P-CONVEXLY VALUED RINGS

NICOLAS GUZY

ABSTRACT. In [3], L. Bélair developed a theory analogous to the theory of real closed rings in the *p*-adic context, namely the theory of *p*-adically closed integral rings. Firstly we use the property proved in Lemma (2.4) in [4] to express this theory in a language including a *p*-adic divisibility relation and we show that this theory admits definable Skolem functions in this language (in the sense of [17]). Secondly, we are interested in dealing with some questions similar to that of [1]; e.g. results about integral-definite polynomials over a *p*-adically closed integral ring *A* and a kind of "Nullstellensatz" using the notion of \mathcal{M}_A -radical.

Keywords: *p*-adically closed fields, model-completeness, definable Skolem functions, Nullstellensatz.

Mathematics Subject Classification: 03C10; 12J12.

1. INTRODUCTION

First we recall some notions, model-theoretic results and notations. Let $\mathcal{L}_{\text{rings}}$ be the usual language of rings and let $\mathcal{L}_{\text{fields}}$ be the language of fields, i.e. $\mathcal{L}_{\text{rings}} \cup \{^{-1}\}$. Let $\mathcal{L}_{\mathcal{D}}$ be an expansion of the language of rings with a two-ary predicate $\mathcal{D}(\cdot, \cdot)$. Let A be an unitary commutative domain with a valuation v on its fraction field, denoted by Q(A). Suppose that A is the valuation ring of $\langle Q(A), v \rangle$. Then we define a binary relation (which will be interpreted by the set of 2-tuples such that $v(a) \leq v(b)$) as follows:

 \mathcal{D} is transitive, $\neg \mathcal{D}(0,1)$, compatible with + and \cdot and either $\mathcal{D}(a,b)$ or $\mathcal{D}(b,a)$. We can extend \mathcal{D} to the fraction field of A as follows:

$$\mathcal{D}(\frac{a}{b}, \frac{c}{d}) \iff \mathcal{D}(ad, bc).$$

So the divisibility relation on Q(A) induces the initial valuation v by defining $v(a) \leq v(b)$ if $\mathcal{D}(a, b)$. In the sequel, if $\langle K, v \rangle$ is a valued field then the valuation ring, the valuation ideal, the residue field and the value group of $\langle K, v \rangle$ are respectively denoted by \mathcal{O}_K , \mathcal{M}_K , k_K and $v(K^{\times})$, and if A is a valuation ring then we denote the maximal ideal and the residue field of A, by \mathcal{M}_A and k_A , respectively. We denote the canonical residue map $A \longmapsto k_A$ by $\overline{\cdot}$. In order to specify the valuation v for which we consider these objects, we put a subscript v. For any ring A, we denote the set $A \setminus \{0\}$ by A^{\bullet} and the set of its units by A^{\times} . For any elements a, b in A, a|b means that there exists c in A such that ac = b. For any subsets B, C of a valued field $\langle K, v \rangle$, we say that v(B) < v(C) if for any $b \in B, c \in C$ we have v(b) < v(c).

Date: October 11, 2004.

¹ "Aspirant" at the "Fonds National de la Recherche Scientifique".

² Partially supported by a grant of the National Bank of Belgium and by INTAS contract 2000-447.

Recall that a *p*-valued field $\langle K, v \rangle$ of *p*-rank *d*, with *p* a prime number, is a valued field of characteristic 0, residue field of characteristic *p* and the dimension of $\mathcal{O}_K/(p)$ over the prime field \mathbb{F}_p is equal to *d* (*v* is called a *p*-valuation of *p*-rank *d* on *K*). An element of a *p*-valued field is called prime if its value is the least positive value of $v(K^{\times})$.

Let K be a p-valued field of p-rank d. We say that a valued field extension L of K is a p-valued extension of p-rank d if the valuation of L is a p-valuation of p-rank d on L which extends the valuation of K (i.e. $\mathcal{O}_K \subseteq \mathcal{O}_L$ and $\mathcal{M}_L \cap K = \mathcal{M}_K$). We say that K is a p-adically closed field of p-rank d if K does not admit any proper p-valued algebraic extension with the same p-rank d. In Theorems (3.1) and (3.2) of [12], a characterization of the p-adically closed fields of p-rank d is given and the notion of a *p*-adic closure is established with a criterion for uniqueness : K is *p*-adically closed if and only if K is henselian and, moreover its value group is a \mathbb{Z} -group; the necessary and sufficient condition for K to admit an unique p-adic closure up to K-isomorphism (i.e. an algebraic p-valued extension which is a p-adically closed field of p-rank d) is that its value group is a \mathbb{Z} -group. For the notion of henselian valued fields and Henselization of a valued field, we can refer to [14] or [15]. In this paper, we restrict ourselves with p-valuations of p-rank 1 (i.e. v(p) is a prime element and the residue field is equal to \mathbb{F}_p) like in the papers of [3] and [4]. However, many of our results remain valid for p-valued fields with fixed p-rank $d \ (d \in \mathbb{N})$ after adequate enrichment of the language as the reader can easily check.

Let $\mathcal{L}_{\mathcal{D}}^{P_{\omega}}$ be the language $\mathcal{L}_{\text{fields}} \cup \{\mathcal{D}\} \cup \{P_n; n \in \omega \setminus \{0, 1\}\} \cup \{c_2, \cdots, c_d\}$; this language is known as Macintyre's language (see [9]). In Theorem (5.6) of [12], Prestel and Roquette show that the $\mathcal{L}_{\mathcal{D}}^{P_{\omega}}$ -theory pCF_d of *p*-adically closed fields of *p*-rank *d* admits quantifier elimination. In [2] L. Bélair gave an explicit axiomatization of the universal part of pCF_d in the language $\mathcal{L}_{\mathcal{D}}^{P_{\omega}}$.

In the table below we summarize the analogies between "*p*-adic" and "real"; the first two items have been object of study for several decades, the last one is the main topic of this paper.

p-adically closed field (pCF)	\iff	real closed field
p-adically closed integral ring	\iff	real closed (valuation) ring
(Bélair)		(Cherlin-Dickmann)
p-convexly valued ring (pCVR)	\iff	convexly ordered valuation ring
		(Becker).

Indeed, in Section (2), we introduce a notion of *p*-convexly valued domain which is the *p*-adic counterpart of Becker's convexly ordered valuation rings and give a set of axioms in a suitable language. We prove some analogues of results in [2]. We also give a variant of Bélair's set of axioms for the first-order theory of *p*-adically closed integral rings which are the *p*-adic counterpart of real closed valuation rings. By using a criterion due to van den Dries [17], we show that the first-order theory of *p*-adically closed integral rings has definable Skolem functions in a suitable extension of Macintyre's language for *p*-adic fields. In Section (3), we settle the analogue of Hilbert's seventeenth problem for *p*-adically closed integral rings by using a relative form of Kochen's operator. In Section (4), we prove a Nullstellensatz for *p*-adically closed integral rings by using the notions of \mathcal{M} -radical of an ideal and of *p*-adic ideal (introduced by Srhir [16], this notion corresponds to that of real ideal). We close this paper by investigating the generalized notion of model-theoretic radical of an ideal in the context of *p*-adically closed integral rings similarly to [7].

2. Preliminaries

In the sequel, we work with unitary commutative rings of characteristic zero. First we introduce the notion of *p*-convexity for domains with *p*-valued fraction fields. Let us recall that we consider only *p*-valued fields of *p*-rank 1 throughout this paper. We begin with a definition.

Definition 2.1. Let A be a domain containing \mathbb{Q} . We say that A is a p-valued domain if A is not a field and its fraction field Q(A) is p-valued.

Definition 2.2. Let F be a p-valued field, with its p-valuation denoted by v_p , and let $A \subseteq B$ be two subsets of F. We say that A is p-convex in B if for all $a \in A$ and $b \in B$, $v_p(a) \leq v_p(b)$ implies $b \in A$.

From now on, we prove some elementary results for p-valued domains in the style of [1].

Lemma 2.3. Let $\langle F, v_p \rangle$ be a p-valued field and let A be a p-valued domain which is p-convex in F. Then A is a valuation ring and F = Q(A).

Proof. Let f be in F. Then we have $v_p(1) \leq v_p(f)$ or $v_p(f) \leq v_p(1)$; this means f or $f^{-1} \in A$ by p-convexity of A in F. This clearly shows that A is a valuation ring of F.

Notation 2.4. The previous lemma shows that any *p*-convex subdomain A of a *p*-valued field F supports a valuation v which corresponds to a divisibility relation \mathcal{D} on the domain A. In the sequel the notation \mathcal{M}_A and k_A are relative to the valuation v.

Lemma 2.5. Let A be a p-valued domain. Then the following are equivalent:

- (1) A is p-convex in Q(A);
- (2) A is a valuation ring and \mathcal{M}_A is p-convex in A;
- (3) A is a valuation ring and \mathcal{M}_A is p-convex in Q(A);
- (4) A is a valuation ring and for every $a \in \mathcal{M}_A$, $v_p(a)$ is larger than the value of any rational number in Q(A);
- (5) A is a valuation ring and for every $a \in \mathcal{M}_A$, $v_p(a) > 0$;
- (6) $A \models \forall x, y (v_p(x) \leq v_p(y) \rightarrow \exists z (xz = y)).$

Proof. (1) \rightarrow (2): Suppose A is p-convex in Q(A). By Lemma (2.3), A is a valuation ring. Let x in \mathcal{M}_A and y in A be such that $v_p(x) \leq v_p(y)$ (we may assume x and y different from 0); hence $v_p(1) = 0 \leq v_p(y/x)$ ($y/x \in Q(A)$). Since A is p-convex in Q(A), we have $y/x \in A$ and so, $y = x \cdot y/x \in \mathcal{M}_A$.

 $(2) \rightarrow (3)$: Let x in \mathcal{M}_A and u, v in A^{\bullet} be such that $v_p(x) \leq v_p(u/v)$. If $u/v \in A$ then by p-convexity of \mathcal{M}_A in A, $u/v \in \mathcal{M}_A$. Suppose $u/v \notin A$. Since A is a valuation ring, we have $v/u \in \mathcal{M}_A$. So, $x \cdot v/u \in \mathcal{M}_A$ and $v_p(x \cdot v/u) \leq v_p(1) = 0$ implies $1 \in \mathcal{M}_A$, this is a contradiction.

 $(3) \to (4)$: Suppose $a \in \mathcal{M}_A$ such that $v_p(a) \leq v_p(q)$ for some $q \in \mathbb{Q}$; so $q \in \mathcal{M}_A$, hence $\frac{1}{a} \notin A$, contradicting that A contains \mathbb{Q} .

(4) \rightarrow (5): Trivial since $v_p(p) = 1$.

 $(5) \rightarrow (6)$: Let x, y in A^{\bullet} be such that $v_p(x) \leq v_p(y)$. We have to show that $y/x \in A$. Otherwise $x/y \in \mathcal{M}_A$ and, by (5), $v_p(x/y) > 0$, which contradicts the assumption.

 $(6) \rightarrow (1)$: Suppose $x, y, z \in A$, $z \neq 0$ and $v_p(x) \leq v_p(y/z)$. Then $v_p(xz) \leq v_p(y)$ implies xz|y, i.e. there exists c in A such that xzc = y and so, $y/z = xc \in A$. \Box

Definition 2.6. A p-convexly valued domain A is a p-valued domain which satisfies one of the previous equivalent properties.

Let \mathcal{L} be the following expansion of the language of rings, $\mathcal{L}_{\mathcal{D}} \cup \{\mathcal{D}_p(\cdot, \cdot)\}$. It is easy to see from the previous lemmas that, with \mathcal{D} interpreted as divisibility and $\mathcal{D}_p(x, y)$ as $v_p(x) \leq v_p(y)$, any *p*-convexly valued domain satisfies the following set of \mathcal{L} -axioms:

(1) Axioms for a Q-algebra;
(2)
$$\forall x, y [(xy = 0) \Rightarrow (x = 0) \lor (y = 0)];$$

(3) $\forall x, y [\mathcal{D}_p(x, y) \lor \mathcal{D}_p(y, x)];$
(4) $\forall x, y, z [\mathcal{D}_p(x, y) \land \mathcal{D}_p(y, z) \Rightarrow \mathcal{D}_p(x, z)];$
(5) $\forall x, y, x', y' [\mathcal{D}_p(x, y) \land \mathcal{D}_p(x', y') \Rightarrow \mathcal{D}_p(xx', yy')];$
(6) $\forall x, y, y' [\mathcal{D}_p(x, y) \land \mathcal{D}_p(x, y') \Rightarrow \mathcal{D}_p(x, y + y')];$
(7) $\neg \mathcal{D}_p(p, 1);$
(8) $\forall x [\mathcal{D}_p(1, x) \Rightarrow \bigvee \{\mathcal{D}_p(p, x - i) : 0 \leqslant i < p\}];$
(9) $\forall x [\mathcal{D}_p(x, 1) \lor \mathcal{D}_p(p, x)];$
(10) $\forall x, y [\mathcal{D}(x, y) \iff \exists z(x \cdot z = y)];$

(11)
$$\exists z [\neg (\mathcal{D}(z,1)) \land \neg (z=0)];$$

(12) the condition of divisibility compatibility for the p-valuation and the divisibility:

$$\forall x, y \left[\mathcal{D}_p(x, y) \Rightarrow \mathcal{D}(x, y) \right].$$

It is not difficult to show that any model A of the previous set of axioms is a pconvexly valued domain: the first part of the list says that Q(A) is a p-valued field of p-rank 1 and the last three axioms enforce that A is p-convex in Q(A) (by using (6) of Lemma (2.5)). So this list is an axiomatization of the theory of p-convexly valued domains. This \mathcal{L} -theory is denoted by pCVR (this means p-convexly valued rings).

Remark 2.7. If A is a p-convexly valued domain then by definition, its fraction field Q(A) is a p-valued field. So we can interpret the two-ary predicate \mathcal{D}_p as the restriction of the p-divisibility relation with respect to the p-valuation on Q(A). The condition of divisibility compatibility for p-convexly valued domains implies that it is a valuation ring and that the valuation is induced by divisibility in the domain. Note that the axioms which express that \mathcal{D} is a divisibility relation are included in

the universal part of pCVR, and by Axiom (11), the divisibility relation on a model of pCVR is never trivial.

Notation 2.8. In the sequel, if A is a p-convexly valued domain then we denote by v_p the corresponding p-valuation on Q(A) and by v, the valuation corresponding to divisibility in the domain A. We sometimes use the same v_p for an extension of the p-valuation.

We continue in the style of [1] in order to find conditions to determine when a p-convexly valued domain A is a \mathcal{L} -substructure of a p-convexly valued domain B. The next lemma yields such a criterion.

Lemma 2.9. Let \mathcal{A} , \mathcal{B} be two \mathcal{L} -structures which are models of pCVR and B is a p-convexly valued domain extension of A (i.e. $\langle A, \mathcal{D}_p \rangle \subseteq \langle B, \mathcal{D}_p \rangle$ or $Q(A) \subseteq Q(B)$ as p-valued fields). Then the following are equivalent:

(1)
$$\mathcal{A} \subseteq_{\mathcal{L}} \mathcal{B};$$

- (2) $A \cap \mathcal{M}_B = \mathcal{M}_A;$
- $(3) Q(A) \cap B = A;$

(4) for all
$$a \in Q(A) \setminus A$$
 and $b \in B$, $v_p(b) > v_p(a)$.

Proof. (1) \rightarrow (2): Clearly we have $A \cap \mathcal{M}_B \subseteq \mathcal{M}_A$. Let a in A be such that $B \models \neg \mathcal{D}(a, 1)$. Since $\mathcal{A} \subseteq_{\mathcal{L}} \mathcal{B}$, we have $A \models \neg \mathcal{D}(a, 1)$ and we get $A \cap \mathcal{M}_B \supseteq \mathcal{M}_A$.

 $(2) \to (3)$: Let a, b in A^{\bullet} be such that $a/b \in B$. If $a/b \notin A$ then $b/a \in \mathcal{M}_A$. Since $\mathcal{M}_A = \mathcal{M}_B \cap A$, we have $b/a \in \mathcal{M}_B$ and $1 = b/a \cdot a/b \in \mathcal{M}_B$, this is a contradiction.

 $(3) \rightarrow (4)$: Let a be in $Q(A) \setminus A$ and $b \in B$. Since $Q(A) \cap B = A$, we have $a \notin B$ and so, $a^{-1} \in \mathcal{M}_B$, i.e. $v_p(a^{-1}) > 0$. Hence if $v_p(b) \leq v_p(a)$ then we have $v_p(b \cdot a^{-1}) \leq v_p(1)$ where $b \cdot a^{-1} \in \mathcal{M}_B$. Since B is a p-convexly valued domain, we get $1 \in \mathcal{M}_B$, this is a contradiction.

 $(4) \to (1)$: Let a, b in A^{\bullet} be such that there exists $c \in B$ satisfying ac = b. So $c \in Q(A)$. If $c \notin A$ then $c \in Q(A) \setminus A$ and so, we have $v_p(c) > v_p(c)$ by (4). \Box

Lemma 2.10. Let A be a p-convexly valued domain A. Then $v_p(A^{\times})$ is a p-convex subgroup of $v_p(Q(A)^{\times})$.

Proof. Let x, y in A^{\times} and u, v in A be such that $v \neq 0$ and $v_p(x) \leq v_p(u/v) \leq v_p(y)$. So we have that $v_p(x \cdot v) \leq v_p(u)$. By the condition of divisibility compatibility, there exists an element c of A such that $x \cdot v \cdot c = u$. Hence we obtain $u/v = x \cdot c \in A$ and again by the condition of compatibility, there exists an element d of A such that $y = d \cdot u/v$. We conclude that u/v belongs to A^{\times} since $y \in A^{\times}$.

Remark 2.11. If A is a p-convexly valued domain then by p-convexity of \mathcal{M}_A in A, we have $v_p(A^{\times}) < v_p(\mathcal{M}_A)$.

So we can define a *p*-valuation on the residue field k_A of A, denoted by \tilde{v}_p , as follows: if x = 0 in k_A then $\tilde{v}_p(x) = \infty$; otherwise if $x \neq 0$ in k_A , we take $y \in A^{\times}$ such that $\overline{y} = x$ and define $\tilde{v}_p(x)$ as $v_p(y)$. By Remark (2.11), \tilde{v}_p is well-defined and k_A is a *p*-valued field by the axiom-schemes pCVR.

In the next paragraph we give a new axiomatization of p-adically closed integral rings which were introduced in [3]. Our candidate for such an axiomatization is the following list which will denote by pCIR.

Definition 2.12. pCIR is the following set of \mathcal{L} -sentences:

- (1) the set of axioms for the \mathcal{L} -theory of *p*-convexly valued rings;
- (2) for each integer n > 0, $\forall x \exists y [\mathcal{D}(x, y^n) \land \mathcal{D}(y^n, x)];$
- (3) for each integer n > 0,

$$\forall a_0, \cdots, a_{n-1} \left[\mathcal{D}(a_{n-1}, 1) \land \bigwedge_{i=0}^{n-2} \neg \mathcal{D}(a_i, 1) \right] \Rightarrow \\ \exists x \left[x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0 \land \mathcal{D}(x, 1) \right];$$

(4) for each integer n > 0,

$$\forall x \exists y \left[\mathcal{D}(x,1) \right] \Rightarrow \bigvee_{0 \leqslant r < n} \{ \mathcal{D}_p(y^n p^r, x) \land \mathcal{D}_p(x, y^n p^r) \};$$

(5) for each integer n > 0,

$$\forall a_0, \cdots, a_{n-1} \left[\mathcal{D}_p(1, a_{n-1}) \land \mathcal{D}_p(a_{n-1}, 1) \land \bigwedge_{i=0}^{n-2} \mathcal{D}_p(p, a_i) \right] \Rightarrow \\ \exists x \left[\neg \mathcal{D}(x^n + a_{n-1}x^{n-1} + \cdots + a_0, 1) \land \mathcal{D}_p(1, x) \land \mathcal{D}_p(x, 1) \right].$$

We now show that the models of pCIR are exactly the *p*-adically closed integral rings introduced in [3]. In order to prove it, we reformulate Proposition (2.2) and Corollary (2.3) of [3] in our terminology.

Lemma 2.13. The models of the \mathcal{L} -theory of p-adically closed integral rings correspond to henselian p-convexly valued rings with p-adically closed residue field and divisible ordered value group. Moreover, the \mathcal{L} -theory of p-adically closed integral rings is complete and model-complete; it has elimination of quantifiers in the language \mathcal{L}_{rings} equipped with predicates P_n for the n-th powers (we replace in the \mathcal{L} -theory pCIR the predicate of p-divisibility relation by: $\mathcal{D}_p(x,y) \iff P_{\epsilon}(x^{\epsilon} + py^{\epsilon}); \epsilon =$ $3 \text{ if } p = 2, \text{ otherwise } \epsilon = 2$ (*).).

Proof. First we note that in the *p*-adically closed case membership to the valuation ring is definable by (*)[2]. Let A be a model of the \mathcal{L} -theory pCIR. Then A is a valuation ring with respect to the divisibility predicate \mathcal{D} and is *p*-convex in its fraction field. The axioms (2) express that the value group is divisible and the axioms (3) say A is henselian (it is one of the equivalent forms of Hensel's Lemma, see [14]). The axiom-schemes (4) and (5) imply that the *p*-valued field $\langle k_A, \tilde{v_p} \rangle$ is *p*-adically closed where $\tilde{v_p}$ is the valuation defined as in Remark (2.11). The rest of the proof follows the lines of Corollary (2.3) in [3].

We need the next two lemmas to extend *p*-convexly valued domains in the most natural way possible, i.e. we will use the previous characterization of *p*-convexly valued domains. Moreover, Lemma (2.9) will help us to build extensions of \mathcal{L} -structures.

Lemma 2.14. Let A be a p-valued domain and let $\langle K, v_p \rangle$ be a p-valued field extension of Q(A) such that there exists an element of K of value lower than $v_p(A^{\bullet})$. Then there exists a minimal p-convexly valued domain containing A whose fraction field is K. We will denote this minimal p-convexly valued domain extending A by pcH(A, K). Furthermore, if A is a p-convexly valued domain then $A \subseteq_{\mathcal{L}} pcH(A, K)$. Proof. Let pcH(A, K) be the following set $\{k \in K \mid \exists c \in A, K \models v_p(c) \leq v_p(k)\}$ which is different from K by hypothesis. Clearly it is a p-valued domain and it is p-convex in K. The minimality is deduced from the definition of pcH(A, K). Let us denote pcH(A, K) by \widetilde{A} . Lemma (2.3) implies that K is the fraction field of pcH(A, K). For the second part, we have to show that $A \cap \mathcal{M}_{\widetilde{A}} = \mathcal{M}_A$ by Lemma (2.9). Suppose $a \in \mathcal{M}_A$. So, $a^{-1} \notin A$ because A is a valuation ring. If $a^{-1} \notin \widetilde{A}$ then $a \in \mathcal{M}_{\widetilde{A}}$ and the proof is finished. So, suppose $a^{-1} \in \widetilde{A}$. By definition, there exists $b \in A$ such that $v_p(b) \leq v_p(a^{-1})$. Hence, $v_p(b \cdot a) = v_p(b) + v_p(a) \leq v_p(a^{-1}) + v_p(a) =$ $v_p(1)$. Sice \mathcal{M}_A is p-convex in A, we get $1 \in \mathcal{M}_A$, this is a contradiction. \Box

In the previous lemma, if A is already a p-convexly valued domain then the hypothesis of having an element of K of value lower than $v_p(A^{\bullet})$ is directly satisfied.

Lemma 2.15. Let A be a p-convexly valued domain and let $\widetilde{Q(A)}$ be a p-adic closure of Q(A) for the p-valuation v_p on Q(A). Then there exists a model \widetilde{A} of pCIR such that $A \subseteq_{\mathcal{L}} \widetilde{A}$. In addition, if the value group of Q(A) is a \mathbb{Z} -group then $pcH(A, Q(A)^h)$ is a model of pCIR where $Q(A)^h$ is the Henselization of Q(A) for the p-valuation v_p .

Proof. Let H be the convex hull of the group $v_p(A^{\times})$ in $v_p(\widetilde{Q(A)}^{\times})$. Then we consider the set $\widetilde{A} = \{x \in \widetilde{Q(A)} \mid \exists h \in H, \widetilde{Q(A)} \models v_p(x) \ge h\}$. As in the proof of Proposition (2.5) in [3], we have that \widetilde{A} is a model of pCIR. It remains to show that $A \subseteq_{\mathcal{L}} \widetilde{A}$. By Lemma (2.9), it suffices to prove that $A \cap \mathcal{M}_{\widetilde{A}} = \mathcal{M}_A$. Suppose $a \in \mathcal{M}_A$, so $a^{-1} \notin A$. If $a^{-1} \notin \widetilde{A}$ then $a \in \mathcal{M}_{\widetilde{A}}$ and the proof is finished. So we suppose $a^{-1} \in \widetilde{A}$. By definition of \widetilde{A} and H, there exists an element b of A^{\times} such that $v_p(b) \le v_p(a^{-1})$. We conclude as in the proof of Lemma (2.14). For the second part, since $Q(A)^h$ is a an immediate extension of Q(A) for the valuation v_p , the value group of $Q(A)^h$ is a \mathbb{Z} -group and so $Q(A)^h$ is p-adically closed. By Remark (2.11) and Lemma (2.14), we have $pcH(A, Q(A)^h) = \{x \in Q(A)^h \mid \exists h \in H, Q(A)^h \models v_p(x) \ge h\}$ where H is the convex hull of the group $v_p(A^{\times})$ in $v_p(Q(A)^{h^{\times}})$, i.e. it is $v_p(A^{\times})$. The rest of the proof is the same as that of Proposition (2.5) in [3].

Lemma 2.16. Let A be a model of the \mathcal{L} -theory of p-adically closed integral rings. Then its fraction field Q(A) is p-adically closed.

Proof. Owing to the *p*-divisibility on A, we can define the *p*-valuation v_p of Q(A) as follows:

 $\forall a, b \in A \quad \forall c, d \in A^{\bullet}, \quad v_p(a/c) \leqslant v_p(b/d) \iff \mathcal{D}_p(ad, bc).$

Clearly by the axioms of pCIR, the fraction field Q(A) is a *p*-valued field. It remains to show that its value group is a \mathbb{Z} -group and that it is henselian with respect to v_p . Since *A* is a *p*-convexly valued domain, it is *p*-convex in Q(A) and so, *A* contains the valuation ring $\mathcal{O}_{Q(A)}$ of Q(A). To prove that $v_p(Q(A)^{\times})$ is a \mathbb{Z} -group, it suffices to show that for any integer n > 0 and any element *x* of Q(A) such that $v_p(x) \ge 0$ (so $x \in A$), there exists an element *y* of *A* and a positive integer *r* such that $0 \le r \le n-1$ and $v_p(x) = n \cdot v_p(y) + r$ (because *p* is a prime element of Q(A)). Indeed, let *x* be in Q(A). If $v_p(x) < 0$ then $v_p(x^{-1}) > 0$ implies $x^{-1} \in A$. Hence, by the axiom-scheme (4) of *pCIR*, there exists an element y of A such that $v_p(x^{-(n-1)}) = n \cdot v_p(y) + r$. We conclude that $v_p(x) = n \cdot (v_p(y) + v_p(x)) + r$ where $0 \le r \le n - 1$.

Let x in A be such that $v_p(x) \ge 0$ then there exists an element z of A such that $v(x) = v(z^n)$ by the axiom-scheme (2). So $xz^{-n} \in A$ with $v(xz^{-n}) = 0$ where v is the valuation determined by the divisibility predicate \mathcal{D} . We apply the axiom-scheme (4) of pCIR and we obtain the requirement. Now we show that Q(A) is henselian. Let $Q(A)^h$ be the Henselization of Q(A) for the p-valuation v_p . By Lemma (2.15), we can consider the minimal p-convexly valued domain $pcH(A, Q(A)^h)$ with fraction field $Q(A)^h$, denoted by \widetilde{A} . By Lemma (2.14), \widetilde{A} is a model of pCIR such that $A \subseteq_{\mathcal{L}} \widetilde{A}$. Since the \mathcal{L} -theory pCIR is modele-complete and \widetilde{A} is p-convex in $Q(\widetilde{A})$, Q(A) satisfies Hensel's Lemma with respect to v_p on Q(A). Let us check it.

Let a_0, \ldots, a_{n-1} in Q(A) be such that $v_p(a_{n-1}) = 0$ and $v_p(a_i) \ge 1$ for all $i \in \{0, \ldots, n-2\}$. Then each a_i belongs to A by p-convexity of A in Q(A). Since $Q(A)^h$ is henselian for the p-valuation v_p , there exists an element b in $Q(A)^h$ such that $b^n + a_{n-1} \cdot b^{n-1} + \cdots + a_0 = 0$ and $v_p(b) = 0$. We have that $b \in pcH(A, Q(A)^h)$ which is a model of pCIR.

Thus $\widetilde{A} \models \exists y [(y^n + a_{n-1}y^{n-1} + \dots + a_0 = 0) \land \mathcal{D}_p(1, y) \land \mathcal{D}_p(y, 1)]$. By modelcompleteness of *pCIR*, we get that

$$A \models \exists y \left[(y^n + a_{n-1}y^{n-1} + \dots + a_0 = 0) \land \mathcal{D}_p(1, y) \land \mathcal{D}_p(y, 1) \right]$$

and so, Q(A) is henselian with respect to v_p .

Now we are interested in the existence of definable Skolem functions in the \mathcal{L} -theory of *p*-adically closed integral rings.

First recall a definition.

Definition 2.17. Let *L* be a first-order language. Let $\mathcal{A} \subseteq \mathcal{B}$ be two *L*-structures. We say that \mathcal{B} is rigid over \mathcal{A} if and only if $\operatorname{Aut}(\mathcal{B}/\mathcal{A}) = {\operatorname{id}}$ where id is the identity automorphism.

Secondly let us recall a theorem of L. van den Dries which gives a criterion for rigidity.

Theorem 2.18. (see Theorem (2.1) in [17]) Let L be a first-order language and let T be a L-theory which admits quantifier elimination. Then the following are equivalent:

- T has definable Skolem functions;
- each model \mathcal{A} of T_{\forall} has an extension $\overline{\mathcal{A}} \models T$ which is algebraic over \mathcal{A} (in the model-theoretic sense) and rigid over \mathcal{A} .

Let $\mathcal{L}_{\mathcal{D},P_{\omega}}$ be an expansion of the language $\mathcal{L}_{\mathcal{D}}$ by predicates P_n for the *n*-th powers and a constant \underline{c} . We can reformulate the \mathcal{L} -theory pCIR in the language $\mathcal{L}_{\mathcal{D},P_{\omega}}$. For example, the $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -theory pCIR contains axioms which express that the models are not fields, i.e. $\neg \mathcal{D}(c, 1)$ (this assures that the valuation on a $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -substructure of a model of pCIR is never trivial), $\forall x (P_n(x) \iff \exists y (y^n = x))$ and the *p*-divisibility relation \mathcal{D}_p is defined as in the statement of Lemma (2.13).

Let A be a model of pCIR, i.e. a p-adically closed integral ring. We can define a basis of a Hausdorff topology by:

$$\{D_{(a,b)} \mid a, b \in A, b \neq 0\} \text{ where } D_{(a,b)} \text{ is the set} \\ \{x \in A \mid A \models \mathcal{D}_p(b, x - a) \land \neg \mathcal{D}_p(x - a, b)\}.$$

It is called the *p*-valuation topology on A. So, $\langle A, D_{(x,y)} \rangle$ is a first-order topological structure in the sense of [11, p. 765, example (e)].

Let us show topological results on the sets defined by the previous predicates.

Lemma 2.19. Let A be a model of pCIR. Then the sets $P_n^A = \{a \in A^{\bullet} \mid A \models P_n(a)\}$, are clopen for the p-valuation topology on A, for each integer n > 0.

Proof. Let Q(A) be the fraction field of A which is a p-adically closed field. Let us consider the set of n-th powers $\overline{P_n}$ in Q(A) which extends the set P_n in A (i.e. if $Q(A) \models \exists b (b^n = a)$ where $a \in A$ then $b \in A$ because A is integrally closed). It is well-known that the set $\overline{P_n}$ in $Q(A)^{\bullet}$ is clopen for the p-valuation topology on Q(A). So, since A is a clopen set in Q(A), P_n^A is clopen for the topology on A induced by the p-valuation topology on Q(A). It remains to show that P_n^A is clopen for the p-valuation topology on A. The fact that it is closed is clear by definition of topologies. Suppose $a \in A$ is such that $P_n^A(a)$. By Lemma (2.3) of [8], we have that $a \in \mathcal{D}_{(a,an^2)} \subseteq P_n^A$ and the proof is finished. \Box

The following lemma corresponds to Proposition (1.9) in [6].

Lemma 2.20. Let A be a p-adically closed integral ring. Then:

- (1) The following subsets of A are open for the p-valuation topology: $\{x \in A \mid A \models \mathcal{D}(a, x)\}$ for all $a \in A^{\bullet}$, $\{x \in A \mid A \not\models \mathcal{D}(x, a)\}$, $\{x \in A \mid A \not\models \mathcal{D}(a, x)\}$, $\{x \in A \mid A \models \mathcal{D}(x, a)\}$ for all $a \in A$.
- (2) The following subsets of A^2 are open (when A^2 is endowed with the product topology):

$$\{(x,y)\in A^2\mid A\models \mathcal{D}(x,y)\}\setminus\{(0,0)\},\ \{(x,y)\in A^2\mid A\not\models \mathcal{D}(x,y)\}.$$

Proof. (1) Let X_a be one of the two first sets. Let b be an element of X_a . Then the axiom of divisibility compatibility implies that $D_{(0,b)} \subseteq X_a$. Therefore X_a is open. Let us consider the two last sets. Let Y_a be one of these sets and $b \in Y_a$. Then the set $\{x \in A \mid \mathcal{D}_p(x, b)\}$ is included in Y_a which is clearly an open neighborhood of b for the p-valuation topology on A.

(2) Let D be the set $\{(x, y) \in A^2 \mid A \models \mathcal{D}(x, y)\} \setminus \{(0, 0)\}$ and let (x_0, y_0) be in D. Suppose $v_p(x_0) \leq v_p(y_0)$ and $y_0 \neq 0$. By the axiom of divisibility compatibility, we get $D_{(x_0,x_0)} \times D_{(y_0,y_0)} \subseteq D$. It is the same argument as above for the case $v_p(x_0) > v_p(y_0)$. So suppose that $y_0 = 0$ and $x_0 \neq 0$. Hence $D_{(x_0,x_0)} \times D_{(0,x_0)} \subseteq D$, again by using the axiom of divisibility compatibility.

Let $D' = \{(x, y) \in A^2 \mid A \not\models \mathcal{D}(x, y)\}$. If $(x_0, y_0) \in D'$ then $y_0 \neq 0$. Assume $x_0 \neq 0$. So $\neg \mathcal{D}(x_0, y_0)$ implies $v_p(x_0) > v_p(y_0)$. It suffices to apply the arguments of (1) to show that there exists an open neighborhood U of (x_0, y_0) contained in D' for the p-valuation topology on A. If $x_0 = 0$ then we choose an element $\epsilon \in \mathcal{M}_A^{\bullet}$. Hence, the axiom of divisibility compatibility implies $D_{(x_0,\epsilon y_0)} \times D_{(y_0,y_0)} \subseteq D'$, which proves that D' is an open set of A^2 .

The above properties imply that the models of the $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -theory pCIR are proper first-order topological structures (see Definition (2.2) in [10]). So this $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -theory is unstable and has the strict order property (see [11]). Moreover, the models of pCIR are topological systems (see Definition (4.1) in [10]) and we can apply some results of [10] to our setting. For example, by Theorem (4.4) of [10], pCIR is modeltheoretically bounded; let A be a model of pCIR, if B a subset of A then $\operatorname{acl}_A(B)$ is the field-theoretic algebraic closure of B in A; moreover A is t-minimal (i.e. for every definable $X \subseteq A$, the set bd(X) of boundary points of X in A is finite).

Now we prove the existence of definable Skolem functions for the $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -theory pCIR.

Theorem 2.21. The $\mathcal{L}_{\mathcal{D},P_{\omega}}$ -theory of p-adically closed integral rings has definable Skolem functions.

Proof. The proof follows the lines of Proposition (3.4) in [17]. By Theorem (2.18), it suffices to prove that each model \mathcal{A} of $(pCIR)_{\forall}$ has an extension $\overline{\mathcal{A}} \models pCIR$ which is algebraic and rigid over \mathcal{A} . Let $\mathcal{A} \subseteq \mathcal{A}^* \models pCIR$ and define $\overline{\mathcal{A}}$ as the substructure of \mathcal{A}^* whose members are the elements of \mathcal{A}^* algebraic over the domain \mathcal{A} . Write $\overline{\mathcal{A}} = \langle \overline{\mathcal{A}}, \overline{\mathcal{D}}(\cdot, \cdot), \underline{c}, \overline{P_2}, \overline{P_3}, \cdots \rangle$. We claim that

(1)
$$\overline{\mathcal{A}} \models pCIR.$$

The underlying domain \overline{A} of $\overline{\mathcal{A}}$ is integrally closed in A^* . Since A^* is henselian, $\overline{\mathcal{A}}$ endowed with the restriction of the valuation of A^* is also henselian (let us remark that this restriction corresponds to $\overline{\mathcal{D}}$).

Since \mathcal{A} is a $\mathcal{L}_{\mathcal{D}, P_{\omega}}$ -substructure of \mathcal{A}^* , the valuation on \mathcal{A}^* is an extension of the valuation on \mathcal{A} and so, on $\overline{\mathcal{A}}$ also. Since $\overline{\mathcal{A}}$ is integrally closed in the underlying ring of \mathcal{A}^* , it follows that $\overline{\mathcal{P}_n}$ is the set of *n*-th powers of $\overline{\mathcal{A}}$. Let x be in $\overline{\mathcal{A}}$. Then there exists $e \in \mathbb{N}$ such that $\mathcal{A}^* \models \exists y(y^n = ex)$: indeed, since $Q(\mathcal{A}^*)$ is a p-adically closed field, we know that $Q(\mathcal{A}^*) \models \exists y(y^n = ex)$ and since \mathcal{A}^* is integrally closed in its fraction field, this property holds in \mathcal{A}^* . Since $\overline{\mathcal{A}}$ is integrally closed in \mathcal{A}^* and is a \mathbb{Q} -algebra, the value group of $\overline{\mathcal{A}}$ is divisible. Since \mathcal{A} is a model of $(pCIR)_{\forall}$, the p-divisibility \mathcal{D}_p on \mathcal{A} is defined as in (2.13) with universal axioms of pCVR and the condition of compatibility between \mathcal{D}_p and \mathcal{D} is satisfied in \mathcal{A} . The same holds for \mathcal{A}^* and $\overline{\mathcal{A}}$ which are p-convexly valued domains. Since $\overline{\mathcal{A}} \subseteq_{\mathcal{L}_{\mathcal{D}, \mathcal{P}_\omega}} \mathcal{A}^*$, the p-divisibility in \mathcal{A}^* respects the p-divisibility in $\overline{\mathcal{A}}$ and so, we have $\langle k_{\overline{\mathcal{A}}}, \widetilde{v}_p \rangle \subseteq \langle k_{\mathcal{A}^*}, \widetilde{v}_p \rangle$ (see Remark (2.11)). Let a_0, \cdots, a_{n-1} in $\overline{\mathcal{A}}$ be such that $\widetilde{v}_p(\overline{a}_{n-1}) = 0$ and $\widetilde{v}_p(\overline{a}_i) \ge 1$ for all $0 \le i \le n-2$. We know that $k_{\mathcal{A}^*}$ is henselian with respect to \widetilde{v}_p . So there exists b in \mathcal{A}^* such that $b^n + a_{n-1}b^{n-1} + \cdots + a_0 \in \mathcal{M}_{\mathcal{A}^*}$ and $b \notin \mathcal{M}_{\mathcal{A}^*}$. Thus $b \in \operatorname{acl}_{\mathcal{A}^*}(a_0, \cdots, a_{n-1})$ and we get $b \in \overline{\mathcal{A}}$ which implies that $k_{\overline{\mathcal{A}}}$ is henselian (because $\mathcal{M}_{\mathcal{A}^*} \cap \overline{\mathcal{A}} = \mathcal{M}_{\overline{\mathcal{A}}}$).

Let us prove that the value group of the *p*-valuation $\widetilde{v_p}$ of $k_{\overline{A}}$ is a \mathbb{Z} -group. Let x be in $k_{\overline{A}}$. Choose an element y in \overline{A} such that $\overline{y} = x$. Since \mathcal{A}^* is a *p*-adically closed integral ring, there exists an element z of \mathcal{A}^* such that $z^n = ey$ for some $e \in \mathbb{N}$ (as above). So there exists an element z' of \overline{A} such that $z'^n = ey$ and we obtain $\overline{z'}^n = \overline{ex}$

 $(\overline{e} \neq 0 \text{ because } k_{\overline{A}} \text{ is of characteristic zero}).$ We conclude that $[\widetilde{v_p}(k_{\overline{A}}) : n\widetilde{v_p}(k_{\overline{A}})] = n.$ So, (1) is proved.

It remains to prove that $\overline{\mathcal{A}}$ is rigid over \mathcal{A} . Suppose σ is a \mathcal{A} -automorphism of \mathcal{A} . Take the substructure of \mathcal{A} pointwise fixed by σ . Let us write it as $\mathcal{A}^1 =$ $\langle A^1, \mathcal{D}^1, \underline{c}, P_2^1, P_3^1, \cdots \rangle$. Then, for all $n \ge 2$, we have that $P_n^{-1} = \{a^n \mid a \in A^1\}$. First, $\langle A^1, \mathcal{D}_p^1, \mathcal{D}^1 \rangle$ is a *p*-convexly valued domain where \mathcal{D}_p^1 and \mathcal{D}^1 are restrictions to A^1 of divisibility relations \mathcal{D}_p and \mathcal{D} on \overline{A} . We consider the fraction field $Q(\overline{A})$ of \overline{A} and extend the relations in a natural way: for every integer $n \ge 2$ and for all $a, b \in Q(\overline{A})^{\bullet}, Q(\overline{A}) \models P_n(a/b)$ iff $\overline{A} \models \exists z(z^n = ab^{n-1})$ (because \overline{A} is integrally closed in A^*) and for all $u, v \in A$ and $s, t \in A^{\bullet}$, $Q(\overline{A}) \models \mathcal{D}(u/v, s/t)$ iff $\overline{A} \models \mathcal{D}(ut, sv)$. We extend the automorphism σ of \overline{A} to an automorphism $Q(\sigma)$ of $Q(\overline{A})$. For suppose $a \in P_n^{-1}, a \neq 0$. Let b be an n-th root of a in \overline{A} . Take an integer $m \ge 2$. As in the proof of (1), we find a rational $q \neq 0$ with $qb \in \overline{P}_m$; so in $Q(\overline{A})$, we have that $\sigma(qb) \cdot (qb)^{-1} = \sigma(b) \cdot b^{-1} \in P_m(Q(\overline{A}))$. Since $Q(\overline{A})$ is a *p*-adically closed field and $\sigma(b) \cdot b^{-1}$, an *n*-th root of unity, is an *m*-th power in $Q(\overline{A})$ for all *m*, we obtain $\sigma(b) \cdot b^{-1} = 1$, i.e. $b \in A^1$. By Lemma (2.16), $Q(\overline{A})$ is a p-adically closed field and $Q(A^1)$ is a *p*-valued field such that its value group is a \mathbb{Z} -group (by a previous argument and the form of P_n^1). So, we can extend the A-automorphism σ of \overline{A} to a Q(A)-automorphism $Q(\sigma)$ of $Q(\overline{A})$ which has $Q(A^1)$ as pointwise fixed subfield (because A^1 is a valuation ring). As $\langle Q(\overline{A}), \overline{v}_p \rangle$ is henselian for its *p*-valuation \overline{v}_p (which corresponds to the *p*-divisibility $\overline{\mathcal{D}}_p$), it contains an Henselization of $\langle Q(A), v_p \rangle$ and the universal property of the Henselization implies that it is fixed by $Q(\sigma)$, hence it is contained in $\langle Q(A^1), v_p^1 \rangle$. Therefore, $\langle Q(A^1), v_p^1 \rangle$ is henselian. So, $Q(A^1)$ is a padically closed field. As in the proof of Lemma (2.15), A^1 is a p-adically closed integral ring with respect to \mathcal{D}_p^1 and \mathcal{D}^1 . By Lemma (2.3) of [17], $\overline{\mathcal{A}}$ is a minimal prime model extension of \mathcal{A} , as it is algebraic over \mathcal{A} . Therefore we have $\mathcal{A}^1 = \overline{\mathcal{A}}$, \square i.e. σ is the identity automorphism.

Let A be a p-adically closed integral domain. Since A is clopen for the p-valuation topology of its fraction field and A is a p-convexly valued domain, a corollary of the previous theorem is that the models of pCIR satisfy the property of Local Continuity as defined in [10]. Hence all required properties to guarantee the existence of a Cell decomposition in the sense of [10] are checked in the $L_{\mathcal{D},P_{\omega}}$ -theory of p-adically closed integral rings. In a subsequent paper we explore a more adequate Cell decomposition for this class of p-convexly valued rings.

3. HILBERT'S SEVENTEENTH PROBLEM FOR *p*-CONVEXLY VALUED DOMAINS

In this section we determine the form of polynomials over a p-adically closed ring A which are integral-definite on A (see Definition (3.12)). It is the analogue of Theorem 2 in [7] for the p-adic case by using the same techniques as in [1], e.g. the model-completeness of pCIR. First we provide the tools needed to settle this.

In the whole section, A will be assumed a p-convexly valued domain. Then Q(A) is a p-valued field and $\mathcal{O}_{Q(A)}$ denotes the valuation ring of Q(A) for the p-valuation v_p .

Definition 3.1. Let A be a p-valued domain and let B be a domain extension of A equipped with a valuation v. We say that B is a p-valued domain extension if v is a p-valuation on Q(B) over Q(A) (i.e v is a p-valuation on Q(B) which extends the p-valuation of Q(A)).

Remark 3.2. For all $a \in A$, we have $\gamma_p(a) \in A$ where $\gamma_p(X)$ is the Kochen's operator defined by:

$$\gamma_p(X) = \frac{1}{p} \left[\frac{X^p - X}{(X^p - X)^2 - 1} \right]$$

(where $\gamma_p(a)$ is an element of Q(A)). This is an immediate consequence of the next lemma. We will denote by ∞ the value of $\gamma_p(b)$ when this value does not exist at b in Q(A).

Let us recall Lemma (6.2) of [12].

Lemma 3.3. Let k be a p-valued field, let K be a field extension of k and let v be a valuation of K extending the given p-valuation of k. A necessary and sufficient condition for v to be a p-valuation over k (i.e. $\dim_{\mathbb{F}_p} (\mathcal{O}_K/(p)) = 1$) is that $v(\gamma_p(K)) \ge 0$.

Theorem 3.4. Let B be a domain extension, which is not a field, of the p-valued domain A. Let M be a subset of B such that $v_p(M \cap A) \ge 0$. A necessary and sufficient condition for B to be a p-valued domain extension of A such that $v_p(M) \ge 0$ is that

$$\frac{1}{p} \notin \mathcal{O}_{Q(A)}[\gamma_p(Q(A)), M]$$

where $\mathcal{O}_{Q(A)}[\gamma_p(Q(A)), M]$ denotes the subring of Q(B) generated by $\gamma_p(Q(A)) \setminus \{\infty\}$ and M over the ring $\mathcal{O}_{Q(A)}$.

Proof. It suffices to adapt the proof of [12, p. 100]. For necessity, we use in addition that $v(M) \ge 0$ and the previous lemma. For sufficiency, we use the fact that the ideal generated by p in $\mathcal{O}_{Q(A)}[\gamma_p(Q(A)), M]$ is proper and so, we can invoke the general existence theorem for valuations [13, p. 43]. The hypothesis $v(M \cap A) \ge 0$ yields that it is an extension of the p-valuation.

Corollary 3.5. In the situation of the previous theorem, let v be a valuation of Q(B). A necessary and sufficient condition for v to be a p-valuation over Q(A) such that $v(M) \ge 0$ is that v lies above $\mathcal{O}_{Q(A)}[\gamma_p(Q(A)), M]$ and is centered over p.

Proof. It is just a reformulation of the previous theorem, it suffices to examine its proof. \Box

Now we introduce a particular ring which plays an important role in the extension of a p-valuation, namely to a valued domain extension of the p-valued domain A. It is an adaptation of the classical Kochen ring and of its role in the p-adically closed field case (see Section (6.2) of [12]).

Definition 3.6. For any domain extension B of A which is not a field and M a subset of B, the M-Kochen ring $R^M_{\gamma_p}(B)$ is defined as the subring of Q(B) consisting of quotients of the form

$$a = \frac{b}{1+pd}$$
 with $b, d \in \mathcal{O}_{Q(A)}[\gamma_p(Q(B)), M]$ and $1 + pd \neq 0$.

Lemma 3.7. Let A be a model of pCIR and let a be an element of A. Then $\mathcal{D}_p(1, a)$ if and only if there exists an element b in A such that $a = \gamma_p(b)$. Moreover, an element a of A satisfies $\mathcal{D}_p(1, a)$ if and only if $\exists y (y^{\epsilon} = 1 + pa^{\epsilon}); \epsilon = 3$ if p = 2, otherwise $\epsilon = 2$.

Proof. Clearly, since Q(A) is a *p*-valued field, if there exists an element *b* in *A* such that $a = \gamma_p(b)$ then $v_p(a) \ge 0$, i.e. $A \models \mathcal{D}_p(1, a)$. On the other hand, if we consider the polynomial $f(X) = ap[(X^p - X)^2 - 1] - (X^p - X)$ then f(X) admits 1 as a simple zero in the residue field of Q(A). By Hensel's lemma, f(X) has a zero *b* in *A*, whence $a = \gamma_p(b)$. For the second part of the statement, it is satisfied in the *p*-valued fraction field Q(A) and it holds in *A* because *A* is an integrally closed ring (see Lemma (2.13)).

So by the preceding result, the elements of the *M*-Kochen ring $R^M_{\gamma_p}(B)$ of *B* over the *p*-adically closed integral domain *A* have the following form:

$$a = \frac{b}{1+pd}$$
 with $b, d \in \mathbb{Z}[\gamma_p(Q(B)), M]$ and $1 + pd \neq 0$.

The fraction field of the *M*-Kochen ring $R^M_{\gamma_p}(B)$ is Q(B) by Merckel's Lemma (see Appendix in [12]).

Theorem 3.8. Suppose that p is not a unit in $\mathcal{O}_{Q(A)}[\gamma_p(Q(B)), M]$, in view of Theorem (3.4) this is equivalent to saying that Q(B) is a p-valued field over Q(A) such that $v_p(M) \ge 0$. Then

- (1) p is not a unit in $R^M_{\gamma_p}(B)$. Every maximal ideal of $R^M_{\gamma_p}(B)$ contains p and every prime ideal of $R^M_{\gamma_p}(B)$ containing p is maximal.
- (2) The p-valuations of Q(B) over Q(A) such that M belongs to the corresponding valuation ring can be characterized as being those valuations of Q(B) which lie above $R^M_{\gamma_p}(B)$ and are centered at some maximal ideal of $R^M_{\gamma_p}(B)$.

Proof. It is an easy adaptation of the proof of Theorem (6.8) in [12], it suffices to replace R by $R^M_{\gamma_n}(B)$ and to use the corresponding previous results.

Definition 3.9. For any non empty set S of valuations of Q(B), we denote by \mathcal{O}_S the intersection of their valuation rings:

$$\mathcal{O}_S = \bigcap_{v \in S} \mathcal{O}_v$$
 where \mathcal{O}_v is the valuation ring corresponding to v

 \mathcal{O}_S is called the holomorphy ring of S in Q(B). Every such holomorphy ring is integrally closed in Q(B).

Lemma 3.10. Let P be a maximal ideal of the M-Kochen ring $R_{\gamma_p}^M(B)$ of B over A and let v be a valuation of Q(B) lying above $R_{\gamma_p}^M(B)$ and centered at P. Then v is the only valuation of Q(B) which lies over $R_{\gamma_p}^M(B)$ and is centered at P. Further, $R_{\gamma_p}^M(B)/P$ is the residue field of Q(B) with respect to v and $\mathcal{O}_v = R_{\gamma_p}^M(B)_P$ where $R_{\gamma_p}^M(B)_P$ is the localization of the M-Kochen ring over B at the maximal ideal P.

Proof. By the previous theorem, v is a p-valuation over Q(A) such that $v(M) \ge 0$, the results are just now a transposition of Corollary (6.9), Lemma (6.10), Lemma (6.12) and Lemma (6.13) of [12].

Theorem 3.11. Under the hypothesis of Lemma (3.10), the subring $R^M_{\gamma_p}(B)$ of Q(B) is the intersection of the valuation rings \mathcal{O}_v where v ranges over the p-valuations of Q(B) which extend the p-valuation of Q(A) such that M belongs to \mathcal{O}_v .

Now we define the notion of integral-definite polynomial over a p-convexly valued domain A and so, we can prove the following theorem, which provides a solution to the analogue Hilbert's seventeenth problem for p-adically closed integral rings.

Definition 3.12. Let A be a p-convexly valued domain and let $F(X_1, \dots, X_n)$ be an element of $A[X_1, \dots, X_n]$, the ring of polynomials in n indeterminates over A. Then F is called integral-definite on A if and only if for all $\bar{a} \in A^n$, we have $A \models \mathcal{D}_p(1, F(\bar{a}))$, i.e. $F(\bar{a})$ is in the range of γ_p on A.

From now on, we will denote the polynomial ring in n indeterminates over A by $A[\underline{X}]$ and its fraction field by $Q(A)(\underline{X})$.

Theorem 3.13. Let A be a model of the \mathcal{L} -theory pCIR and let F be an element of $A[\underline{X}]$. Then F is integral-definite on A if and only if F belongs to the M-Kochen ring $R^M_{\gamma_p}(A[\underline{X}])$ of $A[\underline{X}]$ over A where M is the ideal $\mathcal{M}_A \cdot A[\underline{X}]$ of $A[\underline{X}]$ and the elements of $R^M_{\gamma_p}(A[\underline{X}])$ have the following form:

(2)
$$\frac{b}{1+pd} \text{ with } b, d \in \mathbb{Z}[\gamma(Q(A)), \mathcal{M}_A \cdot A[\underline{X}]] \text{ and } 1+pd \neq 0.$$

Proof. Let $\langle A, \mathcal{D}_p, \mathcal{D} \rangle \models pCIR$ and $F \in A[\underline{X}]$, where F is not of the form given by (2). By Theorem (3.11), there exists a p-valuation, denoted by v_p , on $Q(A)(\underline{X})$ which extends the p-valuation on the p-valued field Q(A) such that $v_p(F) < 0$ and $v_p(m) > 0$ for all $m \in \mathcal{M}_A \cdot A[\underline{X}]$. We denote by A' the ring $A[\underline{X}]$. Let B = pcH(A', Q(A')) (see Lemma (2.14)). Then, for every $a \in A'$ and for every $m \in \mathcal{M}_A$, we have $\mathcal{D}_p(m^{-1}, p \cdot a)$. Hence, B is not a field and by definition, B is a p-convexly valued domain (see Lemma (2.5)). By Lemma (2.9), $A \subseteq_{\mathcal{L}} B$. Let $\tilde{B} = pcH(B, K)$ where K is a p-adic closure of $Q(B) = Q(A)(\underline{X})$. It is a model of pCIR by Lemma (2.15). Since pCIR is model-complete, we get that $A \prec \tilde{B}$. Now $A \subseteq_{\mathcal{L}} \tilde{B}$ and $\tilde{B} \models \exists \bar{x}(\neg(\mathcal{D}_p(1, F(\bar{x}))))$. By model-completeness, $A \models \exists \bar{x}(\neg(\mathcal{D}_p(1, F(\bar{x}))))$. Hence F is not integral-definite on A, which contradicts our hypothesis.

Remark 3.14. • In the previous proof, we have used the following fact: if A is a *p*-valued domain then $A[\underline{X}]$ can be considered as a *p*-valued domain; it

suffices to consider the natural p-valuation w_p of $Q(A)(\underline{X})$ which extends the *p*-valuation of Q(A) (see Example (1.2) in [16]). Moreover we have $w_p(\mathcal{M}_A \cdot \mathcal{M}_A)$ $A[\underline{X}] \ge 0.$

- In the previous proof, $A \subseteq_{\mathcal{L}} B$ is justified by the following statement of Lemma (2.9): $\mathcal{M}_B \cap A = \mathcal{M}_A$. Indeed, we get:
 - $-(\subset)$ is trivial.
 - $-(\supseteq)$: we know B satisfies $\mathcal{D}_p(m^{-1}, pa)$ for all $m \in \mathcal{M}_A$ and $a \in A[\underline{X}]$. By definition, it implies $m^{-1} \notin pcH(A', Q(A')) = B$ and the conclusion follows.

Now we prove an analogue of Theorem (3) in [1].

Theorem 3.15. Let A be a model of the \mathcal{L} -theory pCIR and let F_1, \dots, F_r, G be in A[X]. Then the following statements are equivalent:

- (1) $A \models \forall \bar{x} \left[\bigwedge_{i=1}^{n} \mathcal{D}_p(1, F_i(\bar{x})) \Rightarrow \mathcal{D}_p(1, G(\bar{x})) \right];$
- (2) G belongs to the M-Kochen ring $R^{M}_{\gamma_{p}}(A[\underline{X}])$ of $A[\underline{X}]$ where M is the ideal of A[X] generated by \mathcal{M}_A and the polynomials F_1, \ldots, F_r .

Proof. The proof is similar to the one of Theorem (3.13). It suffices to modify the M of Theorem (3.13) such that M becomes (in this case) the ideal generated by \mathcal{M}_A and the polynomials F_1, \dots, F_r .

4. Nullsetllensatz for *p*-adically closed integral rings

In this last section, we consider the question to establish a Nullstellensatz-type result for *p*-adically closed integral rings A, similar to the Nullstellensatz provided by Theorem (2) of [1]. To this effect, we introduce the notion of \mathcal{M}_A -radical of a polynomial ideal over A motivated by the notion of p-adic ideal as defined in [16, Definition (3.1) thanks to which A. Srhir reproves the Nullstellensatz for *p*-adically closed fields.

In the sequel we denote by $R_{\gamma_p}^{\mathcal{M}_A \cdot A[\underline{X}]}(A[\underline{X}]) \cdot A[\underline{X}]$ the subring of $Q(A)(\underline{X})$ generated by $A[\underline{X}]$ and the $(\mathcal{M}_A \cdot A[\underline{X}])$ -Kochen ring of $A[\underline{X}]$.

Definition 4.1. Let A be a p-convexly valued domain and let J be an ideal of the polynomial ring $A[\underline{X}]$ over A.

- (1) The ideal J is called a p-adic ideal of $A[\underline{X}]$ if for any integer $s \ge 1$, for any elements g_1, \dots, g_s in J, any elements $\lambda_1, \dots, \lambda_s$ of $R_{\gamma_p}^{\mathcal{M}_A \cdot A[\underline{X}]}(A[\underline{X}])$ and any $h \in A[\underline{X}]$ such that $h = \sum_{i=1}^s \lambda_i \cdot g_i$, we have $h \in J$. (2) The \mathcal{M}_A -radical of an ideal J of $A[\underline{X}]$ is defined as the set of elements h of
- $A[\underline{X}]$ verifying the condition:

$$a^*h^l = \sum_{i=1}^s \lambda_i g_i$$

for some $a^* \in \mathcal{M}^{\bullet}_A \cup \{1\}$, some positive integers s, l, some elements $g_1, \cdots, g_s \in$ J and some elements $\lambda_1, \dots, \lambda_s \in R^{\mathcal{M}_A \cdot A[\underline{X}]}_{\gamma_p}(A[\underline{X}]).$

We denote this set by ${}^{\mathcal{M}}\sqrt{J}$.

Now we prove some properties of the \mathcal{M}_A -radical of an ideal J in $A[\underline{X}]$.

Lemma 4.2. Let A be a p-convexly valued domain and let \mathcal{M}_A be its maximal ideal. Let I be an ideal of $A[\underline{X}]$. Then we have the following properties:

(1) ${}^{\mathcal{M}}\sqrt{I}$ is an ideal containing I. (2) if J is an ideal containing I then ${}^{\mathcal{M}}\sqrt{J}$ contains ${}^{\mathcal{M}}\sqrt{I}$. (3) ${}^{\mathcal{M}}\sqrt{{}^{\mathcal{M}}\sqrt{I}} = {}^{\mathcal{M}}\sqrt{I}$.

Proof. Easy calculations.

So the \mathcal{M}_A -radical of an ideal is also an ideal and we can define a notion of radical ideal.

Definition 4.3. We say that an ideal J of $A[\underline{X}]$ is \mathcal{M}_A -radical if ${}^{\mathcal{M}}\sqrt{J} = J$.

So, if J is a \mathcal{M}_A -radical ideal containing an ideal I then we get $J \supseteq \sqrt[\mathcal{M}_A]{I}$. With this terminology, we prove the main result of this section.

Theorem 4.4. Let A be a p-adically closed integral ring and let f_1, \ldots, f_r, q be elements of $A[\underline{X}]$. Then q vanishes at every common zero of f_1, \cdots, f_r in A^n if and only if there exists a positive integer l, an element a^* of $\mathcal{M}_A^{\bullet} \cup \{1\}$ and r elements $\lambda_1, \cdots, \lambda_r$ of the subring $R_{\gamma_p}^{M_A \cdot A[\underline{X}]}(A[\underline{X}]) \cdot A[\underline{X}]$ of $Q(A)(\underline{X})$ such that

(3)
$$a^* \cdot q^l = \sum_{i=1}^r \lambda_i \cdot f_i;$$

i.e. q belongs to the \mathcal{M}_A -radical ideal of the ideal generated by f_1, \cdots, f_r in $A[\underline{X}]$.

Proof. (\Leftarrow): This direction is a trivial consequence of the definition of the λ_i and Theorem (3.4) which asserts that in this case $\frac{1}{p} \notin \mathbb{Z}[\gamma_p(Q(A)), M]$ (the same kind of argument is given in more details in the proof of (5.5)).

 (\Rightarrow) : We proceed ab absurdo. Suppose that there is no positive integer l and elements $a \in \mathcal{M}_A^{\bullet} \cup \{1\}$ so that $a \cdot q^l$ is of the form (3). Let S be the following multiplicative subset of $A[\underline{X}]$: $\{aq^l \mid l \in \mathbb{N}^{\bullet}, a \in (\mathcal{M}_A^{\bullet}) \cup \{1\}\}$. Let I be the ideal of $A[\underline{X}]$ generated by the polynomials f_1, \dots, f_r . We can suppose $I \cap A = (0)$, otherwise I = (1) or $I \cap \mathcal{M}_A \neq \emptyset$ and $aq \in I$ for some $a \in \mathcal{M}_A^{\bullet}$, and in both cases the theorem is proved. Let us consider the following set \mathcal{J} of ideals of $A[\underline{X}]$

$$\mathcal{J} = \{I' \text{ proper } \mathcal{M}_A\text{-radical ideal of } A[\underline{X}] \text{ containing } I \text{ and disjoint from } S\}.$$

Since q does not satisfy the equation (3) and ${}^{\mathcal{M}}\sqrt{I}$ is proper (otherwise the theorem is trivially satisfied), \mathcal{J} is a non-empty set. By Zorn's Lemma, the set \mathcal{J} contains a maximal element denoted by J. So J is a proper \mathcal{M}_A -radical ideal of $A[\underline{X}]$ containing I. Let us show that J is a prime ideal of $A[\underline{X}]$. So we assume that $f \cdot h \in J$ for some $f, h \in A[\underline{X}] \setminus J$. By maximality of the element J in \mathcal{J} , we get that ${}^{\mathcal{M}}\sqrt{\langle f, J \rangle} \cap S \neq \emptyset$

and $\mathcal{M}(\overline{\langle h, J \rangle} \cap S \neq \emptyset)$. So we have that

$$a_1 \cdot q^{k_1} = \lambda \cdot f + \sum_{i=1}^{n_1} \lambda_i \cdot g_i$$
$$a_2 \cdot q^{k_2} = \lambda' \cdot h + \sum_{j=1}^{n_2} \lambda'_j \cdot g'_j$$

for some $a_1, a_2 \in \mathcal{M}_A^{\bullet} \cup \{1\}, g_i, g'_j \in J, \lambda, \lambda', \lambda_i, \lambda'_j \in R^{M_A \cdot A[\underline{X}]}_{\gamma_p}(A[\underline{X}])$ and some positive integers k_1, k_2, n_1, n_2 .

Hence we obtain

$$a_1 \cdot a_2 \cdot q^{k_1 + k_2} = \lambda \cdot \lambda' \cdot (fh) + \sum_{i=1}^N \lambda^*_i \cdot g_i^*$$

for some $g_i^* \in J$, $\lambda_i^* \in R_{\gamma_p}^{M_A \cdot A[\underline{X}]}(A[\underline{X}])$ and some positive integer N. Since $g_i^* \in J$ and J is a \mathcal{M}_A -radical ideal of $A[\underline{X}]$, we get that $S \cap J \neq \emptyset$, this is a contradiction. So $A[\underline{X}]/J$ is a domain which is not a field and we are going to show that we can extend the p-valuation of Q(A) to a p-valuation, denoted by v_p , of $Q(A[\underline{X}]/J)$ such that $v_p(\mathcal{M}_A \cdot A[\underline{X}]/J) \ge 0$. Let us denote $Q(A[\underline{X}]/J)$ by Q(A)(J). As in the proof of (3.8), it is sufficient to show that $\frac{1}{p} \notin R_{\gamma_p}^{\mathcal{M}_A \cdot A[\underline{X}]/J}(A[\underline{X}]/J)$. We know $A \hookrightarrow_{\mathcal{L}_{\mathrm{rings}}}$ $A[\underline{X}]/J$. Let us denote by $\bar{\cdot}$ the residue map : $A[\underline{X}] \longmapsto A[\underline{X}]/J$. Suppose $\frac{1}{p} \in$ $R_{\gamma_p}^{\mathcal{M}_A \cdot A[\underline{X}]/J}(A[\underline{X}]/J)$, i.e. there exists $\frac{\bar{f}}{\bar{g}}, \frac{\bar{h}}{l} \in \mathbb{Z}[\gamma_p(Q(A)(J)), \mathcal{M}_A \cdot A[\underline{X}]/J]$ such that

$$\frac{1}{p} = \frac{\frac{J}{\bar{g}}}{1 + p \cdot \frac{\bar{h}}{l}} \text{ for some elements } f, g, h, l \in Q(A)(\underline{X}).$$

So, $\frac{f}{g}$ and $\frac{h}{l}$ can be chosen such that $\frac{f}{g}$, $\frac{h}{l} \in \mathbb{Z}[\gamma_p(Q(A)(\underline{X})), \mathcal{M}_A \cdot A[\underline{X}]]$ and we obtain the equality

$$\overline{gl+p\cdot(gh-fl)}=0.$$

This implies $gl + p \cdot (gh - fl) \in J$. We know that $Q(A)(\underline{X})$ is formally *p*-adic over Q(A) with respect to $\mathcal{M}_A \cdot A[\underline{X}]$ (i.e. we can extend the *p*-valuation of Q(A) to a *p*-valuation v_p of $Q(A)(\underline{X})$ such that $v_p(\mathcal{M}_A \cdot A[\underline{X}]) \ge 0$). Hence $1 + p \cdot (\frac{h}{l} - \frac{f}{g}) \neq 0$. So, we can write

$$gl = \frac{1}{1 + p \cdot (\frac{h}{l} - \frac{f}{g})} \cdot j$$
 where $j \in J$.

We have that $\lambda = \frac{1}{1+p \cdot (\frac{h}{l} - \frac{f}{g})} \in R_{\gamma_p}^{\mathcal{M}_A \cdot A[\underline{X}]}(A[\underline{X}])$. Hence $g \cdot l = \lambda \cdot j$. Since J is a p-adic ideal (because J is a \mathcal{M}_A -radical ideal), we have $g \cdot l \in J$. But J is prime and so, $g \in J$ or $l \in J$ which gives a contradiction. So, we have a p-valuation v_p on $A[\underline{X}]/J$ which extends the p-valuation on A such that $v_p(\mathcal{M}_A \cdot A[\underline{X}]/J) > 0$. Up to now we have built a p-valued domain $A[\underline{X}]/J$ which is a p-valued extension of A. Moreover it contains a common zero of f_1, \dots, f_r which is not a zero of q. We repeat the same proof as for Theorem (3.13) by building a p-adically closed integral ring extending $A[\underline{X}]/J$. We have the final contradiction by model-completness of pCIR. \Box

5. Model-theoretic radical ideal

Throughout this section, A will stand for an arbitrary model of pCIR. All embeddings of rings extending A will be A-embeddings, i.e. embeddings leaving A pointwise fixed.

The *pCIR*-radical of an ideal $I \subseteq A[\underline{X}]$ is defined as follows:

$$pCIR - rad(I) = \bigcap \{J | J \text{ is an ideal of } A[\underline{X}], I \subseteq J, J \cap A = \{0\}$$

and $A[\underline{X}]/J$ is A-embeddable in a model
 B of the \mathcal{L} -theory $pCIR\}.$

Remark 5.1. An ideal J satisfying the requirements of the preceding definition is necessarily prime since $A[\underline{X}]/J \subseteq B$ and B is an integral domain. Moreover, if J is prime, $J \cap A = \{0\}$ is equivalent to the following condition: for every $Q \in A[\underline{X}]$ and $b \in \mathcal{M}_A, b \neq 0$, we have: $bQ \in J \Rightarrow Q \in J$.

In the sequel, for any set I of polynomials in $A[\underline{X}]$, we denote by $V_A(I)$ the set of elements of A^n which are common zeroes of I.

Proposition 5.2. For a finitely generated ideal $I \subseteq A[\underline{X}]$ and $P \in A[\underline{X}]$, the following are equivalent:

- $V_A(I) \subseteq V_A(P);$
- $P \in pCIR rad(I)$.

Proof. It is an easy transposition of Proposition (2.2) in [7] using the model-completeness of the \mathcal{L} -theory *pCIR*.

Now we study more closely the condition:

(*) $A[\underline{X}]/J$ is A-embeddable in a model B of pCIR

such that $A \prec_{\mathcal{L}} B$, where $J \supseteq I$, $J \cap A = \{0\}$.

Proposition 5.3. Condition (*) is equivalent to

(**) $A[\underline{X}]/J$ admits a p-divisibility relation \mathcal{D}_p which extends the p-divisibility relation of A and such that $\mathcal{D}_p(1, aP/J)$ for all $a \in \mathcal{M}_A$, $P \in A[\underline{X}]$.

Proof. $(*) \Rightarrow (**)$: Let $C = A[\underline{X}]/J$. If $B \models pCIR$, $C \subseteq_{\mathcal{L}} B$, $A \prec_{\mathcal{L}} B$, then, in the *p*-divisibility relation that *B* induces on *C*, we have $\mathcal{D}_p(1, aP/J)$ since this holds for all $x \in \mathcal{M}_B$ and $a \in \mathcal{M}_A \subseteq \mathcal{M}_B$ implies $aP/J \in \mathcal{M}_B$.

 $(^{**}) \Rightarrow (^{*})$: Endow C with a p-divisibility relation \mathcal{D}_p as in $(^{**})$. Let K be the fraction field of C endowed with the p-valuation induced by the p-divisibility of C. Let \widetilde{K} be a p-adic closure of K and let $\widetilde{B} = pcH(B,\widetilde{K})$. As in the proof of Theorem (3.13), we conclude that $\widetilde{B} \models pCIR$ and so, $A \prec_{\mathcal{L}} \widetilde{B}$.

Now we give an algebraic characterization of the pCIR-radical of an ideal I of the integral domain $A[\underline{X}]$ where A is a model of pCIR. In particular we get

Proposition 5.4. For a finitely generated ideal $I \subseteq A[\underline{X}]$, the following equality holds:

$$pCIR - rad(I) = \sqrt[\mathcal{M}_A]{I}.$$

Proof. By Theorem (4.4) and Proposition (5.2), we obtain our requirement.

Proposition 5.5. If $I \subseteq A[\underline{X}]$ is a \mathcal{M}_A -radical then I = pCIR - rad(I).

Proof. If I is finitely generated then the result is trivial by using the definition of \mathcal{M}_A -radical ideal and Proposition (5.4). In the general case, Proposition (5.3) and Remark (5.1) prove that pCIR - rad(I) is the intersection of all prime ideals J containing I such that $J \cap A = \{0\}$ and $A[\underline{X}]/J$ admits a p-divisibility relation \mathcal{D}_p such that $\mathcal{D}_p(1, \mathcal{M}_A \cdot A[\underline{X}]/J)$. If $A[\underline{X}]/J$ admits a p-divisibility relation \mathcal{D}_p such that $\mathcal{D}_p(1, \mathcal{M}_A \cdot A[\underline{X}]/J)$. If $A[\underline{X}]/J$ admits a p-divisibility relation \mathcal{D}_p such that $\mathcal{D}_p(1, \mathcal{M}_A \cdot A[\underline{X}]/J)$ where $J \cap A = \{0\}$ and J is a proper prime ideal containing I then J is a \mathcal{M}_A -radical ideal. Indeed, assume that we have the following equation

(4)
$$a^* \cdot F = \sum_{i=1}^n \lambda_i \cdot j_i$$

where $j_i \in J$, $a^* \in \mathcal{M}^{\bullet}_A \cup \{1\}$, $\lambda_i \in R^{\mathcal{M}_A \cdot A[\underline{X}]}_{\gamma_p}(A[\underline{X}])$, $F \in A[\underline{X}] \setminus J$ and n is a positive integer.

In Q(A)(J), we can consider the equation (4) because the λ_i 's have the form $\frac{a_i}{1+p\cdot b_i}$ where a_i , b_i are elements of $\mathbb{Z}[\gamma_p(Q(A)(\underline{X})), \mathcal{M}_A \cdot A[\underline{X}]]$ and $1 + p \cdot b_i$ is different from zero modulo J by Theorem (3.4) (since $A[\underline{X}]/J$ admits a p-divisibility relation with the required properties). So we get that $a^* \cdot F \equiv 0 \mod J$ in $A[\underline{X}]/J$ and $J \cap A = \{0\}$ implies that $F \equiv 0 \mod J$. So pCIR - rad(I) is a \mathcal{M}_A -radical containing I and thus $I = \sqrt[\mathcal{M}]{I \subseteq pCIR - rad(I)}$. Let us assume that $P \notin \sqrt[\mathcal{M}]{I}$. We have to show that there exists a proper prime ideal J of $A[\underline{X}]$ such that $A \cap J = \{0\}, J \not\supseteq P$ and $A[\underline{X}]/J$ admits a p-divisibility relation \mathcal{D}_p so that we have $\mathcal{D}_p(1, \mathcal{M}_A \cdot A[\underline{X}]/J)$. To this effect we proceed as in the first step of the proof of Theorem (4.4).

6. Acknowledgment

This work is part of the current Ph. D. thesis project of the author under the supervision of F. Point and C. Michaux. I thank the referee for detailed and constructive suggestions for improvements of the paper.

References

- Becker T., Real closed rings and ordered valuation rings, Z. Math. Logik Grundlag. Math. 29 (1983), no. 5, pp. 417–425.
- [2] Bélair L., Substructures and uniform elimination for *p*-adic fields, Annals of Pure and Applied Logic 39 (1988), pp. 1–17.
- Bélair L., Anneaux p-adiquement clos et anneaux de fonctions continues, Journal of Symbolic Logic 56 (1991), no. 2, pp. 539–553.
- [4] Bélair L., Anneaux de fonctions p-adiques, Journal of Symbolic Logic 60 (1995), no. 2, pp. 484–497.
- [5] Cherlin G., Dickmann M., Real closed rings. II. Model theory. Annals of Pure and Applied Logic 25 (1983), no. 3, pp. 213–231.
- [6] Dickmann M., Quantifier elimination for ordered valuation rings, Journal of Symbolic Logic 52 (1987), no. 1, pp. 116-128.
- [7] Dickmann M., On polynomials over real closed rings, Model theory of algebra and arithmetic (Proc.Conf., Karpacz, 1979), Lecture Notes in Mathematics 834, Springer, Berlin-New-York, 1980, pp. 117–135.

- [8] Haskell D., MacPherson D., A version of o-minimality for the p-adics, Journal of Symbolic Logic 62 (1997), no. 4, pp. 1075–1092.
- [9] Macintyre A., On definable subsets of p-adic fields, Journal of Symbolic Logic 41 (1976), no. 3, pp. 605–610.
- [10] Mathews L., Cell decomposition and dimension functions in first-order topological structures, Proceedings of the London Mathematical Society (3) 70, 1995, no. 1, pp. 1–32.
- [11] Pillay A., First-order topological structures and theories, Journal of Symbolic Logic 52 (1987), pp. 763–778.
- [12] Prestel A., Roquette R., Formally p-adic fields, Lecture Notes in Mathematics 1050, 1984.
- [13] Ribenboim P., Théorie des valuations, Les presses de l'Universit de Montréal, 1969.
- [14] Ribenboim P., Equivalent forms of Hensel's lemma, Expositiones Mathematicae 3 (1985), pp. 3– 24.
- [15] Ribenboim P., The theory of classical valuations, Springer monographs in mathematics, Springer, 1999.
- [16] Srhir A., p-adic ideals of p-rank d and the p-adic Nullstellensatz, Journal of Pure and Applied Algebra 180 (2003), pp. 299-311.
- [17] van den Dries L., Algebraic theories with definable Skolem functions, Journal of Symbolic Logic 49 (1984), pp. 625–629.

NICOLAS GUZY, INSTITUT DE MATHÉMATIQUE ET INFORMATIQUE, UNIVERSITÉ DE MONS-HAI NAUT, LE PENTAGONE, 6, AVENUE DU CHAMP DE MARS, B-7000 MONS, BELGIUM

E-mail address: Nicolas.Guzy@umh.ac.be