with $v\left(L^{\times}\right)$a \mathbb{Z}-group. By using Lemma 2.24, we can define a p-valuation on L and then, v is convex for this p-valuation on L; so L is also a p-valued extension of $K\langle\underline{X}\rangle$.

Now we can prove an analogue of the Hilbert's Seventeenth problem for the theory of henselian residually p-adically closed D-fields as in Theorem 2.28 . We will use the following notation for the logarithmic derivative operator: ${ }^{\dagger}$, i.e. $x^{\dagger}=\frac{D x}{x}$. We denote by $K\{\underline{X}\}$ the differential ring of differential polynomials in n indeterminates over K and its fraction field by $K\langle\underline{X}\rangle$.

Theorem 4.4. Let $\left\langle K, D, v_{p}, v, a\right\rangle$ be a henselian residually p-adically closed valued D-field and let f be in $K\langle\underline{X}\rangle$. If $v_{p}(f(\bar{x})) \geqslant 0$ for every $\bar{x} \in K^{n}$ such that $f(\bar{x})$ is defined (*).

Then f belongs to $R_{\gamma_{p}}^{M}(K\langle\underline{X}\rangle)$ where M is equal to $A \cdot \mathcal{M}_{K, v}$ such that A is the subring of $K\langle\underline{X}\rangle$ generated by $\left(K\langle\underline{X}\rangle^{\bullet}\right)^{\dagger}$ and $\gamma(K\langle\underline{X}\rangle)$.
Proof. We proceed as in Theorem 2.28. Suppose that f does not belong to $R_{\gamma_{p}}^{M}(K\langle\underline{X}\rangle)$. Since there exists a p-valuation v_{p} on $K\langle\underline{X}\rangle$ which extends the one of K such that $v_{p}(M) \geqslant 0$ (see Remark 4.5), we can extend the p-valuation v_{p} of K to a p-valuation w_{p} on $K\langle\underline{X}\rangle$ such that $w_{p}(M) \geqslant 0$ and $w_{p}(f)<0$ by applying Lemma 2.21.

We consider $B=p c H(A, K\langle\underline{X}\rangle)$. We get the same properties for B as the ones in Theorem 2.28; furthermore, since $\left(K\langle\underline{X}\rangle^{\bullet}\right)^{\dagger} \subseteq B, B$ is a differential ring in the following sense: if $x \in B$ then x^{\dagger} belongs to B and so $D(x)$ is in $B\left({ }^{* *}\right)$. We use Proposition 4.3 instead Proposition 2.23 in Theorem 2.28 in order to obtain an extension $\left\langle L, D, \bar{w}_{p}, \bar{w}, a\right\rangle$ of $\left\langle K\langle\underline{X}\rangle, D, w_{p}, w, a\right\rangle$ with $\langle L, D, \bar{w}\rangle D$-henselian, $\left\langle k_{L, \bar{w}}, D, \widetilde{w}_{p}\right\rangle$ is a p-adically closed differential field, $\left\langle L, D, \bar{w}_{p}\right\rangle$ is a p-valued differential field extension of $\left\langle K\langle\underline{X}\rangle, D, w_{p}\right\rangle$ and $\bar{w}\left(L^{\times}\right)$a \mathbb{Z}-group such that $\bar{w}(a)=1_{\bar{w}\left(L^{\times}\right)}$.

Now it suffices to conclude as in Theorem 2.28 by using the model completeness result of Proposition 4.2 in order to deduce that $\left\langle K, D, \mathcal{D}_{v}, a\right\rangle \prec_{\mathcal{L}_{\mathcal{D}, a} \cup\{D\}}\left\langle L, D, \mathcal{D}_{\bar{w}}\right\rangle$.

Remark 4.5. As in Remark 2.29, we have to find, in the previous theorem, a p valuation v_{p} on $K\langle\underline{X}\rangle$ which extends the one of K such that $v_{p}(M) \geqslant 0$, i.e. $v_{p}(A$. $\left.\mathcal{M}_{K, v}\right) \geqslant 0$. We take a $|K|^{+}$-saturated $\mathcal{L}_{D, p, a}$-elementary extension L of K and so, we satisfy in L the n-type required for X_{1}, \cdots, X_{n}. This n-type is consistent since in L, we have that $\left(L^{\bullet}\right)^{\dagger} \subseteq \mathcal{O}_{L, v}$ and so $\left(L^{\bullet}\right)^{\dagger} \cdot \mathcal{M}_{L, v} \subseteq \mathcal{M}_{L, v} \subseteq \mathcal{O}_{L, v_{p}}$.

References

[1] Bélair L., Substructures and uniform elimination for p-adic fields, Annals of Pure and Applied Logic 39 (1) (1988), pp. 1-17.
[2] Cherline G., Model-theoretic algebra- selected topics, Lecture Notes in Mathematics 521, Springer-Verlag, Berlin-New York, 1976.
[3] Delon F., Quelques propriétés de corps valués en théorie des modèles, Thèse de Doctorat, Université de Paris 7, 1982.
[4] Farré Rafel, A positivstellensatz for chain-closed fields $\mathbb{R}((t))$ and some related fields, Arch. Math. 57 (1991), pp. 446-455.
[5] Farré R., Model theory for valued and ordered fields and applications, Ph.D. Thesis, Universitat de Catalunya, 1993.
[6] Guzy N., Point F., Topological differential structures, submitted, available at: http://www.logique.jussieu.fr/www.point/index.html .
[7] Guzy N., P-convexly valued rings, Journal of Pure and Applied Algebra 199 (2005), pp. 111131.
[8] Guzy N., 0-D-valued fields, Journal of Symbolic Logic 71 (2) (2006), pp. 639-660.
[9] Jacob B., A Nullstellensatz for $\mathbb{R}((t))$, Comm. Algebra 8 (1980), pp. 1083-1094.
[10] Jarden M., Roquette R., The Nullstellensatz over p-adically closed fields, J. Math. Soc. Japan 32 (1980), pp. 425-460.
[11] Kochen S., Integer valued rational functions over the p-adic numbers, a p-adic analogue of the theory of real fields, Proc. Sympos. Pure Math. (1967), Vol. XII, pp. 57-73.
[12] Macintyre A., On definable subsets of p-adic fields, Journal of Symbolic Logic 41 (3) (1976), pp. 605-610.
[13] Marker D., Messmer M., Pillay A., Model theory of fields, Lecture Notes in Logic 5 (1996), 154 p.
[14] Prestel A., Roquette P., Formally p-adic fields, Lecture Notes in Mathematics 1050, Springer-Verlag, 1984, 167p.
[15] Ribenboim P., Théorie de la valuation, Séminaire de Mathématiques Supérieures, No. 9, 1964, Les Presses de l'Université de Montréal, Montreal, Que., 1968, p. vi+313.
[16] Scanlon T., A model-complete theory of valued D-fields, Journal of Symbolic Logic 65 (4) (2000), pp. 1758-1784.
[17] Srhir A., p-adic ideals of p-rank d and the p-adic Nullstellensatz, Journal of Pure and Applied Algebra 180 (2003), pp. 299-311.
[18] Singer M. F., The model theory of ordered differential fields, Journal of Symbolic Logic 43 (1) (1978), pp. 82-91.

Nicolas Guzy, Institut de Mathématique, Université de Mons-Hainaut, Le Pentagone, 6, avenue du Champ de Mars, B-7000 Mons, Belgium

E-mail address: Nicolas.Guzy@umh.ac.be

[^0]: Date: May 10, 2006.
 Research Fellow at the "Fonds National de la Recherche Scientifique", partially supported by grants of the "National Bank of Belgium" FRFC contract 2.4.559.06.F.

