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Abstract. In this paper, we adapt the result of M. Tressl (see [3]) in order to
show that there is a theory (UCLie,m) of Lie differential fields of characteristic zero,
which serves as a model companion for every theory of large and Lie differential
fields extending a model complete theory of pure fields. It allows us to introduce
the Lie counterpart of classical theories of differential fields in several commuting
derivations.

1. Introduction

The goal of this paper is to give the Lie counterpart of the theory (UC) of differ-
ential fields of characteristic zero in m commuting derivations established in [3].

In the next section we define all the Lie differential concepts necessary to this
purpose. By using the work of [1], we establish the main ingredients use in [3] in
order to write the Lie analogue (UCLie,m) of the theory (UC). These notions will
allow us to prove the Lie version of the properties (I) and (II) of the theory (UC)
developed in [3] which are in our case the following:

(I) Whenever the Lie differential fields L1 and L2 are models of (UCLie,m) and A
is a common Lie subring of L1 and L2 such that L1 and L2 have the same
universal theory over A as pure fields then they have the same universal theory
over A as Lie differential fields.

(II) Every Lie differential fields F which is large can be extended to a model of
(UCLie,m) and this extension is elementary in the language of rings.

In the last section we show that properties (I) and (II) of (UCLie,m) above imply that
for every model complete theory T of large fields of characteristic zero in the language
of rings, the theory TLie∪ (UCLie,m) of Lie differential fields is model complete (where
TLie is the corresponding theory of Lie differential fields). Moreover, if this is the

case, TLie ∪ (UCLie,m) is complete if T is complete and T̃Lie ∪ (UCLie,m) has quantifier

elimination if a definable expansion T̃ has quantifier elimination (see Theorem 3.11).
Finally we apply our results in Proposition 3.12 to give the model completion

of some theories of Lie differential fields; for example for Lie differential fields of
characteristic zero we get the theory of Lie differentially closed fields obtained by Y.
Yaffe in [5].
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2. Lie differential algebra

Let us fix a field F of characteristic zero, a finite-dimensional F-vector space L with
a Lie multiplication making it a Lie algebra over a subfield of F and a vector space
homomorphism φF : L → Der(F), the Lie algebra of derivations on F, preserving the
Lie multiplication. We fix a basis {δ1, . . . , δm} of L and let [δi, δj] :=

∑m

k=1 ck
ijδk for

some elements ck
ij in F. The elements (ck

ij) are called the structure constants of L.

Definition 2.1. A Lie differential field 〈K, δ1, . . . , δm〉 is a differential field extension
of F such that K |= ∀x (δiδjx − δjδix =

∑m
k=1 ck

ij · δkx).

Let 〈Nm, +〉 be the cartesian product of N considered as an additive abelian monoid
with the addition defined component by component. If α := (α1, . . . , αm) ∈ N

m then
we denote by |α| the sum

∑m
i=1 αi. We let ǫk := (0, . . . , 0︸ ︷︷ ︸

k−1 times

, 1, 0 . . . , 0) ∈ N
m.

Let Y := (Y1, . . . , YN) be a set of differential indeterminates considered as an
ordered set Y1 < . . . < YN .

We consider the following set of indeterminates over K

ΘY := {δαy : y ∈ Y, α ∈ N
m}

and its elements are called the derivatives in Y. We identify δ0y with y ∈ Y.
Let us consider the polynomial algebra over K in the derivatives (δαy)α∈Nm,y∈Y

which is denoted by K[ΘY].
Now we define a rank function rk : ΘY → O := N × Y × N

m which determines a
total ordering on ΘY as follows

rk(yα) := (|α|, y, α)

where O is lexicographically ordered.

Definition 2.2. Let f ∈ K[ΘY] \ K. The leader uf of f is the variable δαy ∈ ΘY

of highest rank rk which appears in f . Moreover u∗
f := u

deguf
f

f is the highest power
of uf in f .

Let f = fdu
d
f + . . . + f1uf + f0 with polynomials fi ∈ K[δβz : δβz 6= uf , β ∈ N

m,
z ∈ Y] and fd 6= 0. The initial I(f) of f is defined as fd and the separant S(f) of f
as ∂f

∂uf
.

Now we extend the rank rk on ΘY to K[ΘY] as follows:

(1) if f ∈ K then rk(f) = −1 < O;
(2) if f ∈ K[ΘY] \ K then rk(f) := rk(uf).

Definition 2.3 (See also p. 169 in [1]). We can define a ranking ≺ on K[ΘY] from
the total ordering on O which is a preorder as follows: f ≺ g if rk(f) < rk(g).

We may refine this preorder by the following function on K[ΘY], denoted by rk∗

rk∗(f) := (rk(uf), deguf
f) ∈ O × N, where O × N is lexicographically ordered.

We shall note f ≺∗ g if rk∗(f) < rk∗(g).
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Now we extend the derivations δk on K to K[ΘY] and then we show that it is a
Lie differential field extending the Lie differential field 〈K, δ1, . . . , δm〉; it is called the
Lie differential polynomial ring over K and is denoted by K{Y}.

Definition 2.4 (See Definition 1.13 in [5]). Let f ∈ K[ΘY] and k ∈ {1, . . . , m}.

(1) If rk(f) = −1 < O then by definition, f ∈ K and so, δk(f) is defined.
(2) If f is of the form δαy then δk(δ

αy) is defined as follows:
(a) ∀t < k αt = 0 then

δk(δ
αy) = δα+ǫky.

(b) otherwise we let l = min{t : αt 6= 0} (so l < k) and α′ := α − ǫl, then

δk(δ
αy) = δlδk(δ

α′

y) +

m∑

i=1

ci
kl · δi(δ

α′

y).

(3) If f :=
∑d

i=0 fi · u
i
f (see Definition 2.2) then

δk(f) :=
d∑

i=0

δk(fi) · u
i
f +

d∑

i=0

fi · i · u
i−1
f

︸ ︷︷ ︸
S(f)

·δk(uf).

Clearly, for any i ∈ {1, . . . , m}, δk is a derivation on K[ΘY].

Proposition 2.5. Let f ∈ K[ΘY], 1 ≤ k ≤ m and uf := δαy.
Then δk(f) is well-defined in K[ΘY]. Moreover we have the following properties:

(1) rk(δkf) = (|α| + 1, y, α + ǫk);
(2) uδkuf

= uδkf = δα+ǫky;
(3) rk(δkδ

αy − δα+ǫky) < rk(δα+ǫky) which implies rk(δkδ
αy) = rk(δα+ǫky).

Proof. We proceed by induction on rk(f).
Suppose that the properties are checked for any polynomial g in K[ΘY ] such that

rk(g) < rk(f) and for any 1 ≤ k ≤ m. We first show the proposition for f := δαy,
i.e. f = uf := δαy. By definition of the derivations on K[ΘY], we have to distinguish
two cases.

First, ∀t < k, αt = 0 then all the properties are clear.
Otherwise we let l = min{t : αt 6= 0} (so l < k) and α′ := α − ǫl. By definition

δk(δ
αy) = δlδk(δ

α′

y) +

m∑

i=1

ci
klδi(δ

α′

y).

Since α′ < α, we have δα′

y ≺ δαy.
By induction, we can apply (1) for δk(δ

α′

y) and we obtain

rk(δkδ
α′

y) = (|α|, y, α′ + ǫk) < rk(δαy) since O is lexicographically ordered.

By induction, δlδk(δ
α′

y) and δiδ
α′

y (1 ≤ i ≤ m) are well-defined; hence δkδ
αy is

well-defined.
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Let us prove (1). We have rk(δl(δkδ
α′

y)) = (|α| + 1, y, α + ǫk) and rk(δi(δ
α′

y)) =
(|α|, y, α′+ǫi) for all i ∈ {1, . . . , m}. By definition of rk on K[ΘY], we get rk(δkδ

αy) =
rk(δα+ǫky).

Let us prove (3), which will imply (2). By induction, we apply (3) and we get
δkδ

α′

y = δα′+ǫky + z where rk(z) < rk(δα′+ǫky). Since δα′+ǫky ≺ δαy, we can apply
(3) by induction, and we get

δlδkδ
α′

y = δlδ
α′+ǫky + δlz = δα+ǫky + w + δlz

where rk(w) < rk(δα+ǫky) and rk(δlz) < rk(δα+ǫky) by induction of (1), (2) and (3).
Since rk(δiδ

αy) = (|α|, y, α′ + ǫi) < rk(δα+ǫky), we have rk(δlδ
αy − δα+ǫky) <

rk(δα+ǫky).
Moreover, it proves that uδkδαy = uδlδkδα′

y = δα+ǫky and we get (2) for f := δαy.

Now we prove the required properties for f :=
∑d

i=0 fiu
i
f where uf ∈ ΘY. By

definition, we have

δkf =
d∑

i=0

δk(fi) · u
i
f +

d∑

i=0

i · fi · u
i−1
f · δk(uf) =

[ d∑

i=0

δk(fi) · u
i
f

]
+ S(f) · δk(uf).

We get from fi ≺ uf (i.e. rk(fi) < rk(uf)) and δkuf is well-defined that δkfi is well-
defined and so, δkf is well-defined. By induction of (1), we have rk(fi) < rk(δkuf).

Therefore, it remains to show that rk(δkfi) < rk(δkuf) and we deduce that rk(δkf) =
rk(δkuf) and uδkf = uδkuf

= δα+ǫky. Since rk(fi) < rk(uf) = rk(f), we have uδkfi
=

uδkufi
= δβ+ǫkz if ufi

= δβz and since δβz ≺ uf , we have clearly δβ+ǫkz ≺ δα+ǫky,
which proves the result. �

Notation 2.6. For any f ∈ K[ΘY], we denote δα1

1 . . . δαm
m f by δαf .

Remark 2.7. (1) We have also proved that

δβ(yα) − yα+β ≺ yα+β where α, β ∈ N
m.

Following the terminology in [1], it says that the commutation rules are non-
trivial.

(2) Among the lines of the previous proof, we show that for any polynomial in
K[ΘY] \ K and β ∈ N

m with |β| > 0 and uf := δαy

uδβf = δα+βy and I(δβf) = S(f) (see also Proposition 6.1 in [1]).

(3) The ranking ≺ has the following properties:
• δαy ≺ δiδ

αy;
• δαy ≺ δβz implies δiδ

αy ≺ δiδ
βz;

• the compatibility with the commutation rules following the terminology
in [1] [δi, δj ](δ

αy) ≺ δα+ǫi+ǫjy;
• the two following says that the ranking is admissible:

– |α| < |β| implies δαy ≺ δβy;
– δαy ≺ δβz implies δα+γy ≺ δβ+γz.

The previous proposition allows us to show that the differential field K[ΘY] is a
Lie differential ring which is denoted by K{Y}.
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It suffices to use the previous results and the proof of Y. Yaffe in Proposition 1.19
of [5].

Proposition 2.8. For any f ∈ K{Y} and 1 ≤ k, l ≤ m, we have

[δk, δl](f) =

m∑

i=1

ci
klδi(f).

In the sequel, for any α ∈ N
m, we denote δα1

1 . . . δαm
m by δα; in particular, we will

identify δǫky with δky.

Notation 2.9. Let Nm := {1, . . . , m} and let us consider Wm the semi-group of words
formed on Nm: an element I ∈ Wm can be represented by an empty tuple () or a tuple
(i1, . . . , ip) for some p ∈ N \ {0} and ik ∈ Nm. The length of a word I = (i1, . . . , ip) is
|I| = p. A word I = (i1, . . . , ip) is monotone if i1 ≤ . . . ≤ ip. We shall denote by Ī the
monotone word which is determined as follows: if I = (i1, . . . , ip) is a word then Ī is
the m-tuple α := (α1, . . . , αm) such that αi is the cardinal of the set {j ∈ N : ij = i}.

We will use this terminology in the two next results of [1].

Proposition 2.10 (See Proposition 5.2 in [1]). For any I ∈ Wm with |I| ≥ 2, for
any f ∈ K{Y} \K, there is a family {aα}α∈Nm of polynomial functions in {δK(cl

ij) :
|K| ≤ |I| − 2} with coefficients in Z such that

δIf = δĪf +
∑

α∈Nm,|α|<|I|

aαδαf .

Corollary 2.11 (See Corollary 5.3 in [1]). For all α, β ∈ N
m and any f ∈ K{Y},

there is a family {aγ}γ∈Nm of polynomial functions in {δµ(cl
ij) : |µ| < |α + β| − 2}

with coefficients in Z such that

δαδβf = δα+βf +
∑

|γ|<|α+β|

aγδ
γf .

Definition 2.12. A (Lie) differential ideal in K{Y} is an ideal that is closed under
the derivations δ1, . . . , δm. We shall note [G] the differential ideal generated by a
non-empty set G of K{Y}. We define [G] as the intersection of all the differential
ideals containing G.

Proposition 2.13 (See Proposition 5.7 in [1]). Let G be a non-empty subset of
K{Y}. The differential ideal [G] is the ideal generated by ΘG := {δαg : g ∈ G, α ∈
N

m}.

That means that any element f of [G] can be written as f =
∑

g∈G,α∈Nm aα,gδ
αg

where the aα,g form a family in K{Y} with finite support.

Definition 2.14. A differential ideal is radical if whenever a positive power of an
element belongs to the differential ideal, the element itself belongs to the differential
ideal. The differential radical ideal of G, denoted by {G}, is defined as the intersection
of all the differential radical ideals containing G.
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As in the classical differential setting, we get that

{G} := {f ∈ K{Y} : ∃k ∈ N \ {0}, fk ∈ [G]}.

Definition 2.15. If H is a subset of K{Y}, we denote by H∞ the multiplicative set
(containing 1) generated by the elements of H .

Let I be a differential ideal in K{Y}. We define I : H∞ as follows:

{f ∈ K{Y} : ∃h ∈ H∞, hf ∈ I}.

The following property shows that I : H∞ is a differential ideal.

Lemma 2.16. (See Lemma 5.8 in [1]) Let f, g ∈ K{Y} and α ∈ N
m. We have the

following
f |α|δαg ≡ f |α|δα(fg) mod (δγ(fg)||γ| < |α|).

Definition 2.17. (1) If f, g ∈ K{Y}, g 6∈ K, ug := δαy then f is said to be
weakly reduced with respect to g if f involves no derivatives of the type δα+γy
where |γ| > 0; f is called reduced with respect to g if f is weakly reduced with
respect to g and if degug

f < degug
g.

(2) The polynomial f is called (weakly) reduced with respect to a non-empty subset
G of K{Y} \ K if f is (weakly) reduced with respect to every g ∈ G.

(3) A non-empty subset G of K{Y} \ K is called autoreduced if every f ∈ G is
reduced with respect to all g ∈ G, g 6= f . If G consists of a single element
then G is called autoreduced as well.

It is easy to see that uf 6= ug, hence rk∗(f) 6= rk∗(g) if f, g are different polynomials
from an autoreduced set.

Moreover we have

Proposition 2.18. Every autoreduced set of K{Y} \ K is finite.

Proof. See Lemma 15 (a) in [2, Chapt. 0, Sect. 17]. �

Let ∞ be an element bigger than every element in O and let (O ∪ {∞})N be
equipped with the lexicographic order. We define the rank rk∗ of an autoreduced set
G to be an element of (O ∪ {∞})N as follows.

Let G := (g1, . . . , gl) with rk∗(g1) < . . . < rk∗(gl). Then

rk∗(G) := (rk∗(g1), . . . , rk
∗(gl),∞,∞, . . . ).

Proposition 2.19. There is no infinite sequence G1, G2, . . . of autoreduced sets with
the property rk∗(G1) > rk∗(G2) > . . . .

Proof. See the classical proof in [2, Chap. I, Sect. 10, Prop. 3]. �

Definition 2.20. If M ⊆ K{Y} is a set not contained in K then by Proposition
2.19, the set {rk∗(G) : G ⊆ M is autoreduced } has a minimum. Every autoreduced
subset G of M with this rank rk∗(G) is called a characteristic set of M .

Proposition 2.21 (See Proposition 2.7 in [3]). If G is a characteristic set of M ⊆
K{Y} and f ∈ M \ K, then f is not reduced with respect to G.
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Definition 2.22. Let G := (g1, . . . , gl) be a subset of K{Y} \ K. We define

H(G) :=

l∏

i=1

I(gi)S(gi) and HG := {
l∏

i=1

I(gi)
niS(gi)

mi : ni, mi ∈ N}.

We know that S(g) and I(g) are reduced with respect to G (g ∈ G) if G is an
autoreduced set in K{Y}. We will use this fact in the two next results which will
give the Lie counterpart of Theorem 2.9 in [3].

Lemma 2.23 (See Lemma 6 in Chapter 1 of [2]). Let G be an autoreduced set in
K{Y} and f ∈ K{Y}.

Then there exists a polynomial f̃ ∈ K{Y} which is weakly reduced with respect to
G and natural numbers sg (g ∈ G) such that

∏

g∈G

S(g)sgf ≡ f̃ mod [G].

More precisely,
∏

g∈G S(g)sgf − f̃ can be written as a linear combination over K{Y}
of derivatives δγg (|γ| > 0 and g ∈ G) with rk(δα+γy) ≤ rk(f) whenever δαy := ug.

Proof. If f is weakly reduced with respect to G, we define f̃ := f and sg = 0 (g ∈ G).
So we may assume that f is not weakly reduced with respect to G, that is, f

involves a proper derivative δα+γy with ug := δαy for some g ∈ G, |γ| > 0.

We are going to define sg′ (g′ ∈ G) and f̃ by induction on the highest such δα+γy
(with respect to ≺).

Let δα+γy be the highest derivative which appears in f such that |γ| > 0 and
δαy := ug for some g ∈ G. By Remark 2.7 (2), we may write S(g)δα+γy = δγg + t
where t ∈ K{Y} and rk(t) < rk(δα+γy).

Letting e = degδα+γy f , we may write f =
∑e

i=0 fi · (δ
α+γy)i where fi ∈ K{Y} are

of rank rk less than rk(δα+γy).
Then

S(g)ef =

e∑

i=0

S(g)e−i · (fi · δ
α+γy)i ≡

e∑

i=0

S(g)e−i · fi · t
i (mod δγg).

Obviously h :=
∑e

i=0 S(g)e−i · fi · ti cannot involve a proper derivative as high as
δα+γy (with respect to ≺) and rk(h) ≤ rk(f).

Therefore by induction, h̃ and the corresponding natural numbers s̃g are defined

and have the required properties. We now define f̃ := h̃, sg := s̃g + e and sg′ := s̃g′

(g′ ∈ G and g′ 6= g), which gives the result. �

Let us remark that in order to write this lemma under its actual form with [G], we
use Proposition 2.13.

Proposition 2.24 (See Proposition 1 in Chapter 1 of [2]). Let G be an autoreduced
set in K{Y} and f ∈ K{Y} \ K.
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Then there exists a polynomial f̂ ∈ K{Y} which is reduced with respect to G (so

rk∗(f̂) < rk∗(f)) and natural numbers ig, sg (g ∈ G) such that
∏

g∈G

I(g)igS(g)sgf ≡ f̂ mod [G].

More precisely,
∏

g∈G I(g)igS(g)sgf − f̂ can be written as a linear combination over

K{Y} of derivatives δγg (|γ| > 0 and g ∈ G) with rk(δα+γy) ≤ rk(f) whenever
δαy := ug.

Proof. Let G := {g1, . . . , gr}. By applying Lemma 2.23, we get a polynomial f̃ that

is weakly reduced with respect to G. Let er := degugr
f̃ and dr := degugr

gr. We
define ir := er − dr + 1 or ir = 0 according er ≥ dr or er < dr. In either case, by
using the pseudo euclidian division, we may write

I(gr)
ir f̃ ≡ f(r) mod (gr)

where f(r) ∈ K{Y} is weakly reduced with respect to G and is reduced with respect

to gr. We proceed in the same way with f̃ , gr and r replaced by f(r), gr−1 and r − 1;
and so on for each polynomial of G until g1.

Finally we get f(1) ∈ K{Y} which is reduced with respect to G and we let f̂ :=
f(1). �

Now we introduce the notion of coherence for autoreduced sets in K{Y} \ K. It
will allow us to state a Lie analogue of Rosenfeld’s Lemma (see Theorem 2.14 in [3]).

Notation 2.25. For δαy ∈ ΘY, we note ΘY<δαy the set of derivatives of rank rk lower
than rk(δαy).

Let G be an autoreduced set in K{Y} \ K. We will denote by ΘG the set of
derivatives of elements of G

{δαg : g ∈ G, α ∈ N
m}.

We denote by ΘG<δαy the set ΘG ∩ K[ΘY<δαy].

Definition 2.26. Let G be an autoreduced set in K{Y} \ K. We say that G is
coherent if whenever g, g′ ∈ G are such that ug := δαy and ug′ := δβy for some y ∈ Y

and α, β ∈ N
m then for any γ ∈ (α + N

m) ∩ (β + N
m) we have

S(g′)δγ−αg − S(g)δγ−βg′ ∈ (ΘG<δγy) : H(G)∞.

Theorem 2.27 (See Theorem 6.3 in [1]). Let G be an autoreduced set in K{Y} \K
then any differential polynomial of the differential ideal [G] : H(G)∞ that is weakly
reduced with respect to G belongs to (G) : H(G)∞.

The following proposition shows the finiteness of the test for coherence.
For α, β ∈ N

m, we denote by α ⋄ β the element of N
m having max(αi, βi) for ith

element. Any element of (α + N
m) ∩ (β + N

m) can be written α ⋄ β + µ for some
µ ∈ N

m.
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Proposition 2.28 (See Proposition 6.6 in [1]). Let G be an autoreduced set in K{Y}\
K. If for all g, g′ ∈ G such that ug := δαy and ug′ := δβy for some y ∈ Y and
α, β ∈ N

m we have

∆(g, g′) := S(g′)δα⋄β−αg − S(g)δα⋄β−βg′ ∈ (ΘG<δα⋄βy) : H(G)∞

then G is coherent.

Lemma 2.29 (See Lemma 6 in Chapter 3 of [2]). Let G be an autoreduced coherent
set in K{Y} \ K. Then [G] : H(G)∞ is a prime differential ideal if (G) : H(G)∞ is
prime.

Proof. By Lemma 2.16, it is clearly differential. Let us prove that [G] : H(G)∞ is
prime.

Let f, h ∈ K{Y} such that f · h ∈ [G] : H(G)∞. By Lemma 2.23, we get∏
g∈G S(g)sgf ≡ f̃ mod [G] and

∏
g∈G S(g)s′gh ≡ h̃ mod [G] such that f̃ and h̃ are

weakly reduced with respect to G. So f̃ · h̃ is weakly reduced with respect to G

and belongs to [G] : H(G)∞. By Theorem 2.27, f̃ · h̃ ∈ (G) : H(G)∞ and so, since

(G) : H(G)∞ is prime, f̃ or h̃ belongs to (G) : H(G)∞. Therefore we conclude that
f or h belongs to [G] : H(G)∞. �

Now we can prove the Lie analogue of the Rosenfeld’s Lemma.

Theorem 2.30. (1) If G is a characteristic set of a prime differential ideal P in
K{Y} such that P ∩ K = {0} then P = [G] : H(G)∞, G is coherent and
(G) : H(G)∞ is a prime ideal not containing a non-zero element reduced with
respect to G.

(2) Conversely, if G is a coherent autoreduced set in K{Y} \ K such that (G) :
H(G)∞ is a prime ideal and does not contain a non-zero element reduced with
respect to G then G is a characteristic set of a prime differential ideal in
K{Y}.

Proof. Let G be a characteristic set of a prime differential ideal P in K{Y}. By
Proposition 2.21, P does not contain a non-zero element reduced with respect to G;
therefore S(g), I(g) 6∈ P . Let f be in P . By Proposition 2.24, there is a h in HG (see
Definition 2.22)

hf ≡ f̂ mod [G]

with f̂ reduced with respect to G. So f̂ = 0 and f ∈ [G] : H(G)∞; which implies
P = [G] : H(G)∞.

Let g, g′ be in G such that ug := δαy and ug′ := δβy for some y ∈ Y and α, β ∈ N
m.

By Proposition 2.28, in order to show that G is coherent, it suffices to verify that

∆(g, g′) := S(g′)δα⋄β−αg − S(g)δα⋄β−βg′ ∈ (ΘG<δα⋄βy) : H(G)∞.

But we know that

δα⋄β−αg = S(g)δα⋄βy + t and δα⋄β−αg′ = S(g′)δα⋄βy + t′

with t, t′ of rank lower than rk(δα⋄βy). So ∆(g, g′) = S(g′)t − S(g)t′ ∈ P belongs to
the ideal (ΘG<δα⋄βy) : H(G)∞ by Proposition 2.24; and G is coherent.
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Let V be the set of derivatives (δαy) such that G ⊆ K[V ]. It is easy to see that the
ideal (G) : H(G)∞ in K{Y} is the ideal generated in K{Y} by the ideal (G) : H(G)∞

in K[V ] and that the ideal (G) : H(G)∞ in K[V ] is the intersection with K[V ] of the
ideal (G) : H(G)∞ in K{Y}. It follows that the condition that the ideal (G) : H(G)∞

be prime is independent of the polynomial algebra in which the ideal is taken.
In particular, we may take V to be the set of all derivatives δαy that appear in at

least one element of G. A similar remark holds for the condition that (G) : H(G)∞

does not contain a non-zero element reduced with respect to G. This concludes (1).
Conversely, let G be an autoreduced and coherent set in K{Y} \ K such that

(G) : H(G)∞ is prime and does not contain a non-zero element reduced with respect
to G. By Lemma 2.29, [G] : H(G)∞ is a prime differential ideal and, by Theorem 2.27,
an element of [G] : H(G)∞ reduced with respect to G is contained in (G) : H(G)∞

and therefore must be equal to 0. From this, it easily follows that [G] : H(G)∞

does not contain an autoreduced set of rank rk∗ lower than rk∗(G); that is G is a
characteristic set of [G] : H(G)∞. �

Thanks to all the previous results, we easily see that the proof of the following
result in [4] follows the same lines.

Theorem 2.31. Let P be a prime differential ideal in K{Y} such that P ∩K = 0, let
G be a characteristic set of P and let ϕ : K{Y} → S := K{Y}/P be the canonical
Lie differential homomorphism.

We take h := ϕ(H(G)), V := {δγy ∈ ΘY : δγy is not of the form δα+µy with
|µ| > 0 and δαy = ug for some g ∈ G}, VB := {δγy ∈ V : δγy appears in some
g ∈ G}, B := ϕ(K[VB]) and P := ϕ(K[V \ VB]).

Then h ∈ B, h 6= 0 and

(1) B is a finitely generated K-algebra and P is isomorphic to a polynomial ring
over K in at most countably many variables (the case P = F is not excluded);

(2) Sh = (B · P )h is a differentially finitely generated K-algebra;
(3) The homomorphism B ⊗K P → B · P induced from multiplication is an iso-

morphism of K-algebras;
(4) The restriction of ϕ to K[V \ VB] is injective.

An other important tool in Lie differential algebra is the basis theorem for radical
differential ideals in K{Y}.

Theorem 2.32 (See Appendix in [1]). For any radical differential ideal J in K{Y}
there exists a finite subset Φ in K{Y} such that {Φ} = J .

Any radical differential ideal in K{Y} is the intersection of a finite number of
prime differential ideals. The set of prime differential ideals coming into such a
decomposition with no superfluous component is unique.

3. Uniform model companion for Lie differential valued fields

Let us fix a field F of characteristic zero, a finite-dimensional F-vector space L with
a Lie multiplication making it a Lie algebra over a subfield of F and a vector space
homomorphism φF : L → Der(F), the Lie algebra of derivations on F, preserving the
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Lie multiplication. We fix a basis {δ1, . . . , δm} of L and let [δi, δj] :=
∑m

k=1 ck
ijδk for

some ck
ij in F.

In the sequel, we will consider the following language LLie for Lie differential fields:

• the language of rings together with unary function symbols δi, i ∈ {1, . . . , m};
• and constants symbols for each element of F.

Definition 3.1. Let 〈K, δ1, . . . , δm〉 be a Lie differential field of characteristic 0. For
every set I ⊆ K{Y} \ K of differential polynomials in Y := (Y1, . . . , YN), we write

A(I) := K[δαy : α ∈ N
m, y ∈ Y and δαy appears in some f ∈ I].

Now we define as in Definition 3.1 of [3] the notion of algebraically prepared system
of K.

Definition 3.2. An algebraically prepared system of K in m derivatives ([L : F] = m)
is a sequence (f1, . . . , fl) of differential polynomials in K{Y} \ K such that the
following two conditions hold:

(AP1) {f1, . . . , fl} is a characteristic set of a differential prime ideal; thus by Theorem
2.30, {f1, . . . , fl} is an autoreduced and coherent set of l polynomials and the
ideal (f1, . . . , fl) : H(f1, . . . , fl)

∞ of A(f1, . . . , fl) does not contain a non-zero
element, reduced with respect to f1, . . . , fl.

(AP2) the ideal (f1, . . . , fl) : H(f1, . . . , fl)
∞ of A(f1, . . . , fl) is prime and there is a

regular K-rational point of this ideal, where H(f1, . . . , fl) does not vanish.

Definition 3.3. We say that K solves an algebraically prepared system (f1, . . . , fl)
of K if there is a differential solution a ∈ Kn of f1 = . . . = fl = 0. We say that an
algebraically prepared system (f1, . . . , fl) of K is defined over a subring R of K if
each polynomial fi is over R.

Notation 3.4. If M , N are L-structures in an arbitrary language L and A is a com-
mon subset of M , N then we write M ≡>∃,A N if every existential L-formula with
parameters in A that holds in M , also holds in N . We write M ≡∃,A N if M ≡>∃,A N
and N ≡>∃,A M . Hence M ≡∃,A N if and only if M and N have the same universal
theory over A.

Now, by applying the results of Section 2, we can transpose the proof of Theorem
3.3 in [3] in order to establish the following theorem

Theorem 3.5. Let A be a common Lie differential subring of Lie differential fields
L1, L2 of characteristic zero. Let Fi be the algebraic closure of the quotient field F0

of A in Li. Suppose

• L1 ≡∃,A L2 as pure fields in the language of rings and
• L2 solves all algebraically prepared systems of L2 defined over F2.

Then L1 ≡>∃,F0
L2 as Lie differential fields in the language LLie.

Proof. It suffices to follow the proof of Theorem 3.3 in [3] by using the corresponding
results in the Lie differential case. For example, we can extend the Lie structure
to the algebraic closure of a field since δiδj − δjδi and

∑m
i=1 δi are derivations and

in characteristic zero, the derivations extend uniquely to the algebraic closure of
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a differential field. Moreover, Proposition 2.12 in [3] has its analogue in Theorem
2.32. �

Now we are able to write a Lie version of the scheme of axioms (UC) in [3].

Definition 3.6. A Lie differential field 〈K, δ1, . . . , δm〉 satisfies (UC)Lie,m if every
algebraically prepared system of K has a differential solution in K.

Moreover, Section 4 in [3] shows that the scheme of axioms (UC)Lie,m is expressible
by first-order statements in the language of Lie differential fields. Indeed the class
of all Lie differential fields of characteristic zero which solve all their algebraically
prepared systems is axiomatizable in the language LLie.

Since we want to prove the same results as in [3] in the case of Lie differential
fields, we need to use the notion of large fields.

Definition 3.7. A field K is called large if every smooth integral curve defined over
K that has a K-rational point has infinitely many K-rational points.

A characterization of large fields is given in Proposition 5.3 of [3]. This asserts
that K is large if and only if F is existentially closed in the formal Laurent series
field K((t1, . . . , tn)) for all n ∈ N, for example.

In Section 2, Theorem 2.31 is a Lie analogue of Theorem 6.1 in [3] which yields
an interesting representation of S := K{Y}/P for some prime differential ideal P in
K{Y}. It enables us to prove the following theorem (which is a Lie version of Main
Theorem 6.2 in [3]).

Theorem 3.8. Let 〈K, δ1, . . . , δm〉 be a Lie differential field of characteristic zero.
Then the two following holds:

(I) If K is large as pure field then K can be extended to a Lie differential field
which satisfies the scheme of axioms (UCLie,m).

(II) If L is a Lie differential field containing a Lie differential subring A of K such
that L and K have the same universal theory over A as pure fields, then they
have the same universal theory over A as Lie differential fields.

Proof. (I) follows from the proof in [3] by using Theorem 2.31 and the notion of
large fields like in the classical differential case. Moreover we know as in the classical
differential case that the Lie structure of a Lie differential field can be extended to
any field extension since δiδj − δjδi and

∑m

i=1 δi are also derivations.
The item (II) holds by Theorem 3.5. �

Now we give the model-theoretic results which were the principal motivation of
this section. It corresponds to the results in Section 7 of [3]. For this purpose, we
use the notations and the terminology in [3].

Definition 3.9. Let T be an L-theory of fields of characteristic zero. Then we denote
by TLie the following theory in the corresponding Lie language L∗

Lie := L ∪ LLie:

• the L-theory T ;
• the diagram of F including the action of the δi (i ∈ {1, . . . , m});
• axioms saying that the δi are derivations;
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• an axiom of the form ∀x (δkδlc − δlδkx =
∑m

i=1 ci
kl · δix) for each k, l ∈ Nm.

This is the content of the Lie version of Theorems 7.1 and 7.2 in [3].

Theorem 3.10. Let L be the language of rings and let C be a set of new constants.
Let T be a model complete L(C)-theory such that every model of T is a large field.

Let T̃ be a theory in a language L̃ ⊇ L(C) such that T̃ contains T and T̃ is an

expansion by definition of T . Let F be an L̃∗
Lie

-structure.

If T̃ ∪ diag(F ↾ L̃) is complete then T̃Lie ∪ diag(F ) ∪ (UCLie,m) is complete.

Theorem 3.11. Under the same assumptions as in Theorem 3.10, assume moreover

that T̃ is a model companion of an L̃-theory T̃0 extending the theory of fields. Then

(1) T̃Lie ∪ (UCLie,m) is a model companion of the L̃∗
Lie

-theory (T̃0)Lie.

(2) If T̃ is a model completion of T̃0 then T̃Lie ∪ (UCLie,m) is a model completion

of the L̃∗
Lie

-theory (T̃0)Lie.

(3) If T̃ has quantifier elimination then T̃Lie∪(UCLie,m) has quantifier elimination.

(4) If T is complete and L is a Lie differential field and a model of T then T̃Lie ∪

(UCLie,m)∪diag(F ) is complete where F is the L̃∗
Lie

-substructure generated by
∅ in L.

Now as in Section 8 of [3], we use Proposition 8.1 which gives a class of examples
of large fields in order to apply our results to classical theories of fields; in particular
we can reformulate with the scheme (UCLie,m) the result of model completion for Lie
differentially closed fields in Theorem 5.2 of [5].

Proposition 3.12 (See Proposition 8.2 in [3]). The following hold:

• (ACF0)Lie ∪ (UC)Lie,m is the theory LDCF0 of Lie differentially closed fields
of characteristic zero as introduced in Definition 5.1 of [5].

• (RCF )Lie∪(UCLie,m) is the complete and model complete theory of real closed
ordered Lie differential fields in the language LLie. Moreover, RCFLie ∪
(UCLie,m) has quantifier elimination in the language of Lie differential fields
equipped with a total ordering ≤.

• (pCFd)Lie ∪ (UCLie,m) is the complete and model complete theory of p-adically
closed Lie differential fields of p-rank d in the language LLie.

Moreover, (pCFd)Lie ∪ (UCLie,m) has quantifier elimination in the language
of Lie differential fields equipped with unary predicates Pn for the nth powers
of the field.
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