
P -CONVEXLY VALUED RINGS

NICOLAS GUZY

Abstract. In [3], L. Bélair developed a theory analogous to the theory of real
closed rings in the p-adic context, namely the theory of p-adically closed integral
rings. Firstly we use the property proved in Lemma (2.4) in [4] to express this
theory in a language including a p-adic divisibility relation and we show that this
theory admits definable Skolem functions in this language (in the sense of [17]).
Secondly, we are interested in dealing with some questions similar to that of [1];
e.g. results about integral-definite polynomials over a p-adically closed integral ring
A and a kind of ”Nullstellensatz” using the notion of MA-radical.
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1. Introduction

First we recall some notions, model-theoretic results and notations. Let Lrings be
the usual language of rings and let Lfields be the language of fields, i.e. Lrings ∪ {−1}.
Let LD be an expansion of the language of rings with a two-ary predicate D(·, ·). Let
A be an unitary commutative domain with a valuation v on its fraction field, denoted
by Q(A). Suppose that A is the valuation ring of 〈Q(A), v〉. Then we define a binary
relation (which will be interpreted by the set of 2-tuples such that v(a) 6 v(b)) as
follows:

D is transitive, ¬D(0, 1), compatible with + and . and either D(a, b) or D(b, a).
We can extend D to the fraction field of A as follows:

D(
a

b
,
c

d
) ⇐⇒ D(ad, bc).

So the divisibility relation on Q(A) induces the initial valuation v by defining v(a) 6

v(b) if D(a, b). In the sequel, if 〈K, v〉 is a valued field then the valuation ring,
the valuation ideal, the residue field and the value group of 〈K, v〉 are respectively
denoted by OK , MK , kK and v(K×), and if A is a valuation ring then we denote the
maximal ideal and the residue field of A, by MA and kA, respectively. We denote the
canonical residue map A 7−→ kA by ·̄. In order to specify the valuation v for which
we consider these objects, we put a subscript v. For any ring A, we denote the set
A \ {0} by A• and the set of its units by A×. For any elements a, b in A, a|b means
that there exists c in A such that ac = b. For any subsets B, C of a valued field
〈K, v〉, we say that v(B) < v(C) if for any b ∈ B, c ∈ C we have v(b) < v(c).
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Recall that a p-valued field 〈K, v〉 of p-rank d, with p a prime number, is a valued
field of characteristic 0, residue field of characteristic p and the dimension of OK/(p)
over the prime field Fp is equal to d (v is called a p-valuation of p-rank d on K). An
element of a p-valued field is called prime if its value is the least positive value of
v(K×).

Let K be a p-valued field of p-rank d. We say that a valued field extension L of K
is a p-valued extension of p-rank d if the valuation of L is a p-valuation of p-rank d
on L which extends the valuation of K (i.e. OK ⊆ OL and ML ∩K = MK). We say
that K is a p-adically closed field of p-rank d if K does not admit any proper p-valued
algebraic extension with the same p-rank d. In Theorems (3.1) and (3.2) of [12], a
characterization of the p-adically closed fields of p-rank d is given and the notion of a
p-adic closure is established with a criterion for uniqueness : K is p-adically closed if
and only if K is henselian and, moreover its value group is a Z-group; the necessary
and sufficient condition for K to admit an unique p-adic closure up to K-isomorphism
(i.e. an algebraic p-valued extension which is a p-adically closed field of p-rank d)
is that its value group is a Z-group. For the notion of henselian valued fields and
Henselization of a valued field, we can refer to [14] or [15]. In this paper, we restrict
ourselves with p-valuations of p-rank 1 (i.e. v(p) is a prime element and the residue
field is equal to Fp) like in the papers of [3] and [4]. However, many of our results
remain valid for p-valued fields with fixed p-rank d (d ∈ N) after adequate enrichment
of the language as the reader can easily check.

Let LPω

D
be the language Lfields ∪ {D} ∪ {Pn; n ∈ ω \ {0, 1}} ∪ {c2, · · · , cd}; this

language is known as Macintyre’s language (see [9]). In Theorem (5.6) of [12], Prestel
and Roquette show that the LPω

D
-theory pCFd of p-adically closed fields of p-rank d

admits quantifier elimination. In [2] L. Bélair gave an explicit axiomatization of the
universal part of pCFd in the language LPω

D
.

In the table below we summarize the analogies between “p-adic” and “real”; the
first two items have been object of study for several decades, the last one is the main
topic of this paper.

p-adically closed field (pCF) ⇐⇒ real closed field
p-adically closed integral ring ⇐⇒ real closed (valuation) ring
(Bélair) (Cherlin-Dickmann)
p-convexly valued ring (pCVR) ⇐⇒ convexly ordered valuation ring

(Becker).
Indeed, in Section (2), we introduce a notion of p-convexly valued domain which

is the p-adic counterpart of Becker’s convexly ordered valuation rings and give a set
of axioms in a suitable language. We prove some analogues of results in [2]. We
also give a variant of Bélair’s set of axioms for the first-order theory of p-adically
closed integral rings which are the p-adic counterpart of real closed valuation rings.
By using a criterion due to van den Dries [17], we show that the first-order theory of
p-adically closed integral rings has definable Skolem functions in a suitable extension
of Macintyre’s language for p-adic fields. In Section (3), we settle the analogue of
Hilbert’s seventeenth problem for p-adically closed integral rings by using a relative
form of Kochen’s operator. In Section (4), we prove a Nullstellensatz for p-adically
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closed integral rings by using the notions of M-radical of an ideal and of p-adic ideal
(introduced by Srhir [16], this notion corresponds to that of real ideal). We close this
paper by investigating the generalized notion of model-theoretic radical of an ideal
in the context of p-adically closed integral rings similarly to [7].

2. Preliminaries

In the sequel, we work with unitary commutative rings of characteristic zero. First
we introduce the notion of p-convexity for domains with p-valued fraction fields. Let
us recall that we consider only p-valued fields of p-rank 1 throughout this paper. We
begin with a definition.

Definition 2.1. Let A be a domain containing Q. We say that A is a p-valued
domain if A is not a field and its fraction field Q(A) is p-valued.

Definition 2.2. Let F be a p-valued field, with its p-valuation denoted by vp, and
let A ⊆ B be two subsets of F . We say that A is p-convex in B if for all a ∈ A and
b ∈ B, vp(a) 6 vp(b) implies b ∈ A.

From now on, we prove some elementary results for p-valued domains in the style
of [1].

Lemma 2.3. Let 〈F, vp〉 be a p-valued field and let A be a p-valued domain which is
p-convex in F . Then A is a valuation ring and F = Q(A).

Proof. Let f be in F . Then we have vp(1) 6 vp(f) or vp(f) 6 vp(1); this means f or
f−1 ∈ A by p-convexity of A in F . This clearly shows that A is a valuation ring of
F . �

Notation 2.4. The previous lemma shows that any p-convex subdomain A of a p-
valued field F supports a valuation v which corresponds to a divisibility relation D
on the domain A. In the sequel the notation MA and kA are relative to the valuation
v.

Lemma 2.5. Let A be a p-valued domain. Then the following are equivalent:

(1) A is p-convex in Q(A);
(2) A is a valuation ring and MA is p-convex in A;
(3) A is a valuation ring and MA is p-convex in Q(A);
(4) A is a valuation ring and for every a ∈ MA, vp(a) is larger than the value of

any rational number in Q(A);
(5) A is a valuation ring and for every a ∈ MA, vp(a) > 0;
(6) A |= ∀x, y

(
vp(x) 6 vp(y) → ∃z(xz = y)

)
.

Proof. (1)→(2): Suppose A is p-convex in Q(A). By Lemma (2.3), A is a valuation
ring. Let x in MA and y in A be such that vp(x) 6 vp(y) (we may assume x and y
different from 0); hence vp(1) = 0 6 vp(y/x) (y/x ∈ Q(A)). Since A is p-convex in
Q(A), we have y/x ∈ A and so, y = x · y/x ∈ MA.

(2)→(3): Let x in MA and u, v in A• be such that vp(x) 6 vp(u/v). If u/v ∈ A
then by p-convexity of MA in A, u/v ∈ MA. Suppose u/v /∈ A. Since A is a
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valuation ring, we have v/u ∈ MA. So, x · v/u ∈ MA and vp(x · v/u) 6 vp(1) = 0
implies 1 ∈ MA, this is a contradiction.

(3)→(4): Suppose a ∈ MA such that vp(a) 6 vp(q) for some q ∈ Q; so q ∈ MA,
hence 1

q
/∈ A, contradicting that A contains Q.

(4)→(5): Trivial since vp(p) = 1.
(5)→(6): Let x, y in A• be such that vp(x) 6 vp(y). We have to show that y/x ∈ A.

Otherwise x/y ∈ MA and, by (5), vp(x/y) > 0, which contradicts the assumption.
(6)→(1): Suppose x, y, z ∈ A, z 6= 0 and vp(x) 6 vp(y/z). Then vp(xz) 6 vp(y)

implies xz|y, i.e. there exists c in A such that xzc = y and so, y/z = xc ∈ A. �

Definition 2.6. A p-convexly valued domain A is a p-valued domain which satisfies
one of the previous equivalent properties.

Let L be the following expansion of the language of rings, LD ∪ {Dp(·, ·)}. It is
easy to see from the previous lemmas that, with D interpreted as divisibility and
Dp(x, y) as vp(x) 6 vp(y), any p-convexly valued domain satisfies the following set of
L-axioms:

(1) Axioms for a Q-algebra;
(2) ∀x, y [(xy = 0) ⇒ (x = 0) ∨ (y = 0)];
(3) ∀x, y [Dp(x, y) ∨ Dp(y, x)];
(4) ∀x, y, z [Dp(x, y) ∧ Dp(y, z) ⇒ Dp(x, z)];
(5) ∀x, y, x′, y′ [Dp(x, y) ∧ Dp(x

′, y′) ⇒ Dp(xx′, yy′)];
(6) ∀x, y, y′ [Dp(x, y) ∧ Dp(x, y′) ⇒ Dp(x, y + y′)];
(7) ¬Dp(p, 1);

(8) ∀x [Dp(1, x) ⇒
∨

{Dp(p, x − i) : 0 6 i < p}];
(9) ∀x [Dp(x, 1) ∨ Dp(p, x)];

(10) ∀x, y [D(x, y) ⇐⇒ ∃z(x · z = y)];
(11) ∃z [¬(D(z, 1)) ∧ ¬(z = 0)];
(12) the condition of divisibility compatibility for the p-valuation and the divisi-

bility:

∀x, y [Dp(x, y) ⇒ D(x, y)].

It is not difficult to show that any model A of the previous set of axioms is a p-
convexly valued domain: the first part of the list says that Q(A) is a p-valued field of
p-rank 1 and the last three axioms enforce that A is p-convex in Q(A) (by using (6)
of Lemma (2.5)). So this list is an axiomatization of the theory of p-convexly valued
domains. This L-theory is denoted by pCV R (this means p-convexly valued rings).

Remark 2.7. If A is a p-convexly valued domain then by definition, its fraction field
Q(A) is a p-valued field. So we can interpret the two-ary predicate Dp as the re-
striction of the p-divisibility relation with respect to the p-valuation on Q(A). The
condition of divisibility compatibility for p-convexly valued domains implies that it
is a valuation ring and that the valuation is induced by divisibility in the domain.
Note that the axioms which express that D is a divisibility relation are included in
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the universal part of pCV R, and by Axiom (11), the divisibility relation on a model
of pCV R is never trivial.

Notation 2.8. In the sequel, if A is a p-convexly valued domain then we denote by
vp the corresponding p-valuation on Q(A) and by v, the valuation corresponding to
divisibility in the domain A. We sometimes use the same vp for an extension of the
p-valuation.

We continue in the style of [1] in order to find conditions to determine when a
p-convexly valued domain A is a L-substructure of a p-convexly valued domain B.
The next lemma yields such a criterion.

Lemma 2.9. Let A, B be two L-structures which are models of pCV R and B is a
p-convexly valued domain extension of A (i.e. 〈A,Dp〉 ⊆ 〈B,Dp〉 or Q(A) ⊆ Q(B)
as p-valued fields). Then the following are equivalent:

(1) A ⊆L B;
(2) A ∩MB = MA;
(3) Q(A) ∩ B = A;
(4) for all a ∈ Q(A) \ A and b ∈ B, vp(b) > vp(a).

Proof. (1)→(2): Clearly we have A ∩ MB ⊆ MA. Let a in A be such that B |=
¬D(a, 1). Since A ⊆L B, we have A |= ¬D(a, 1) and we get A ∩MB ⊇ MA.

(2)→(3): Let a, b in A• be such that a/b ∈ B. If a/b /∈ A then b/a ∈ MA. Since
MA = MB ∩A, we have b/a ∈ MB and 1 = b/a · a/b ∈ MB, this is a contradiction.

(3)→(4): Let a be in Q(A)\A and b ∈ B. Since Q(A)∩B = A, we have a /∈ B and
so, a−1 ∈ MB, i.e. vp(a

−1) > 0. Hence if vp(b) 6 vp(a) then we have vp(b·a−1) 6 vp(1)
where b · a−1 ∈ MB. Since B is a p-convexly valued domain, we get 1 ∈ MB, this is
a contradiction.

(4)→(1): Let a, b in A• be such that there exists c ∈ B satisfying ac = b. So
c ∈ Q(A). If c /∈ A then c ∈ Q(A) \ A and so, we have vp(c) > vp(c) by (4). �

Lemma 2.10. Let A be a p-convexly valued domain A. Then vp(A
×) is a p-convex

subgroup of vp(Q(A)×).

Proof. Let x, y in A× and u, v in A be such that v 6= 0 and vp(x) 6 vp(u/v) 6 vp(y).
So we have that vp(x ·v) 6 vp(u). By the condition of divisibility compatibility, there
exists an element c of A such that x · v · c = u. Hence we obtain u/v = x · c ∈ A
and again by the condition of compatibility, there exists an element d of A such that
y = d · u/v. We conclude that u/v belongs to A× since y ∈ A×. �

Remark 2.11. If A is a p-convexly valued domain then by p-convexity of MA in A,
we have vp(A

×) < vp(MA).

So we can define a p-valuation on the residue field kA of A, denoted by ṽp, as
follows: if x = 0 in kA then ṽp(x) = ∞; otherwise if x 6= 0 in kA, we take y ∈ A×

such that y = x and define ṽp(x) as vp(y). By Remark (2.11), ṽp is well-defined and
kA is a p-valued field by the axiom-schemes pCV R.

In the next paragraph we give a new axiomatization of p-adically closed integral
rings which were introduced in [3]. Our candidate for such an axiomatization is the
following list which will denote by pCIR.
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Definition 2.12. pCIR is the following set of L-sentences:

(1) the set of axioms for the L-theory of p-convexly valued rings;
(2) for each integer n > 0, ∀x∃y [D(x, yn) ∧ D(yn, x)];
(3) for each integer n > 0,

∀a0, · · · , an−1 [D(an−1, 1) ∧ ∧n−2
i=0 ¬D(ai, 1)] ⇒

∃x [xn + an−1x
n−1 + · · ·+ a0 = 0 ∧ D(x, 1)];

(4) for each integer n > 0,

∀x∃y [D(x, 1)] ⇒
∨

06r<n

{Dp(y
npr, x) ∧ Dp(x, ynpr)};

(5) for each integer n > 0,

∀a0, · · · , an−1 [Dp(1, an−1) ∧ Dp(an−1, 1) ∧ ∧n−2
i=0 Dp(p, ai)] ⇒

∃x [¬D(xn + an−1x
n−1 + · · ·+ a0, 1) ∧ Dp(1, x) ∧ Dp(x, 1)].

We now show that the models of pCIR are exactly the p-adically closed integral
rings introduced in [3]. In order to prove it, we reformulate Proposition (2.2) and
Corollary (2.3) of [3] in our terminology.

Lemma 2.13. The models of the L-theory of p-adically closed integral rings corre-
spond to henselian p-convexly valued rings with p-adically closed residue field and di-
visible ordered value group. Moreover, the L-theory of p-adically closed integral rings
is complete and model-complete; it has elimination of quantifiers in the language
Lrings equipped with predicates Pn for the n-th powers (we replace in the L-theory
pCIR the predicate of p-divisibility relation by: Dp(x, y) ⇐⇒ Pǫ(x

ǫ + pyǫ); ǫ =
3 if p = 2, otherwise ǫ = 2 (∗).).
Proof. First we note that in the p-adically closed case membership to the valuation
ring is definable by (*)[2]. Let A be a model of the L-theory pCIR. Then A is
a valuation ring with respect to the divisibility predicate D and is p-convex in its
fraction field. The axioms (2) express that the value group is divisible and the
axioms (3) say A is henselian (it is one of the equivalent forms of Hensel’s Lemma,
see [14]). The axiom-schemes (4) and (5) imply that the p-valued field 〈kA, ṽp〉 is
p-adically closed where ṽp is the valuation defined as in Remark (2.11). The rest of
the proof follows the lines of Corollary (2.3) in [3]. �

We need the next two lemmas to extend p-convexly valued domains in the most nat-
ural way possible, i.e. we will use the previous characterization of p-convexly valued
domains. Moreover, Lemma (2.9) will help us to build extensions of L-structures.

Lemma 2.14. Let A be a p-valued domain and let 〈K, vp〉 be a p-valued field extension
of Q(A) such that there exists an element of K of value lower than vp(A

•). Then there
exists a minimal p-convexly valued domain containing A whose fraction field is K.
We will denote this minimal p-convexly valued domain extending A by pcH(A, K).
Furthermore, if A is a p-convexly valued domain then A ⊆L pcH(A, K).
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Proof. Let pcH(A, K) be the following set {k ∈ K | ∃c ∈ A, K |= vp(c) 6 vp(k)}
which is different from K by hypothesis. Clearly it is a p-valued domain and it is
p-convex in K. The minimality is deduced from the definition of pcH(A, K). Let

us denote pcH(A, K) by Ã. Lemma (2.3) implies that K is the fraction field of
pcH(A, K). For the second part, we have to show that A ∩M eA = MA by Lemma

(2.9). Suppose a ∈ MA. So, a−1 /∈ A because A is a valuation ring. If a−1 /∈ Ã then

a ∈ M eA and the proof is finished. So, suppose a−1 ∈ Ã. By definition, there exists
b ∈ A such that vp(b) 6 vp(a

−1). Hence, vp(b · a) = vp(b) + vp(a) 6 vp(a
−1) + vp(a) =

vp(1). Sice MA is p-convex in A, we get 1 ∈ MA, this is a contradiction. �

In the previous lemma, if A is already a p-convexly valued domain then the hy-
pothesis of having an element of K of value lower than vp(A

•) is directly satisfied.

Lemma 2.15. Let A be a p-convexly valued domain and let Q̃(A) be a p-adic closure

of Q(A) for the p-valuation vp on Q(A). Then there exists a model Ã of pCIR such

that A ⊆L Ã. In addition, if the value group of Q(A) is a Z-group then pcH(A, Q(A)h)
is a model of pCIR where Q(A)h is the Henselization of Q(A) for the p-valuation vp.

Proof. Let H be the convex hull of the group vp(A
×) in vp(Q̃(A)

×

). Then we consider

the set Ã = {x ∈ Q̃(A) | ∃h ∈ H, Q̃(A) |= vp(x) > h}. As in the proof of Proposition

(2.5) in [3], we have that Ã is a model of pCIR. It remains to show that A ⊆L Ã.
By Lemma (2.9), it suffices to prove that A ∩ M eA = MA. Suppose a ∈ MA, so

a−1 /∈ A. If a−1 /∈ Ã then a ∈ M eA and the proof is finished. So we suppose a−1 ∈ Ã.

By definition of Ã and H , there exists an element b of A× such that vp(b) 6 vp(a
−1).

We conclude as in the proof of Lemma (2.14). For the second part, since Q(A)h is
an immediate extension of Q(A) for the valuation vp, the value group of Q(A)h is a
Z-group and so Q(A)h is p-adically closed. By Remark (2.11) and Lemma (2.14), we
have pcH(A, Q(A)h) = {x ∈ Q(A)h | ∃h ∈ H, Q(A)h |= vp(x) > h} where H is the

convex hull of the group vp(A
×) in vp(Q(A)h×), i.e. it is vp(A

×). The rest of the
proof is the same as that of Proposition (2.5) in [3]. �

Lemma 2.16. Let A be a model of the L-theory of p-adically closed integral rings.
Then its fraction field Q(A) is p-adically closed.

Proof. Owing to the p-divisibility on A, we can define the p-valuation vp of Q(A) as
follows:

∀a, b ∈ A ∀c, d ∈ A•, vp(a/c) 6 vp(b/d) ⇐⇒ Dp(ad, bc).

Clearly by the axioms of pCIR, the fraction field Q(A) is a p-valued field. It remains
to show that its value group is a Z-group and that it is henselian with respect to vp.
Since A is a p-convexly valued domain, it is p-convex in Q(A) and so, A contains the
valuation ring OQ(A) of Q(A). To prove that vp(Q(A)×) is a Z-group, it suffices to
show that for any integer n > 0 and any element x of Q(A) such that vp(x) > 0 (so
x ∈ A), there exists an element y of A and a positive integer r such that 0 6 r 6 n−1
and vp(x) = n · vp(y) + r (because p is a prime element of Q(A)). Indeed, let x be in
Q(A). If vp(x) < 0 then vp(x

−1) > 0 implies x−1 ∈ A. Hence, by the axiom-scheme



8 NICOLAS GUZY

(4) of pCIR, there exists an element y of A such that vp(x
−(n−1)) = n · vp(y)+ r. We

conclude that vp(x) = n · (vp(y) + vp(x)) + r where 0 6 r 6 n − 1.
Let x in A be such that vp(x) > 0 then there exists an element z of A such that

v(x) = v(zn) by the axiom-scheme (2). So xz−n ∈ A with v(xz−n) = 0 where v is the
valuation determined by the divisibility predicate D. We apply the axiom-scheme
(4) of pCIR and we obtain the requirement. Now we show that Q(A) is henselian.
Let Q(A)h be the Henselization of Q(A) for the p-valuation vp. By Lemma (2.15),
we can consider the minimal p-convexly valued domain pcH(A, Q(A)h) with fraction

field Q(A)h, denoted by Ã. By Lemma (2.14), Ã is a model of pCIR such that

A ⊆L Ã. Since the L-theory pCIR is modele-complete and Ã is p-convex in Q(Ã),
Q(A) satisfies Hensel’s Lemma with respect to vp on Q(A). Let us check it.
Let a0, . . . , an−1 in Q(A) be such that vp(an−1) = 0 and vp(ai) > 1 for all i ∈
{0, . . . , n− 2}. Then each ai belongs to A by p-convexity of A in Q(A). Since Q(A)h

is henselian for the p-valuation vp, there exists an element b in Q(A)h such that
bn + an−1 · bn−1 + · · ·+ a0 = 0 and vp(b) = 0. We have that b ∈ pcH(A, Q(A)h) which
is a model of pCIR.

Thus Ã |= ∃y [(yn + an−1y
n−1 + · · · + a0 = 0) ∧ Dp(1, y) ∧ Dp(y, 1)]. By model-

completeness of pCIR, we get that

A |= ∃y [(yn + an−1y
n−1 + · · · + a0 = 0) ∧ Dp(1, y) ∧ Dp(y, 1)]

and so, Q(A) is henselian with respect to vp. �

Now we are interested in the existence of definable Skolem functions in the L-theory
of p-adically closed integral rings.

First recall a definition.

Definition 2.17. Let L be a first-order language. Let A ⊆ B be two L-structures.
We say that B is rigid over A if and only if Aut(B/A) = {id} where id is the identity
automorphism.

Secondly let us recall a theorem of L. van den Dries which gives a criterion for
rigidity.

Theorem 2.18. (see Theorem (2.1) in [17]) Let L be a first-order language and let T
be a L-theory which admits quantifier elimination. Then the following are equivalent:

• T has definable Skolem functions;
• each model A of T∀ has an extension A |= T which is algebraic over A (in

the model-theoretic sense) and rigid over A.

Let LD,Pω
be an expansion of the language LD by predicates Pn for the n-th powers

and a constant c. We can reformulate the L-theory pCIR in the language LD,Pω
. For

example, the LD,Pω
-theory pCIR contains axioms which express that the models are

not fields, i.e. ¬D(c, 1) (this assures that the valuation on a LD,Pω
-substructure of a

model of pCIR is never trivial), ∀x (Pn(x) ⇐⇒ ∃y (yn = x)) and the p-divisibility
relation Dp is defined as in the statement of Lemma (2.13).
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Let A be a model of pCIR, i.e. a p-adically closed integral ring. We can define a
basis of a Hausdorff topology by:

{D(a,b) | a, b ∈ A, b 6= 0} where D(a,b) is the set

{x ∈ A | A |= Dp(b, x − a) ∧ ¬Dp(x − a, b)}.
It is called the p-valuation topology on A. So, 〈A, D(x,y)〉 is a first-order topological
structure in the sense of [11, p. 765, example (e)].

Let us show topological results on the sets defined by the previous predicates.

Lemma 2.19. Let A be a model of pCIR. Then the sets Pn
A = {a ∈ A• | A |= Pn(a)},

are clopen for the p-valuation topology on A, for each integer n > 0.

Proof. Let Q(A) be the fraction field of A which is a p-adically closed field. Let us
consider the set of n-th powers Pn in Q(A) which extends the set Pn in A (i.e. if
Q(A) |= ∃b (bn = a) where a ∈ A then b ∈ A because A is integrally closed). It is
well-known that the set Pn in Q(A)• is clopen for the p-valuation topology on Q(A).
So, since A is a clopen set in Q(A), Pn

A is clopen for the topology on A induced
by the p-valuation topology on Q(A). It remains to show that Pn

A is clopen for
the p-valuation topology on A. The fact that it is closed is clear by definition of
topologies. Suppose a ∈ A is such that Pn

A(a). By Lemma (2.3) of [8], we have that
a ∈ D(a,an2) ⊆ Pn

A and the proof is finished. �

The following lemma corresponds to Proposition (1.9) in [6].

Lemma 2.20. Let A be a p-adically closed integral ring. Then:

(1) The following subsets of A are open for the p-valuation topology:
{x ∈ A | A |= D(a, x)} for all a ∈ A•, {x ∈ A | A 6|= D(x, a)}, {x ∈ A |

A 6|= D(a, x)}, {x ∈ A | A |= D(x, a)} for all a ∈ A.
(2) The following subsets of A2 are open (when A2 is endowed with the product

topology):
{(x, y) ∈ A2 | A |= D(x, y)} \ {(0, 0)}, {(x, y) ∈ A2 | A 6|= D(x, y)}.

Proof. (1) Let Xa be one of the two first sets. Let b be an element of Xa. Then the
axiom of divisibility compatibility implies that D(0,b) ⊆ Xa. Therefore Xa is open.
Let us consider the two last sets. Let Ya be one of these sets and b ∈ Ya. Then the
set {x ∈ A | Dp(x, b)} is included in Ya which is clearly an open neighborhood of b
for the p-valuation topology on A.

(2) Let D be the set {(x, y) ∈ A2 | A |= D(x, y)} \ {(0, 0)} and let (x0, y0) be in D.
Suppose vp(x0) 6 vp(y0) and y0 6= 0. By the axiom of divisibility compatibility, we get
D(x0,x0)×D(y0,y0) ⊆ D. It is the same argument as above for the case vp(x0) > vp(y0).
So suppose that y0 = 0 and x0 6= 0. Hence D(x0,x0) ×D(0,x0) ⊆ D, again by using the
axiom of divisibility compatibility.

Let D′ = {(x, y) ∈ A2 | A 6|= D(x, y)}. If (x0, y0) ∈ D′ then y0 6= 0. Assume x0 6= 0.
So ¬D(x0, y0) implies vp(x0) > vp(y0). It suffices to apply the arguments of (1) to
show that there exists an open neighborhood U of (x0, y0) contained in D′ for the
p-valuation topology on A. If x0 = 0 then we choose an element ǫ ∈ M•

A. Hence,
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the axiom of divisibility compatibility implies D(x0,ǫy0) × D(y0,y0) ⊆ D′, which proves
that D′ is an open set of A2. �

The above properties imply that the models of the LD,Pω
-theory pCIR are proper

first-order topological structures (see Definition (2.2) in [10]). So this LD,Pω
-theory

is unstable and has the strict order property (see [11]). Moreover, the models of
pCIR are topological systems (see Definition (4.1) in [10]) and we can apply some
results of [10] to our setting. For example, by Theorem (4.4) of [10], pCIR is model-
theoretically bounded; let A be a model of pCIR, if B a subset of A then aclA(B) is
the field-theoretic algebraic closure of B in A; moreover A is t-minimal (i.e. for every
definable X ⊆ A, the set bd(X) of boundary points of X in A is finite).

Now we prove the existence of definable Skolem functions for the LD,Pω
-theory

pCIR.

Theorem 2.21. The LD,Pω
-theory of p-adically closed integral rings has definable

Skolem functions.

Proof. The proof follows the lines of Proposition (3.4) in [17]. By Theorem (2.18), it
suffices to prove that each model A of (pCIR)∀ has an extension A |= pCIR which
is algebraic and rigid over A. Let A ⊆ A∗ |= pCIR and define A as the substructure
of A∗ whose members are the elements of A∗ algebraic over the domain A. Write
A = 〈A,D(·, ·), c, P2, P3, · · · 〉. We claim that

(1) A |= pCIR.

The underlying domain A of A is integrally closed in A∗. Since A∗ is henselian, A
endowed with the restriction of the valuation of A∗ is also henselian (let us remark
that this restriction corresponds to D).

Since A is a LD,Pω
-substructure of A∗, the valuation on A∗ is an extension of the

valuation on A and so, on A also. Since A is integrally closed in the underlying ring of
A∗, it follows that Pn is the set of n-th powers of A. Let x be in A. Then there exists
e ∈ N such that A∗ |= ∃y(yn = ex): indeed, since Q(A∗) is a p-adically closed field,
we know that Q(A∗) |= ∃y(yn = ex) and since A∗ is integrally closed in its fraction
field, this property holds in A∗. Since A is integrally closed in A∗ and is a Q-algebra,
the value group of A is divisible. Since A is a model of (pCIR)∀, the p-divisibility
Dp on A is defined as in (2.13) with universal axioms of pCV R and the condition of
compatibility between Dp and D is satisfied in A. The same holds for A∗ and A which
are p-convexly valued domains. Since A ⊆LD,Pω

A∗, the p-divisibility in A∗ respects

the p-divisibility in A and so, we have 〈kA, ṽp〉 ⊆ 〈kA∗, ṽp〉 (see Remark (2.11)). Let
a0, · · · , an−1 in A be such that ṽp(an−1) = 0 and ṽp(ai) > 1 for all 0 6 i 6 n − 2.
We know that kA∗ is henselian with respect to ṽp. So there exists b in A∗ such that
bn + an−1b

n−1 + · · · + a0 ∈ MA∗ and b /∈ MA∗. Thus b ∈ aclA∗(a0, · · · , an−1) and we
get b ∈ A which implies that kA is henselian (because MA∗ ∩ A = MA).

Let us prove that the value group of the p-valuation ṽp of kA is a Z-group. Let x
be in kA. Choose an element y in A such that y = x. Since A∗ is a p-adically closed
integral ring, there exists an element z of A∗ such that zn = ey for some e ∈ N (as
above). So there exists an element z′ of A such that z′n = ey and we obtain z′

n
= ex
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(e 6= 0 because kA is of characteristic zero). We conclude that [ṽp(k
×

A
) : nṽp(k

×

A
)] = n.

So, (1) is proved.
It remains to prove that A is rigid over A. Suppose σ is a A-automorphism of

A. Take the substructure of A pointwise fixed by σ. Let us write it as A1 =
〈A1,D1, c, P 1

2 , P 1
3 , · · · 〉. Then, for all n > 2, we have that Pn

1 = {an | a ∈ A1}.
First, 〈A1,D1

p,D1〉 is a p-convexly valued domain where D1
p and D1 are restrictions

to A1 of divisibility relations Dp and D on A. We consider the fraction field Q(A)

of A and extend the relations in a natural way: for every integer n > 2 and for all
a, b ∈ Q(A)•, Q(A) |= Pn(a/b) iff A |= ∃z(zn = abn−1) (because A is integrally closed
in A∗) and for all u, v ∈ A and s, t ∈ A•, Q(A) |= D(u/v, s/t) iff A |= D(ut, sv). We
extend the automorphism σ of A to an automorphism Q(σ) of Q(A). For suppose
a ∈ Pn

1, a 6= 0. Let b be an n-th root of a in A. Take an integer m > 2. As
in the proof of (1), we find a rational q 6= 0 with qb ∈ P m; so in Q(A), we have
that σ(qb) · (qb)−1 = σ(b) · b−1 ∈ Pm(Q(A)). Since Q(A) is a p-adically closed field
and σ(b) · b−1, an n-th root of unity, is an m-th power in Q(A) for all m, we obtain
σ(b) · b−1 = 1, i.e. b ∈ A1. By Lemma (2.16), Q(A) is a p-adically closed field
and Q(A1) is a p-valued field such that its value group is a Z-group (by a previous
argument and the form of P 1

n). So, we can extend the A-automorphism σ of A to
a Q(A)-automorphism Q(σ) of Q(A) which has Q(A1) as pointwise fixed subfield
(because A1 is a valuation ring). As 〈Q(A), vp〉 is henselian for its p-valuation vp

(which corresponds to the p-divisibility Dp), it contains an Henselization of 〈Q(A), vp〉
and the universal property of the Henselization implies that it is fixed by Q(σ), hence
it is contained in 〈Q(A1), v1

p〉. Therefore, 〈Q(A1), v1
p〉 is henselian. So, Q(A1) is a p-

adically closed field. As in the proof of Lemma (2.15), A1 is a p-adically closed
integral ring with respect to D1

p and D1. By Lemma (2.3) of [17], A is a minimal

prime model extension of A, as it is algebraic over A. Therefore we have A1 = A,
i.e. σ is the identity automorphism. �

Let A be a p-adically closed integral domain. Since A is clopen for the p-valuation
topology of its fraction field and A is a p-convexly valued domain, a corollary of the
previous theorem is that the models of pCIR satisfy the property of Local Continuity
as defined in [10]. Hence all required properties to guarantee the existence of a Cell
decomposition in the sense of [10] are checked in the LD,Pω

-theory of p-adically closed
integral rings. In a subsequent paper we explore a more adequate Cell decomposition
for this class of p-convexly valued rings.

3. Hilbert’s seventeenth problem for p-convexly valued domains

In this section we determine the form of polynomials over a p-adically closed ring
A which are integral-definite on A (see Definition (3.12)). It is the analogue of
Theorem 2 in [7] for the p-adic case by using the same techniques as in [1], e.g. the
model-completeness of pCIR. First we provide the tools needed to settle this.

In the whole section, A will be assumed a p-convexly valued domain. Then Q(A)
is a p-valued field and OQ(A) denotes the valuation ring of Q(A) for the p-valuation
vp.
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Definition 3.1. Let A be a p-valued domain and let B be a domain extension of A
equipped with a valuation v. We say that B is a p-valued domain extension if v is
a p-valuation on Q(B) over Q(A) (i.e v is a p-valuation on Q(B) which extends the
p-valuation of Q(A)).

Remark 3.2. For all a ∈ A, we have γp(a) ∈ A where γp(X) is the Kochen’s operator
defined by:

γp(X) =
1

p

[ Xp − X

(Xp − X)2 − 1

]

(where γp(a) is an element of Q(A)). This is an immediate consequence of the next
lemma. We will denote by ∞ the value of γp(b) when this value does not exist at b
in Q(A).

Let us recall Lemma (6.2) of [12].

Lemma 3.3. Let k be a p-valued field, let K be a field extension of k and let v
be a valuation of K extending the given p-valuation of k. A necessary and suffi-
cient condition for v to be a p-valuation over k (i.e. dimFp

(OK/(p)) = 1) is that
v(γp(K)) > 0.

Theorem 3.4. Let B be a domain extension, which is not a field, of the p-valued
domain A. Let M be a subset of B such that vp(M ∩ A) > 0. A necessary and
sufficient condition for B to be a p-valued domain extension of A such that vp(M) > 0
is that

1

p
/∈ OQ(A)[γp(Q(A)), M ]

where OQ(A)[γp(Q(A)), M ] denotes the subring of Q(B) generated by γp(Q(A))\{∞}
and M over the ring OQ(A).

Proof. It suffices to adapt the proof of [12, p. 100]. For necessity, we use in addition
that v(M) > 0 and the previous lemma. For sufficiency, we use the fact that the ideal
generated by p in OQ(A)[γp(Q(A)), M ] is proper and so, we can invoke the general
existence theorem for valuations [13, p. 43]. The hypothesis v(M ∩ A) > 0 yields
that it is an extension of the p-valuation. �

Corollary 3.5. In the situation of the previous theorem, let v be a valuation of Q(B).
A necessary and sufficient condition for v to be a p-valuation over Q(A) such that
v(M) > 0 is that v lies above OQ(A)[γp(Q(A)), M ] and is centered over p.

Proof. It is just a reformulation of the previous theorem, it suffices to examine its
proof. �

Now we introduce a particular ring which plays an important role in the extension
of a p-valuation, namely to a valued domain extension of the p-valued domain A. It
is an adaptation of the classical Kochen ring and of its role in the p-adically closed
field case (see Section (6.2) of [12]).
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Definition 3.6. For any domain extension B of A which is not a field and M a
subset of B, the M-Kochen ring RM

γp
(B) is defined as the subring of Q(B) consisting

of quotients of the form

a =
b

1 + pd
with b, d ∈ OQ(A)[γp(Q(B)), M ] and 1 + pd 6= 0.

Lemma 3.7. Let A be a model of pCIR and let a be an element of A. Then Dp(1, a)
if and only if there exists an element b in A such that a = γp(b). Moreover, an
element a of A satisfies Dp(1, a) if and only if ∃y (yǫ = 1 + paǫ); ǫ = 3 if p = 2,
otherwise ǫ = 2.

Proof. Clearly, since Q(A) is a p-valued field, if there exists an element b in A such
that a = γp(b) then vp(a) > 0, i.e. A |= Dp(1, a). On the other hand, if we consider
the polynomial f(X) = ap[(Xp − X)2 − 1] − (Xp − X) then f(X) admits 1 as a
simple zero in the residue field of Q(A). By Hensel’s lemma, f(X) has a zero b in
A, whence a = γp(b). For the second part of the statement, it is satisfied in the
p-valued fraction field Q(A) and it holds in A because A is an integrally closed ring
(see Lemma (2.13)). �

So by the preceding result, the elements of the M-Kochen ring RM
γp

(B) of B over
the p-adically closed integral domain A have the following form:

a =
b

1 + pd
with b, d ∈ Z[γp(Q(B)), M ] and 1 + pd 6= 0.

The fraction field of the M-Kochen ring RM
γp

(B) is Q(B) by Merckel’s Lemma (see

Appendix in [12]).

Theorem 3.8. Suppose that p is not a unit in OQ(A)[γp(Q(B)), M ], in view of The-
orem (3.4) this is equivalent to saying that Q(B) is a p-valued field over Q(A) such
that vp(M) > 0. Then

(1) p is not a unit in RM
γp

(B). Every maximal ideal of RM
γp

(B) contains p and

every prime ideal of RM
γp

(B) containing p is maximal.

(2) The p-valuations of Q(B) over Q(A) such that M belongs to the corresponding
valuation ring can be characterized as being those valuations of Q(B) which
lie above RM

γp
(B) and are centered at some maximal ideal of RM

γp
(B).

Proof. It is an easy adaptation of the proof of Theorem (6.8) in [12], it suffices to
replace R by RM

γp
(B) and to use the corresponding previous results. �

Definition 3.9. For any non empty set S of valuations of Q(B), we denote by OS

the intersection of their valuation rings:

OS =
⋂

v∈S

Ov where Ov is the valuation ring corresponding to v.

OS is called the holomorphy ring of S in Q(B). Every such holomorphy ring is
integrally closed in Q(B).
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Lemma 3.10. Let P be a maximal ideal of the M-Kochen ring RM
γp

(B) of B over

A and let v be a valuation of Q(B) lying above RM
γp

(B) and centered at P . Then v

is the only valuation of Q(B) which lies over RM
γp

(B) and is centered at P . Further,

RM
γp

(B)/P is the residue field of Q(B) with respect to v and Ov = RM
γp

(B)P where

RM
γp

(B)P is the localization of the M-Kochen ring over B at the maximal ideal P .

Proof. By the previous theorem, v is a p-valuation over Q(A) such that v(M) > 0,
the results are just now a transposition of Corollary (6.9), Lemma (6.10), Lemma
(6.12) and Lemma (6.13) of [12]. �

Theorem 3.11. Under the hypothesis of Lemma (3.10), the subring RM
γp

(B) of Q(B)
is the intersection of the valuation rings Ov where v ranges over the p-valuations of
Q(B) which extend the p-valuation of Q(A) such that M belongs to Ov.

Now we define the notion of integral-definite polynomial over a p-convexly valued
domain A and so, we can prove the following theorem, which provides a solution to
the analogue Hilbert’s seventeenth problem for p-adically closed integral rings.

Definition 3.12. Let A be a p-convexly valued domain and let F (X1, · · · , Xn) be an
element of A[X1, · · · , Xn], the ring of polynomials in n indeterminates over A. Then F
is called integral-definite on A if and only if for all ā ∈ An, we have A |= Dp(1, F (ā)),
i.e. F (ā) is in the range of γp on A.

From now on, we will denote the polynomial ring in n indeterminates over A by
A[X] and its fraction field by Q(A)(X).

Theorem 3.13. Let A be a model of the L-theory pCIR and let F be an element
of A[X]. Then F is integral-definite on A if and only if F belongs to the M-Kochen
ring RM

γp
(A[X]) of A[X] over A where M is the ideal MA · A[X] of A[X] and the

elements of RM
γp

(A[X]) have the following form:

(2)
b

1 + pd
with b, d ∈ Z[γ(Q(A)),MA · A[X]] and 1 + pd 6= 0.

Proof. Let 〈A,Dp,D〉 |= pCIR and F ∈ A[X], where F is not of the form given by
(2). By Theorem (3.11), there exists a p-valuation, denoted by vp, on Q(A)(X) which
extends the p-valuation on the p-valued field Q(A) such that vp(F ) < 0 and vp(m) > 0
for all m ∈ MA ·A[X]. We denote by A′ the ring A[X]. Let B = pcH(A′, Q(A′)) (see
Lemma (2.14)). Then, for every a ∈ A′ and for every m ∈ MA, we have Dp(m

−1, p·a).
Hence, B is not a field and by definition, B is a p-convexly valued domain (see Lemma

(2.5)). By Lemma (2.9), A ⊆L B. Let B̃ = pcH(B, K) where K is a p-adic closure
of Q(B) = Q(A)(X). It is a model of pCIR by Lemma (2.15). Since pCIR is

model-complete, we get that A ≺ B̃. Now A ⊆L B̃ and B̃ |= ∃x̄(¬(Dp(1, F (x̄))). By
model-completeness, A |= ∃x̄(¬(Dp(1, F (x̄))). Hence F is not integral-definite on A,
which contradicts our hypothesis. �

Remark 3.14. • In the previous proof, we have used the following fact: if A
is a p-valued domain then A[X] can be considered as a p-valued domain; it
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suffices to consider the natural p-valuation wp of Q(A)(X) which extends the
p-valuation of Q(A) (see Example (1.2) in [16]). Moreover we have wp(MA ·
A[X]) > 0.

• In the previous proof, A ⊆L B is justified by the following statement of
Lemma (2.9): MB ∩ A = MA. Indeed, we get:

– (⊆) is trivial.
– (⊇): we know B satisfies Dp(m

−1, pa) for all m ∈ MA and a ∈ A[X].
By definition, it implies m−1 /∈ pcH(A′, Q(A′)) = B and the conclusion
follows.

Now we prove an analogue of Theorem (3) in [1].

Theorem 3.15. Let A be a model of the L-theory pCIR and let F1, · · · , Fr, G be in
A[X]. Then the following statements are equivalent:

(1) A |= ∀x̄ [

r∧

i=1

Dp(1, Fi(x̄)) ⇒ Dp(1, G(x̄))];

(2) G belongs to the M-Kochen ring RM
γp

(A[X]) of A[X] where M is the ideal of

A[X] generated by MA and the polynomials F1, . . . , Fr.

Proof. The proof is similar to the one of Theorem (3.13). It suffices to modify the M
of Theorem (3.13) such that M becomes (in this case) the ideal generated by MA

and the polynomials F1, · · · , Fr. �

4. Nullsetllensatz for p-adically closed integral rings

In this last section, we consider the question to establish a Nullstellensatz-type
result for p-adically closed integral rings A, similar to the Nullstellensatz provided
by Theorem (2) of [1]. To this effect, we introduce the notion of MA-radical of a
polynomial ideal over A motivated by the notion of p-adic ideal as defined in [16,
Definition (3.1)] thanks to which A. Srhir reproves the Nullstellensatz for p-adically
closed fields.

In the sequel we denote by R
MA·A[X]
γp (A[X])·A[X] the subring of Q(A)(X) generated

by A[X] and the (MA · A[X])-Kochen ring of A[X].

Definition 4.1. Let A be a p-convexly valued domain and let J be an ideal of the
polynomial ring A[X] over A.

(1) The ideal J is called a p-adic ideal of A[X] if for any integer s > 1, for any

elements g1, · · · , gs in J , any elements λ1, · · · , λs of R
MA·A[X]
γp (A[X]) and any

h ∈ A[X] such that h =
∑s

i=1 λi · gi, we have h ∈ J .
(2) The MA-radical of an ideal J of A[X] is defined as the set of elements h of

A[X] verifying the condition:

a∗hl =
s∑

i=1

λigi

for some a∗ ∈ M•
A∪{1}, some positive integers s, l, some elements g1, · · · , gs ∈

J and some elements λ1, · · · , λs ∈ R
MA·A[X]
γp (A[X]).
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We denote this set by MA
√

J .

Now we prove some properties of the MA-radical of an ideal J in A[X].

Lemma 4.2. Let A be a p-convexly valued domain and let MA be its maximal ideal.
Let I be an ideal of A[X]. Then we have the following properties:

(1) MA
√

I is an ideal containing I.

(2) if J is an ideal containing I then MA
√

J contains MA
√

I.

(3)
MA

√
MA
√

I = MA
√

I.

Proof. Easy calculations. �

So the MA-radical of an ideal is also an ideal and we can define a notion of radical
ideal.

Definition 4.3. We say that an ideal J of A[X] is MA-radical if MA
√

J = J .

So, if J is a MA-radical ideal containing an ideal I then we get J ⊇ MA
√

I. With
this terminology, we prove the main result of this section.

Theorem 4.4. Let A be a p-adically closed integral ring and let f1, . . . , fr, q be el-
ements of A[X]. Then q vanishes at every common zero of f1, · · · , fr in An if and
only if there exists a positive integer l, an element a∗ of M•

A ∪ {1} and r elements

λ1, · · · , λr of the subring R
MA·A[X]
γp (A[X]) · A[X] of Q(A)(X) such that

(3) a∗ · ql =

r∑

i=1

λi · fi;

i.e. q belongs to the MA-radical ideal of the ideal generated by f1, · · · , fr in A[X ].

Proof. (⇐): This direction is a trivial consequence of the definition of the λi and
Theorem (3.4) which asserts that in this case 1

p
/∈ Z[γp(Q(A)), M ] (the same kind of

argument is given in more details in the proof of (5.5)).
(⇒): We proceed ab absurdo. Suppose that there is no positive integer l and

elements a ∈ M•
A ∪ {1} so that a · ql is of the form (3). Let S be the following

multiplicative subset of A[X]: {aql | l ∈ N•, a ∈ (M•
A) ∪ {1}}. Let I be the ideal of

A[X] generated by the polynomials f1, · · · , fr. We can suppose I∩A = (0), otherwise
I = (1) or I ∩MA 6= ∅ and aq ∈ I for some a ∈ M•

A, and in both cases the theorem
is proved. Let us consider the following set J of ideals of A[X]

J = {I ′ proper MA-radical ideal of A[X] containing I and disjoint from S}.

Since q does not satisfy the equation (3) and MA
√

I is proper (otherwise the theorem
is trivially satisfied), J is a non-empty set. By Zorn’s Lemma, the set J contains a
maximal element denoted by J . So J is a proper MA-radical ideal of A[X] containing
I. Let us show that J is a prime ideal of A[X]. So we assume that f ·h ∈ J for some

f, h ∈ A[X]\J . By maximality of the element J in J , we get that MA

√
〈f, J〉∩S 6= ∅
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and MA

√
〈h, J〉 ∩ S 6= ∅. So we have that

a1 · qk1 = λ · f +
n1∑

i=1

λi · gi

a2 · qk2 = λ′ · h +

n2∑

j=1

λ′

j · g′

j

for some a1, a2 ∈ M•
A ∪ {1}, gi, g

′
j ∈ J , λ, λ′, λi, λ

′
j ∈ R

MA·A[X]
γp (A[X]) and some

positive integers k1, k2, n1, n2.
Hence we obtain

a1 · a2 · qk1+k2 = λ · λ′ · (fh) +
N∑

i=1

λ∗
i · g∗

i

for some g∗
i ∈ J , λ∗

i ∈ R
MA·A[X]
γp (A[X]) and some positive integer N . Since g∗

i ∈ J
and J is a MA-radical ideal of A[X], we get that S ∩ J 6= ∅, this is a contradiction.
So A[X]/J is a domain which is not a field and we are going to show that we can
extend the p-valuation of Q(A) to a p-valuation, denoted by vp, of Q(A[X]/J) such
that vp(MA · A[X]/J) > 0. Let us denote Q(A[X]/J) by Q(A)(J). As in the proof

of (3.8), it is sufficient to show that 1
p

/∈ R
MA·A[X]/J
γp (A[X]/J). We know A →֒Lrings

A[X]/J . Let us denote by ·̄ the residue map : A[X] 7−→ A[X]/J . Suppose 1
p
∈

R
MA·A[X]/J
γp (A[X]/J), i.e. there exists f̄

ḡ
, h̄

l̄
∈ Z[γp(Q(A)(J)),MA ·A[X]/J ] such that

1

p
=

f̄
ḡ

1 + p · h̄
l̄

for some elements f, g, h, l ∈ Q(A)(X).

So, f
g

and h
l

can be chosen such that f
g
, h

l
∈ Z[γp(Q(A)(X)),MA · A[X]] and we

obtain the equality
gl + p · (gh − fl) = 0.

This implies gl + p · (gh − fl) ∈ J . We know that Q(A)(X) is formally p-adic over
Q(A) with respect to MA · A[X] (i.e. we can extend the p-valuation of Q(A) to a
p-valuation vp of Q(A)(X) such that vp(MA ·A[X]) > 0). Hence 1 + p · (h

l
− f

g
) 6= 0.

So, we can write

gl =
1

1 + p · (h
l
− f

g
)
· j where j ∈ J .

We have that λ = 1

1+p·(h
l
−

f
g
)
∈ R

MA·A[X]
γp (A[X]). Hence g · l = λ · j. Since J is a p-adic

ideal (because J is a MA-radical ideal), we have g · l ∈ J . But J is prime and so,
g ∈ J or l ∈ J which gives a contradiction. So, we have a p-valuation vp on A[X]/J
which extends the p-valuation on A such that vp(MA · A[X ]/J) > 0. Up to now we
have built a p-valued domain A[X]/J which is a p-valued extension of A. Moreover
it contains a common zero of f1, · · · , fr which is not a zero of q. We repeat the same
proof as for Theorem (3.13) by building a p-adically closed integral ring extending
A[X]/J . We have the final contradiction by model-completness of pCIR. �
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5. Model-theoretic radical ideal

Throughout this section, A will stand for an arbitrary model of pCIR. All embed-
dings of rings extending A will be A-embeddings, i.e. embeddings leaving A pointwise
fixed.

The pCIR-radical of an ideal I ⊆ A[X] is defined as follows:

pCIR − rad(I) =
⋂

{J |J is an ideal of A[X], I ⊆ J, J ∩ A = {0}
and A[X]/J is A-embeddable in a model

B of the L-theory pCIR}.
Remark 5.1. An ideal J satisfying the requirements of the preceding definition is
necessarily prime since A[X]/J ⊆ B and B is an integral domain. Moreover, if J is
prime, J ∩A = {0} is equivalent to the following condition: for every Q ∈ A[X] and
b ∈ MA, b 6= 0, we have: bQ ∈ J ⇒ Q ∈ J .

In the sequel, for any set I of polynomials in A[X], we denote by VA(I) the set of
elements of An which are common zeroes of I.

Proposition 5.2. For a finitely generated ideal I ⊆ A[X] and P ∈ A[X], the follow-
ing are equivalent:

• VA(I) ⊆ VA(P );
• P ∈ pCIR − rad(I).

Proof. It is an easy transposition of Proposition (2.2) in [7] using the model-completeness
of the L-theory pCIR. �

Now we study more closely the condition:

(∗) A[X]/J is A-embeddable in a model B of pCIR

such that A ≺L B, where J ⊇ I, J ∩ A = {0}.
Proposition 5.3. Condition (*) is equivalent to

(∗∗) A[X]/J admits a p-divisibility relation Dp which extends the p-divisibility

relation of A and such that Dp(1, aP/J) for all a ∈ MA, P ∈ A[X].

Proof. (*)⇒(**): Let C = A[X]/J . If B |= pCIR, C ⊆L B, A ≺L B, then, in the
p-divisibility relation that B induces on C, we have Dp(1, aP/J) since this holds for
all x ∈ MB and a ∈ MA ⊆ MB implies aP/J ∈ MB.

(**)⇒(*): Endow C with a p-divisibility relation Dp as in (**). Let K be the
fraction field of C endowed with the p-valuation induced by the p-divisibility of C.

Let K̃ be a p-adic closure of K and let B̃ = pcH(B, K̃). As in the proof of Theorem

(3.13), we conclude that B̃ |= pCIR and so, A ≺L B̃. �

Now we give an algebraic characterization of the pCIR-radical of an ideal I of the
integral domain A[X] where A is a model of pCIR. In particular we get

Proposition 5.4. For a finitely generated ideal I ⊆ A[X ], the following equality
holds:

pCIR − rad(I) =
MA
√

I.
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Proof. By Theorem (4.4) and Proposition (5.2), we obtain our requirement. �

Proposition 5.5. If I ⊆ A[X] is a MA-radical then I = pCIR − rad(I).

Proof. If I is finitely generated then the result is trivial by using the definition of
MA-radical ideal and Proposition (5.4). In the general case, Proposition (5.3) and
Remark (5.1) prove that pCIR − rad(I) is the intersection of all prime ideals J
containing I such that J ∩ A = {0} and A[X]/J admits a p-divisibility relation Dp

such that Dp(1,MA · A[X]/J). If A[X]/J admits a p-divisibility relation Dp such
that Dp(1,MA ·A[X]/J) where J ∩A = {0} and J is a proper prime ideal containing
I then J is a MA-radical ideal. Indeed, assume that we have the following equation

(4) a∗ · F =
n∑

i=1

λi · ji

where ji ∈ J , a∗ ∈ M•
A ∪{1}, λi ∈ R

MA·A[X]
γp (A[X]), F ∈ A[X]\J and n is a positive

integer.
In Q(A)(J), we can consider the equation (4) because the λi’s have the form ai

1+p·bi

where ai, bi are elements of Z[γp(Q(A)(X)),MA ·A[X]] and 1+p · bi is different from
zero modulo J by Theorem (3.4) (since A[X]/J admits a p-divisibility relation with
the required properties). So we get that a∗ ·F ≡ 0 mod J in A[X]/J and J ∩A = {0}
implies that F ≡ 0 mod J . So pCIR − rad(I) is a MA-radical containing I and

thus I = MA
√

I ⊆ pCIR − rad(I). Let us assume that P /∈ MA
√

I. We have to show
that there exists a proper prime ideal J of A[X] such that A ∩ J = {0}, J 6∋ P and
A[X]/J admits a p-divisibility relation Dp so that we have Dp(1,MA · A[X]/J). To
this effect we proceed as in the first step of the proof of Theorem (4.4). �
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