Lexicographic Exponentiation of chains

22. 11. 2007

In [H1] Hausdorff developed several arithmetic operations on totally ordered sets, generalizing many aspects of Cantor's ordinal arithmetic. He investigated in [H1] and further in [H2] the basic properties of this arithmetic. Many open questions arise naturally: In [K], we studied lexicographic powers of the form \mathbb{R}^{Γ} , and investigated whether the exponent is an **isomorphism invariant**:

Theorem 0.1 Let α be an ordinal, and J a chain in which the chain \mathbb{R} does not embed. Assume that φ is an embedding of \mathbb{R}^{α} in \mathbb{R}^{J} . Then α embeds in J. In particular, if α and β are distinct ordinals, then the chains \mathbb{R}^{α} and \mathbb{R}^{β} are nonisomorphic.

This theorem is used in [W] to classify the **convex congruences** of such powers. On the other hand, after establishing further **arithmetic rules**, we provide in [HKM] examples of nonisomorphic chains Γ and Γ' such that the lexicographic powers \mathbb{R}^{Γ} and $\mathbb{R}^{\Gamma'}$ are isomorphic. Moreover, for a countable infinite ordinal α , we show that $\mathbb{R}^{\alpha^*+\alpha}$ and \mathbb{R}^{α} are isomorphic. We show that $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{Q}}$ are nonisomorphic. We show that $\Delta^{\mathbb{R}}$ is **2-homogeneous**, where Δ is a countable ordinal ≥ 2 . We encountered further related open questions while studying the question of defining an exponential function on a **power series field**: in [KKS2] we study **convex embeddings** of a chain Γ in a lexicographic power Δ^{Γ} and prove

Theorem 0.2 Let Γ and Δ_{γ} , $\gamma \in \Gamma$, be nonempty totally ordered sets. For every $\gamma \in \Gamma$, fix an element 0_{γ} which is not the last element in Δ_{γ} . Suppose that Γ has no last element and that Γ' is a cofinal subset of Γ . Then there is no convex embedding

$$\iota: \ \Gamma' \ o \ \mathbf{H}_{\gamma \in \Gamma} \Delta_{\gamma} \ .$$

In [KKS1] this result applies to prove that power series fields never admit an exponential function. For a fixed nonempty chain Δ , we derive from Theorem 0.2 necessary and sufficient conditions for the existence of nonempty solutions Γ to each of the lexicographic functional equations

$$(\Delta^{\Gamma})^{\leq 0} \simeq \Gamma$$
, $(\Delta^{\Gamma}) \simeq \Gamma$, and $(\Delta^{\Gamma})^{< 0} \simeq \Gamma$.

References

- [Gr] Green, T.: Properties of chain products and Ehrenfeucht–Fraïssé Games on Chains, Msc. Thesis, University of Saskatchewan 2002
- [H1] Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen, Math. Annalen 65(1908)
- [H2] Hausdorff, F.: Grundzüge der Mengenlehre, Verlag Von Veit, Leipzig (1914)
- [HKM] Holland, W. C. Kuhlmann, S. McCleary, S.: Lexicographic Exponentiation of chains, Journal of Symbolic Logic, **70**, 389-409, (2005)
- [K] Kuhlmann, S.: Isomorphisms of Lexicographic Powers of the Reals, Proc. Amer. Math. Soc. **123**, Number 9, September 1995
- [KS] Kuhlmann, S. Shelah, S.: κ -restricted power series fields with 2^{κ} exponentials, work in progress
- [KKS1] Kuhlmann, F.-V. Kuhlmann, S. Shelah, S.: Exponentiation in power series fields, Proc. Amer. Math. Soc. 125, 3177-3183 (1997)
- [KKS2] Kuhlmann, F.-V. Kuhlmann, S. Shelah, S.: Functorial equations for lexicographic products, Proc. Amer. Math. Soc. **131**, 2969-2976, (2003)
- [W] Warton, P.: Lexicographic Powers over the Reals, Ph. D. Dissertation, Bowling Green State University 1998

Research Center for Algebra, Logic and Computation University of Saskatchewan Saskatchewan, CANADA