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Abstract

Let T1 be a theory of henselian valued fields of equicharacteristic zero in the language
of rings equipped with a linear divisibility predicate (for the valuation). Assume that T1 is
the model companion (model completion) of a theory T0 of valued fields. In this paper, we
establish a uniform scheme of axioms (UC

′

K) such that T
∗

1 ∪ (UC
′

K) is the model companion
(model completion) of the corresponding differential theory T

∗

0 (note that if T is a theory of
valued fields then we denote by T

∗ the theory T with the axioms for K pairwise commuting
derivations). For this purpose, we proceed in a similar way as M. Tressl who deals with this
problem but in the case of field theories in an expansion by definition of the pure field language.
In the valued case, we take advantage (as in [4] for one derivation) of the valuation topology in
order to obtain an axiomatization similar to the one given in [13].
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1 Introduction

In [13], M. Tressl introduces a first-order theory of differential fields of characteristic zero, in K
pairwise commuting derivations, denoted by (UCK) (for Uniform Companion), with the following
properties:

(I) Whenever L and M are models of (UCK) and A is a common differential subring of L and M
such that L and M have the same universal theory over A as pure fields then they have the
same universal theory over A as differential fields.

(II) Every differential field F which is large can be extended to a model of (UCK) and this extension
is elementary in the language of rings.

The second property uses the important concept of large fields. A large field is a field F which is
existentially closed in F ((t)), the formal Laurent series field over F . In particular we know that
henselian valued fields are large fields (see [8]).

More generally, properties (I) and (II) of (UCK) above imply that for every model complete
theory T of large fields in the language of rings, the theory T ∪ (UCK) of differential fields is model
complete. Moreover, if this is the case, T ∪ (UCK) is complete if T is complete and T ∗ ∪ (UCK)
has quantifier elimination if a definable expansion T ∗ of T has quantifier elimination (see Theorem
7.2 in [13]).

So, in this paper, we consider the same problem for differential valued fields equipped with K
commuting derivations (no interaction between the valuation and the derivations is demanded).
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First we introduce basic differential terminology. It allows us to define a notion of J-algebraically
prepared system which is central in order to write down a scheme of axioms (UC′

K) which will play
the same role as (UCK) in the valued setting of the problems (I) and (II).

In Theorem 3.14 we prove a differential transfer result of model completeness. The proof of this
result uses technical tools as the concept of regular semigeneric point of a polynomial ideal and the
Newton’s Lemma for henselian valued fields. Hence as a Corollary of Theorem 3.14, we can state
the valued analogue of Theorem 7.2 in [13].

Finally we enclose the paper with some applications. The first one is a differential version of
the classical Ax-Kochen-Ersov theorem for valued fields (see Theorem 4.2; this result was proved in
[4] for one derivation). Then we apply our results to some particular theories of differential valued
fields; namely algebraically closed valued fields, p-adically closed fields and real closed valued fields.
Note that the theory of p-adically closed fields can be treated by using the results of M. Tressl since
the p-valuation is definable in the language of rings and p-adically closed fields admit quantifier
elimination in the language of Macintyre (which is an expansion by definition of the language of
rings, more precisely by nth power predicates). But since our approach is topological, we can
prove more easily a differential version of a Hilbert’s Seventeenth problem for existentially closed
differential p-adically closed fields.

2 Preliminaries

In this paper, we always use the classical notations and terminology of [5] for differential algebra.
We always consider unitary commutative domains of characteristic zero.
For any valued field 〈F, v〉, we denote the valuation ring, the residue field, the value group and

the residue map by OF , kF , v(F×) and π : OF 7−→ kF , respectively.
Let LD be the language of rings equipped with a binary predicate of linear divisibility D (called

a l.d. relation) for the valuation and a constant element c. This predicate is interpreted as the set
of tuples (x, y) such that v(x) 6 v(y) for some x, y in a valued field 〈F, v〉 (see Section 4.2 in [7])
and the constant element c is interpreted as an element of non-zero value.

We will make use of henselian valued fields in the sequel. So we recall that a henselian valued
field is a valued field 〈F, v〉 which satisfies the following property, called the Newton’s Lemma:

for any polynomial f with coefficients in OF and any element b in OF which satisfies v(f(b)) >
2v(f ′(b)) then there exists a unique element a in OF such that f(a) = 0 such that v(a−b) > v(f ′(b)).

We will see in Section 3 that the Newton’s Lemma will play the role of large fields in [13].

All the valuations in the paper are assumed to be non-trivial unless something else
is said.

Let 〈F, δ1, · · · , δK〉 be a differential field equipped with K pairwise commuting derivations. Let
D be the free abelian monoid generated by {δ1, · · · , δK} which we denote multiplicatively and let
DY be the set of ΘYj such that Θ ∈ D and j ∈ {1, · · · , N}, where Y := (Y1, · · · , YN ) is a set of
differential indeterminates. Let us note that DY can be equipped with the following rank rk defined
as follows:

rk(δi1
1 · · · δiK

K Yn) = (i1 + . . .+ iK , n, iK , . . . , i1).

It allows us to well-order elements of a subset of DY . The differential polynomial ring over F in
K commuting derivations and n indeterminates will be denoted by F{Y } together with its natural
derivations such that it is a differential ring extension of F .

Let us first recall some definitions and notations.

Definition 2.1. • We say that a variable y ∈ DY appears in f ∈ F{Y } if y appears in f
considered as an ordinary polynomial.

• The leader uf of f ∈ F{Y } \ F is the variable y ∈ DY of highest rank which appears in f .
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• Let f ∈ F{Y }\F , f = fdu
d
f + . . .+f1uf +f0 with polynomials f0, . . . , fd ∈ F [y ∈ DY |y 6= uf ]

and fd 6= 0. The initial I(f) of f is defined as fd and the separant S(f) of f as ∂
∂uf

f .

• For every subset G = {g1, . . . , gl} of F{Y } \ F , we define

H(G) =

l∏

i=1

I(gi) · S(gi).

• For any set I ⊆ F{Y } \ F , we let A(I) := F [ΘYj|Θ ∈ D, j ∈ {1, · · · , N} and ΘYj appears in
some f ∈ I].

In the sequel we always assume that the derivations are pairwise commuting.
Let F be a field and let F [X1, · · · , Xn] be the polynomial ring in n indeterminates over F (that

we also denote by F [X] when n is understood). Let us consider a prime ideal I of F [X] with Krull
dimension d.

Definition 2.2. A sequence {Q1, . . . , Qn−d} of polynomials in I is said to be a set of semigenerators
of I if (possibly after renaming the variables Xj)

• each polynomial Qi belongs to F [X1, . . . , Xd+i] \ F [X1, . . . , Xd+i−1];

• the following equality holds:

I = (Q1, · · · , Qn−d) : l(Q1, · · · , Qn−d)
∞

which is defined as follows

{
f ∈ F [X]

∣∣ l(Q1, · · · , Qn−d)
m · f ∈ (Q1, · · · , Qn−d) for some positive integer m

}

where l(Q1, · · · , Qn−d) is the product of leading coefficients of the Qi’s considered as polyno-
mials in Xd+i over F [X1, · · · , Xd+i−1].

Now we get the following

Lemma 2.3. Any prime ideal I in F [X] has a set of semigenerators {Q1, . . . , Qn−d}.

Proof. Let ḡ = (g1, · · · , gn) be a generic point of I in a field extension of F . We may assume that
g1, · · · , gd are algebraically independent over F if the Krull dimension of I is d. Then we let qi(Xd+i)
be the minimal polynomial of gd+i over F (g1, . . . , gd+i−1) (for i ∈ {1, . . . , n − d}) with degree di.

Let us consider the following polynomial Q̂i(Xd+i) over the field F (X1, . . . , Xd+i−1):

Q̂i(Xd+i) =

di∑

j=0

Xj
d+i

Gj
i (X1, . . . , Xd+i−1)

Hj
i (X1, . . . , Xd+i−1)

such that for any j ∈ {0, . . . , di}, Hj
i (g1, . . . , gd+i−1) 6= 0 and Q̂i(g1, . . . , gd+i−1, Xd+i) = qi(Xd+i).

Then we let

Qi =
( di∏

j=0

Hj
i

)
· Q̂i := l(Qi) · Q̂i where l(Qi) ∈ F [X1, . . . , Xd+i−1].

By the construction of the Qi’s, we have (Q1, · · · , Qn−d) : l(Q1, · · · , Qn−d)
∞ ⊆ I.

LetH be in I. So we haveH(ḡ) = 0 and by construction, l(Q1, . . . , Qn−d)(ḡ) 6= 0. By considering
the polynomial H(Xn, Xn−1, . . . , X1) in Xn over the field F (X1, . . . , Xn−1), we get

l(Qn−d)
mn ·H = Qn−d ·Gn +Rn
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where Gn, Rn ∈ F [X ] such that degXn
Rn < degXn

Qn−d and mn is a natural number.
We can now express Rn under the following form

Rn(Xn) =

dn−d−1∑

j=0

Xj
n · Rn,j(X1, . . . , Xn−1)

for some Rn,j ∈ F [X1, . . . , Xn−1].

Since Rn(ḡ) = 0 and Qn−d

l(Qn−d) (Xn, gn−1, . . . , g1) is the minimal polynomial of gn over F (g1, . . . , gn−1),

we get Rn,j(g1, . . . , gn−1) = 0 for all j ∈ {0, . . . , dn−d − 1}.
We continue this process by induction; it suffices to replaceH , Qn−d and l(Qn−d) by Rn, Qn−d−1

and l(Qn−d−1), respectively; and at the last step, we use the fact that g1, . . . , gd are algebraically
independent over F . This finishes the proof.

Convention 2.4. If ā is a tuple of elements then āi denotes the ith element of the tuple ā. If Λ is an
element of DY and ā is an N -tuple of elements of a differential field F then we denote by Λā the
element Θ(āi) such that Λ := ΘYi with Θ ∈ D.

Definition 2.5. 1. We say that a tuple ā in F is a regular semigeneric zero of I with respect to
a set of semigenerators {Qi}i of I if ā is a common zero of {Q1, · · · , Qn−d} such that

n−d∧

i=1

sQi
(ā) :=

∂Qi

∂Xd+i
(ā) 6= 0 ∧ l(Q1, . . . , Qn−d)(ā) 6= 0.

2. A J-point ā is a tuple with the length equal to the cardinal of J and indexed by the elements
of J , i.e. ā := (bj)j∈J where J is a subset of DY with Y := (Y1, · · · , YN ).

3. Let 〈F, v, δ1, · · · , δK〉 be a valued field equipped with K derivations. An N -tuple ā is said to
be γ-close (with respect to F ) to a J-point (bΛ)Λ∈J in F for some J ⊆ DY and γ ∈ v(F×) if
{Λā}Λ∈J belongs to B>γ((bΛ)Λ∈J ) := {(x̄Λ)Λ∈J |v(x̄Λ − bΛ) > γ ∀Λ ∈ J} where the valuation
of a tuple is defined as the minimum of the value of each element of the tuple (and using
Convention 2.4).

Now we define the notion of J-algebraically prepared system which will be essential for our
uniform scheme of axioms (UC′

K).

Definition 2.6. A J-algebraically prepared system over F in K derivations (with respect to a finite
subset J of DY ) is a sequence {f1, · · · , fl} of differential polynomials in F{Y1, · · · , YN} \ F with
two tuples ā, ā′ in F (with their lengths determined by the fi’s and by the set J) and a sequence
of polynomials {Q1, . . . , Qn−d} in A(f1, · · · , fl) such that the following conditions are satisfied:

• (AP1) {f1, · · · , fl} is a characteristic set of a prime differential ideal, so {f1, · · · , fl} is an
autoreduced and coherent set of l polynomials and the ideal (f1, · · · , fl) : H(f1, · · · , fl)

∞ of
A(f1, · · · , fl) does not contain non-zero elements, reduced with respect to f1, · · · , fl;

• (AP2) The ideal (f1, · · · , fl) : H(f1, · · · , fl)
∞ of A(f1, · · · , fl) is prime, the Qi’s are semi-

generators of (f1, · · · , fl) : H(f1, · · · , fl)
∞ and the tuple ā is a regular semigeneric F -rational

point of (f1, · · · , fl) : H(f1, · · · , fl)
∞ with respect to the Qi’s such that H(f1, · · · , fl)(ā) 6= 0;

• (AP3) No element of J is a proper derivative of a leader of fi, no element of J appears in fi

(1 6 i 6 l) and ā′ is a J-point.

Now the notion of J-algebraically prepared system allows us to state the scheme of axioms
(UC′

K) which will give us the desired result (see Theorem 3.14).
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Definition 2.7. The scheme of axioms (UC′
K) says that in a valued field equipped with K deriva-

tions 〈F, v, δ1, · · · , δK〉 we have:
for any J-algebraically prepared system {f1, · · · , fl;Q1, . . . , Qn−d} over F with respect to two

tuples ā, ā′ in F and any γ ∈ v(F×), there is a differential solution b̄ of f1, · · · , fl in F which is
γ-close to the K-point (ā, ā′) with respect to F (where K = J ∪ {Λ ∈ DY |Λ occurs in some fi})
such that H(f1, · · · , fl)(b̄) 6= 0.

Lemma 2.8 (See Lemma 3.2 in [13]). Let A be a domain, let I be an ideal and let Z be an
indeterminate over A. Then

(I : h∞) := {a ∈ A|hn · a ∈ I for some n ∈ N} = (I, Z · h− 1)A[Z] ∩A.

Moreover, h 6∈
√
I if and only if A 6= (I : h∞) and in this case, h is a non-zero divisor of A/(I : h∞)

and the induced map
(A/(I : h∞))h/(I:h∞) 7−→ A[Z]/(I, Z · h− 1)

which sends 1
h/(I:h∞) to Z/(I, Z · h− 1) is an isomorphism. In particular, (I : h∞) is prime if and

only if (I, Z · h− 1)A[Z] is prime, provided that h 6∈
√
I.

Proposition 2.9. The class of all valued differential fields equipped with K derivations which
satisfies the scheme of axioms (UC′

K) is axiomatizable in the language L∗
D := LD ∪ {δ1, · · · , δK}.

Proof. It suffices to use some results of first-order definability in Section 4 of [13] and we directly
see that this scheme of axioms is expressible by first-order statements (namely in L∗

D := LD ∪
{δ1, · · · , δK}). The only difference is that the condition (AP2) in the definition of J-algebraically
prepared system uses Lemma 2.8 and Theorem 4.2 (i) in [13] in order to show the definability in
the language of rings about the coefficients of the sequence of polynomials {fi;Qj}.

First we recall an important theorem of differential algebra which is used in the Extension
Theorem 3.4.

Theorem 2.10 (See Theorem 1 of [12]). Let F be a differential field equipped with K deriva-
tions and let I ⊆ F{Y } be a differential prime ideal with Y := (Y1, · · · , YN ). Let ϕ : F{Y } 7−→
F{Y }/I =: S the residue map, let G be a characteristic set of I and let H(G) be the product of all
initials and separants of polynomials in G as in Definition 2.1.

Let h := ϕ(H(G)), V := {y ∈ DY |y is not a proper derivative of any leader of an element
g ∈ G}, VB := {y ∈ V |y appears in some g ∈ G}, B := ϕ(F [VB ]) and P := ϕ(F [V \ VB]).

Then h ∈ B, h 6= 0 and

• B is a finitely generated F -algebra and P is F -isomorphic to a polynomial ring over F in at
most countably many indeterminates (the case P = F is not excluded, for example in the case
K = 1, N = 1);

• Sh = (B.P )h is a differentially finitely generated F -algebra;

• the homomorphism B ⊗F P 7−→ B.P induced by the multiplication is an isomorphism of
F -algebras;

• the restriction of ϕ to F [V \ VB ] is injective.

Definition 2.11. Let 〈L, v〉 be a valued field and let 〈L̂, w〉 be a valued field extension of 〈L, v〉.
An element in L̂ is infinitesimal with respect to L if its value is bigger than γ for all γ ∈ v(L×).

For any two elements l, l̂ ∈ L̂, we say that l̂ is infinitesimally close to l (with respect to L) if l̂ − l
is infinitesimal with respect to L.
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3 Model Companion

In the proof of Theorem 3.4 which allows us to extend a differential henselian valued field in a model
of the scheme (UC′

K), we need three lemmas on pure henselian valued fields.

Lemma 3.1. Let 〈L, v〉 be a henselian valued field and let 〈L̂, w〉 be an LD-elementary |L|+-saturated
extension of L.

Then we can find n elements in L̂, say t1, . . . , tn, which are algebraically independent over L and
are infinitesimal with respect to L.

Proof. By the |L|+-saturation of L̂, it is sufficient to show that for any polynomial f(X1, . . . , Xn)

with coefficients in L and any γ ∈ v(L×), there exist x1, . . . , xn in L̂ such that

f(x1, . . . , xn) 6= 0 ∧
n∧

i=1

v(xi) > γ.

The proof is by induction on n and the case n = 1 is trivial since the sets {x ∈ L|v(x) > γ} are
infinite and f(X) has finitely many roots.

For the induction step, we apply the induction to the polynomials fi in L[X1, . . . , Xn] such that

f(X1, . . . , Xn, Xn+1) :=

d∑

i=0

fi(X1, . . . , Xn) ·X i
n+1.

Lemma 3.2. Let 〈L, v〉 be a field, let f(X0, . . . , Xn) be a non-zero polynomial in n+1 indeterminates
with coefficients in L and let ā := (a0, . . . , an) be an (n+1)-tuple in L. Then there exists an element
σ in OL and a positive integer M such that:

• σa0, . . . , σad ∈ OL;

• σM+1 · f(ā) = f̃(σā) with f̃ ∈ OL[X0, . . . , Xn] and;

• ∂ ef
∂Xk

(σa0, . . . , σan) = σM · ∂f
∂Xk

(a0, . . . , an) for all k ∈ {0, . . . , n}.

Proof. Let us consider the polynomial

f(X0, . . . , Xn) =
∑

(i0,...,in)

c(i0,...,in).M(i0,...,in)(X) ∈ L[X0, . . . , Xn]

such that the c(i0,...,in)’s are non-zero elements in L and M(i0,...,in)(X) := X i0
0 · · ·X in

n .
We let γ = min(i0,...,in) v(c(i0,...,in)), δ = mini∈{0,...,n} v(ai) and Σ = max{|γ|, |δ|} ∈ v(L×). Let

us choose σ ∈ OL such that v(σ) = Σ. We let M = max(i0,...,in)(
∑n

j=0 ij) and we obtain the
required properties by easy calculations.

Lemma 3.3 below is the most important point in the proof of the consistency of the axioms
(UC′

K). A central tool in the proof of this lemma is the Newton’s Lemma. As said above in the
introduction, it plays the role of large fields in the work of M. Tressl.

Lemma 3.3. Let 〈L, v〉 be an henselian valued field, let 〈L̂, w〉 be an elementary |L|+-saturated
extension of L, let I be a prime ideal of the polynomial ring L[X] with Krull dimension d and let
{Qi}n−d

i=1 be a set of semigenerators of I. Let us suppose that I vanishes at a regular semigeneric
L-rational point b̄ of Ln (with respect to the Qi’s).

Then there exists an n-tuple f̄ in L̂ such that:
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• L(f̄) is L-isomorphic to L(I), the fraction field of L[X]/I and,

• the point f̄ is infinitesimally close to b̄ with respect to L.

Proof. We want to find a common zero f̄ , in L̂, of the polynomials Qi which is infinitesimally close
to b̄ with respect to L (i.e. v(f̄ − b̄) > v(L×)) with f1, . . . , fd algebraically independent over L.

Claim: We may assume that the polynomials Qi have their coefficients in OL and b̄ is an n-tuple
of elements in OL.

By using Lemma 3.2, there exist a positive integer M and an element σ of OL such that σb̄ ∈ On
L

and σM+1 · Q1(b̄) = Q̃1(σb̄), . . . , σ
M+1 · Qn−d(b̄) = Q̃n−d(σb̄) where the polynomials Q̃i are in

OL[X0, . . . , Xn].
Moreover we have σM · sQi

(b̄) = s eQi
(σb̄) 6= 0 for all i ∈ {1, . . . n − d}. So σb̄ is a regular

semigeneric OL-rational point of the prime ideal (Q̃1, . . . , Q̃n−d) : l(Q̃1, . . . , Q̃n−d)
∞ in L[X] (with

respect to the Q̃i’s).

Now if we find a point f̄ in L̂ with the required properties (i.e. f̄ is infinitesimally close to σb̄
with respect to L with d coordinates algebraically independent over L) then the point σ−1f̄ proves
the lemma since σ ∈ OL.

So the problem is reduced to the following case: the Qi’s are polynomials with coefficients in OL

and b̄ is an n-tuple of elements in OL.
Since L̂ is an LD-elementary |L|+-saturated extension of L, Lemma 3.1 allows us to choose d

elements in ObL, say t1, . . . , td, which are algebraically independent over L and infinitesimal with
respect to L.

We then define the elements f1, · · · , fd in ObL as fi := b̄i + ti for any i ∈ {1, . . . , d}. Hence
the element Q1(f1, . . . , fd, bd+1) is infinitesimal with respect to L and belongs to ObL. Moreover,
v(sQ1 (f1, . . . , fd, bd+1)) ∈ v(OL \ {0}).

By applying the Newton’s Lemma to the polynomial Q̃1(X) := Q1(f1, . . . , fd, X) and the element
bd+1, we obtain a unique element fd+1 in ObL such that Q1(f1, . . . , fd, fd+1) = 0 and v(fd+1−bd+1) >

v(Q̃′
1(bd+1)) ∈ v(OL \ {0}). By using a Taylor expansion of Q̃1 at the point bd+1, we get

0 = Q̃1(fd+1) = Q̃1(bd+1) +
∑

i

Q̃
[i]
1 (bd+1) · (fd+1 − bd+1)

i

where Q̃
[i]
1 is the ith formal derivative of Q̃1.

By applying v and using the facts that Q̃1(bd+1) is infinitesimally close with respect to L and
v(sQ1 (f1, . . . , fd, bd+1)) ∈ v(OL \ {0}), we deduce that fd+1 is infinitesimally close to bd+1 with
respect to L (i.e. v(fd+1 − bd+1) > v(L×)).

So by induction on i ∈ {1, . . . , n − d − 1}, we find an element fd+i+1 ∈ ObL such that fd+i+1

is infinitesimally close to bd+i+1 with respect to L and Qi+1(f1, . . . , fd+i+1) = 0, which proves the
lemma with f̄ := (f1, . . . , fn).

Now we prove the valued analogue of Theorem 6.2 (II) in [13] for differential henselian valued
fields.

Theorem 3.4. Any differential henselian valued field can be extended to a differential henselian
valued field which is a model of (UC′

K) and this extension is elementary in the language LD.

Proof. Since the theory of henselian valued field is inductive, it suffices to prove, by a classical
argument of chains and transfinite induction, the following Proposition:

Proposition 3.5. Let 〈F, v, δ1, · · · , δK〉 be a differential henselian valued field equipped with K
derivations and let {f1, · · · , fl;Q1, . . . , Qn−d} be a J-algebraically prepared system over F with re-
spect to a finite subset of variables J and two tuples ā, ā′ in F .
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Then there is a differential valued field extension, L of F , which is LD-elementary and which has
a differential solution of f1 = 0, · · · , fl = 0, infinitesimally close to the K-point (ā, ā′) with respect
to F (in particular this solution satisfies H(f1, . . . , fl) 6= 0).

Proof. First we consider the differential ideal I = [f1, · · · , fl] : H(f1, · · · , fl)
∞ where [f1, . . . , fl] is

the differential ideal of F{Y } generated by {f1, . . . , fl}. Since {f1, · · · , fl} is a characteristic set of
a prime differential ideal, this prime ideal is equal to I. By Theorem 2.10, the differential F -algebra
A := F{Y }/I localized in h is F -isomorphic to Bh⊗F P where B = A(f1, · · · , fn)/I∩A(f1, · · · , fn)
and P := ϕ(V \ VB) is a ring of polynomials over F in at most countably many variables (following
the terminology of Theorem 2.10). By condition (AP3) in the Definition of J-algebraically prepared
system, J is a finite subset of V \VB; and the subset ϕ(J) of P is called the subset of J-indeterminates
of P .

Now I ∩A(f1, · · · , fn) is the ideal (f1, · · · , fn) : H(f1, · · · , fn)∞ of A(f1, · · · , fn).
Since ā is a regular semigeneric point of (f1, · · · , fn) : H(f1, · · · , fn)∞ (which is of Krull dimen-

sion d) with respect to the Qi’s, we apply Lemma 3.3 in order to get a point d̄ in an LD-elementary
sufficiently saturated extenion L0 of F which annihilates (f1, · · · , fn) : H(f1, · · · , fn)∞ such that
H(f1, · · · , fn)(d̄) 6= 0, F (d̄) is isomorphic to the fraction field of A(f1, · · · , fn)/I ∩ A(f1, · · · , fn)
over F , and which is infinitesimally close to ā with respect to F . Moreover, the transcendence
degree of F (d̄) over F is equal to d.

We now consider an LD-elementary sufficiently saturated extension L of L0. Then there is an
F -embedding of P in L such that the J-indeterminates of P are infinitesimally close to ā′ with
respect to L0 and are sent to ā′ + t̄′ where t̄′ are algebraically independent elements over L0 and
are infinitesimal with respect to L0 (see Lemma 3.1).

Since Ah = Bh⊗F P , Ah can be embedded into L over F . Finally, we can extend the derivations
on Ah to commuting derivations on L and we find an LD-elementary differential henselian valued
field extension as desired.

Remark 3.6. With the previous Lemma, we find the desired extension by transfinite induction. It
is possible because any J-algebraically prepared system over F is also a J-algebraically prepared
system over L for any differential valued field L ⊇ F with the property that F is algebraically closed
in L- in particular F ≺ L in the language of rings.

Lemma 3.7. Let 〈F, v, δ1, . . . , δK〉 be a differential valued field, let P be a prime differential ideal
in F{Y } with a characteristic set G := {f1, . . . , fl}. Let φ(x̄) be a quantifier-free L∗

D-formula of the
following form:

q(x̄) 6= 0 ∧
v∧

j=1

D(gj(x̄), hj(x̄)) ∧
w∧

k=1

¬D(lk(x̄),mk(x̄))

with differential polynomials q(Y ), gj(Y ), hj(Y ), lk(Y ),mk(Y ) with coefficients in F where Y =
(Y1, · · · , YN ).

Then there exists a quantifier-free L∗
D-formula φ̃ with parameters in F such that:

• for any differential valued field extension L of F , we get

L |= ∀x̄
[ l∧

i=1

fi(x̄) = 0 ∧H(f1, . . . , fl)(x̄) 6= 0 ⇒ (φ(x̄) ⇐⇒ φ̃(x̄))
]
;

• all the differential polynomials occuring in φ̃ are weakly reduced with respect to {f1, . . . , fl}.

Proof. Since {f1, . . . , fl} is a characteristic set of the prime differential ideal P in F{Y }, we use the
Rosenfeld’s Lemma (see Theorem 2.14 in [13]) to get, for any f ∈ F{Y },

H(f1, · · · , fl)
df ≡ f̃ mod[f1, · · · , fn] (1)
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where f̃ ∈ F{Y } is weakly reduced with respect to {f1, · · · , fl} and d is a natural number. So we
can deduce similar equations for differential polynomials q, gj, hj , lk,mk ∈ F{Y } (in particular we
can consider the same d if d is assumed big enough since H(f1, · · · , fl) is reduced with respect to
{f1, · · · , fl}).

Then we get the required quantifier-free L∗
D-formula φ̃:

q̃(x̄) 6= 0 ∧
v∧

j=1

D(g̃j(x̄), h̃j(x̄)) ∧
w∧

k=1

¬D(l̃k(x̄), m̃k(x̄)).

Definition 3.8. The L∗
D-formula φ̃ in Lemma 3.7 is called an (f1, . . . , fl)-reduced variant of φ over

F .

Notation 3.9. Given an (f1, . . . , fl)-reduced variant φ̃ of φ over F as above, we associate to φ̃ a

quantifier-free LD-formula φ̃alg with parameters in F as follows.
Let ū := (u1, · · · , ur) be an enumeration of all variables ΘYj occuring in some of the fi’s and

let ū′ := (u′1, · · · , u′s) be an enumeration of the other variables Θ′Yj occuring in φ̃. Writing f(ū, ū′)

for the polynomials f(Y ) ∈ F{Y } occuring in φ̃, we get the LD-formula φ̃alg(ū, ū
′).

Definition 3.10. Let 〈F, v, δ1, . . . , δK〉 be a differential valued field which is algebraically closed in
a differential valued field extension L of F , let ā be an N -tuple in L and let φ be a quantifier-free
L∗
D-formula with parameters in F as in Lemma 3.7.

A J-algebraically prepared system {f1, . . . , fl;Q1, . . . , Qn−d} over L with respect to two tuples
c̄, c̄′ is said to be realized by ā ∈ L with respect to φ and F if:

• {f1, . . . , fl} is a characteristic set of the prime differential ideal I(a/F ) := {f ∈ F{Y }|f(a) =
0} with Krull dimension d (the fi have their coefficients in F ) and,

• the polynomials Qi have their coefficients in F such that (Q1, . . . , Qn−d) : l(Q1, . . . , Qn−d)
∞ =

I(a/F ) ∩ F [VB ] (see the notations of Theorem 2.10);

• J is the set of variables which occur in the (f1, . . . , fl)-reduced variant of φ but not in any of
the fi’s.

Remark 3.11. Since {f1, . . . , fl} is a characteristic set of I(a/F ), we get that I(a/F ) = [f1, . . . , fl] :
H(f1, . . . , fl)

∞ ⊆ F{Y } and I := (f1, . . . , fl) : H(f1, . . . , fl)
∞ is a prime ideal of F [VB]. As F is

algebraically closed in L, we have that the ideal generated by I in L[VB], denoted by IL[VB ], is prime
and so, by Rosenfeld’s Lemma (see Theorem 2.14 in [13])), {f1, . . . , fl} is a characteristic set of the
prime differential ideal [f1, . . . , fl] : H(f1, . . . , fl)

∞ in L{Y }.
Moreover, since (Q1, . . . , Qn−d) : l(Q1, . . . , Qn−d)

∞ = (f1, . . . , fl) : H(f1, . . . , fl)
∞ in F [VB ]

then the same holds in L[VB] by Proposition 2.13 in [13]. So the Qi’s form a set of semigenerators
of the prime ideal (f1, . . . , fl) : H(f1, . . . , fl)

∞ in L[VB].

The next proposition establishes a new input which is needed to extend the results of M. Tressl
for fields to valued fields.

Proposition 3.12. Let 〈L1, w, δ1, . . . , δK〉 be a differential valued field extension of 〈F1, v, δ1, . . . , δK〉
and let ā be an N -tuple in L1. Let F be the algebraic closure of F1 in L1. Let us consider a
quantifier-free L∗

D-formula φ(x̄) with parameters in F1 as in Lemma 3.7 such that L1 |= φ(ā).
Then there is a J-algebraically prepared system {f1, . . . , fl;Q1, . . . , Qn−d} over L1 with respect

to two tuples c̄, c̄′ which is realized by ā with respect to φ and F such that L1 |= φ̃alg(c̄, c̄
′) (see

Notation 3.9).

9



Proof. Let us consider a characteristic set {f1, . . . , fl} of the prime differential ideal P1 := {f ∈
F{Y }|f(ā) = 0} in F{Y }. By Lemma 2.3, we find a set of semigenerators {Qi}d

i=1 of the prime
ideal I := (f1, · · · , fn) : H(f1, · · · , fn)∞ of A(f1, · · · , fn) (with Krull dimension d).

Since ā is a generic point of I (and by Remark 3.11), we can define in a unique way c̄, c̄′ and J
in order to obtain the required J-algebraically prepared system over L1 which is realized by ā with
respect to φ and F .

Indeed, the tuple c̄ := (Λā)Λ∈VB
is a regular semigeneric point of I (see the notations of Theorem

2.10), J is the set of all variables which occur in the (f1, . . . , fl)-reduced variant of φ but not in any

fi and the tuple c̄′ := (Λā)Λ∈J is the J-point such that L1 |= φ̃alg(c̄, c̄
′). Let us note that φ̃alg is a

quantifier-free LD-formula with parameters in F .

Notation 3.13. If M , N are L-structures in an arbitrary language L and A is a common subset of
M and N then we write

M ≡>∃,A N

if every existential L-formula with parameters in A, that holds in M , also holds in N . We write
M ≡∃,A N if M ≡>∃,A N and N ≡>∃,A M . Hence M ≡∃,A N if and only if M and N have the
same universal theory over A.

Now we give the proof of the analogue of Theorem 3.3 in [13].

Theorem 3.14. Let 〈F0, v, δ1, · · · , δK〉 be a differential valued subfield of the differential valued fields
〈L1, w1, δ1, · · · , δK〉 and 〈L2, w2, δ1, · · · , δK〉 equipped with K derivations. Let Fi be the algebraic
closure F0 in Li. Assume that

1. L1 ≡∃,F0 L2 in the language LD;

2. L2 satisfies the scheme of axioms (UC′
K).

Then L1 ≡>∃,F0 L2 in the language L∗
D := LD ∪ {δ1, · · · , δK}.

Proof. First the condition 1 implies that the valued fields 〈Fi, wi〉 are isomorphic. Moreover, this
isomorphism respects the K commuting derivations (observe that Fi is a differential subfield of Li);
so we may assume that

〈F,w, δ1, · · · , δK〉 := 〈F1, w1, δ1, · · · , δK〉 = 〈F2, w2, δ1, · · · , δK〉

is the algebraic closure of F0 in Li.
Let ϕ(x̄) be a quantifier-free L∗

D-formula with parameters in F0, where x̄ is an N -tuple of
variables. Clearly we may assume that the formula ϕ has the following form:

p1(x̄) = · · · = ph(x̄) = 0 ∧ φ(x̄) such that

φ(x̄) :=
[
q(x̄) 6= 0 ∧

v∧

j=1

D(gj(x̄), hj(x̄)) ∧
w∧

k=1

¬D(lk(x̄),mk(x̄))
]

and the differential polynomials pi(Y ), q(Y ), gj(Y ), hj(Y ), lk(Y ),mk(Y ) have their coefficients in F0

where Y = (Y1, · · · , YN ).
We assume that there is an N -tuple ā in LN

1 such that L1 |= ϕ(ā) and we have to find an N -tuple
b̄ in LN

2 such that L2 |= ϕ(b̄).
Moreover, by modifying ϕ, we may assume that

L1 |=
v∧

j=1

0 6= gj(ā) 6= hj(ā) 6= 0 ∧
w∧

k=1

0 6= lk(ā) 6= mk(ā) 6= 0.

By Proposition 3.12 (applied to φ, F and ā), there is a J-algebraically prepared system {f1, . . . , fl;Q1, . . . , Qn−d}
over L1 with two tuples c̄, c̄′ which is realized by ā with respect to φ and F ; i.e.
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• L1 |= ∀x̄
[ ∧l

i=1 fi(x̄) = 0 ∧H(f1, . . . , fl)(x̄) 6= 0 ⇒ (φ(x̄) ⇐⇒ φ̃(x̄))
]
;

• L1 |= φ̃alg(c̄, c̄
′) and,

• φ̃alg(ū, ū
′) is a quantifier free LD(F )-formula of the following form

q̃(ū, ū′) 6= 0 ∧
v∧

j=1

D(g̃j(ū, ū
′), h̃j(ū, ū

′)) ∧
w∧

k=1

¬D(l̃k(ū, ū′), m̃k(ū, ū′))

∧
v∧

j=1

0 6= gj(ū, ū
′) 6= hj(ū, ū

′) 6= 0 ∧
w∧

k=1

0 6= lk(ū, ū′) 6= mk(ū, ū′) 6= 0

where ū := (u1, · · · , ur) is an enumeration of all variables ΘYj occuring in some of the fi’s and

ū′ := (u′1, · · · , u′s) is an enumeration of the other variables Θ′Yj occuring in some of the q̃, g̃j, h̃j ,

l̃k, m̃k’s (see Lemma 3.7).
Moreover L1 |= ψ(c̄) where ψ(z̄) is the following quantifier-free formula in the language of rings

with parameters in F :

ψ(z̄) :=
n−d∧

i=1

[Qi(z̄) = 0 ∧ sQi
(z̄) 6= 0] ∧ l(Q1, . . . , Qn−d)(z̄) 6= 0.

Since F is algebraic over F0, we can choose some α ∈ F such that the parameters of the formula
ψ and φ̃alg and the differential polynomials fi have their coefficients in F0(α). Since F{Y } is
differentially noetherian and F is algebraic over F0, there are only finitely many prime ideals of
F{Y }, lying over P0 := {f ∈ F0{Y }|f(ā) = 0}, say there are exactly t of them. Since F is algebraic
over F0, we may choose α so that in addition, there are t prime differential prime ideals of F0(α){Y },
lying over P0.

Let Z be a new differential indeterminate of rank smaller than Y1, . . . , YN , let µ(Z) ∈ F0[Z] be
the minimal polynomial of α over F0. For ǫ ∈ Nr+s

0 , let hǫ ∈ F0[Z] be the uniquely determined
polynomials of degree < [F0(α) : F0] such that h(ū, ū′) = h′(ū, ū′, α) where

h′(ū, ū′, Z) :=
∑

ǫ∈N
r+s
0

hǫ(Z) · (ūū′)ǫ for any h ∈ F0(α)[ū, ū′].

Again we write h′(Y, Z) if we consider h′(ū, ū′, Z) as a differential polynomial in Z, Y1, . . . , YN . The
same holds for any polynomial h in F0(α)[z̄].

Then for all zeroes γ of µ, we have

H(f ′
1(Y, Z), . . . , f ′

l (Y, Z))(Y, γ) = H(f ′
1(Y, γ), . . . , f

′
l (Y, γ)).

In L1, there is a solution (c̄, c̄′, α) of the following quantifier-free LD(F0)-formula Σ(ū, ū′, Z):

µ(Z) = 0 ∧ φ̃′alg(ū, ū′, Z) ∧ ψ′(ū, Z) ∧
l∧

i=1

f ′
i(ū, Z) = 0 ∧H(f ′

1, . . . , f
′
l )(ū, Z) 6= 0

such that φ̃′alg(ū, ū
′, γ) is a quantifier-free LD(F0)-formula obtained from φ̃alg(ū, ū

′) by replacing
polynomials h by h′ for any γ in F with µ(γ) = 0 and similarly for ψ′ in the language of rings.

Since L1 ≡〉∃,F0L2 as valued fields, Σ is satisfied by (ē, f̄ , β) in L2.
Now we can define an isomorphism σ between F0(α) and F0(β) where β is a solution of µ(Z) in

L2. We can extend this isomorphism in a natural way between F0(α){Y } and F0(β){Y } and the
same holds for F0(α)[z̄].
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Hence, as in the Claim of Theorem 3.3 in [13], we get that {σ(f1), . . . , σ(fl)} is a character-
istic set in L2 and (σ(f1), . . . , σ(fl)) : H(σ(f1), . . . , σ(fl))

∞ is a prime ideal in L2[ū]. Moreover
since {σ(Qi)}n−d

i=1 is a set of semigenerators of (σ(f1), · · · , σ(fl)) : H(σ(f1), · · · , σ(fl))
∞ and L2 |=

ψ′(ē, β), we get that ē is a regular semigeneric point of (σ(f1), · · · , σ(fl)) : H(σ(f1), · · · , σ(fl))
∞.

The following sets in L2 are open for the valuation topology in L2

{
(x, y) ∈ L2

2 : L2 |= D(x, y) ∧ 0 6= x 6= y 6= 0
}

and
{
(x, y) ∈ L2

2 : L2 |= ¬D(x, y) ∧ 0 6= x 6= y 6= 0
}
,

and by the continuity of polynomial functions with respect to the valuation topology in L2, we get
that the following set D is open and contains the tuple (ē, f̄)

v⋂

j=1

{
(ū, ū′) ⊆ L2 : D(g̃′j(ū, ū

′, β), h̃′j(ū, ū
′, β)) ∧ 0 6= g̃′j(ū, ū

′, β) 6= h̃′j(ū, ū
′, β) 6= 0

}

∩
w⋂

k=1

{
(ū, ū′) ⊆ L2 : ¬D(l̃′k(ū, ū′, β), m̃′

k(ū, ū′, β)) ∧ 0 6= l̃′k(ū, ū′, β) 6= m̃′
k(ū, ū′, β) 6= 0

}

∩
{
(ū, ū′) ⊆ L2 : q̃′(ū, ū′, β) 6= 0

}
.

So there exists a ball B := B>γ(ē, f̄) ⊆ D.
So we apply the scheme of axioms (UC′

K) in order to find a differential solution b̄ of σ(f1) =
0, . . . , σ(fl) = 0 in LN

2 which is γ-close to the tuple (ē, f̄) such that H(σ(f1), . . . , σ(fl))(b̄) 6= 0.
Since p1, . . . , pr ∈ P0, and σ(P1∩F0(α){Y }) = [σ(f1), . . . , σ(fn)] : H(σ(f1), . . . , σ(fn))∞ ly over P0,
b̄ is a differential solution of p1 = . . . = pr = 0.

Moreover the topological conditions about the point b̄ with respect to (ē, f̄) give us

L2 |= q̃′(b̄, β) 6= 0 ∧
v∧

j=1

D(g̃′j(b̄, β), h̃′j(b̄), β) ∧
w∧

k=1

¬D(l̃′k(b̄, β), m̃′
k(b̄), β).

Since σ(f1)(b̄) = . . . = σ(fl)(b̄) = 0 and H(σ(f1), . . . , σ(fl))(b̄) 6= 0, it suffices to apply the dif-
ferential isomorphism σ : F0(α){Y } → F0(β){Y } to Equation 1 in Lemma 3.7 (more precisely
to the polynomials q, gj , hj , lk,mk in F0{Y } with respect to σ(f1), . . . , σ(fl)) in order to get that
L2 |= φ(b̄); and so L2 |= ϕ(b̄).

Notation 3.15. If T is a theory of valued fields then we denote by T ∗ the corresponding theory of
differential valued fields equipped with K commuting derivations.

Now we are stating our valued analogues of the results of model companion and model completion
of theories of differential fields in [13].

Corollary 3.16. Let LD be the language of non-trivially valued fields and let C be a set of new
constants. Let T be a model complete theory in the language LD(C) such that every model of T is
henselian.

Let T̃ be a theory in a language L̃ ⊇ LD(C) such that T̃ contains T and T̃ is an expansion by

definition of T . Let F be an L̃∗-structure.
If T̃ ∪ diag(F ↾L̃) is complete then T̃ ∗ ∪ (UC′

K) ∪ diag(F ) is complete.

Proof. See the proof of Theorem 7.1 in [13].

As in [13], the next result is a consequence of Corollary 3.16.

Corollary 3.17. Under the same assumptions as in Corollary 3.16, assume moreover that T̃ is a
model companion of an L̃-theory T̃0 extending the theory of valued fields. Then

1. T̃ ∗ ∪ (UC′
K) is a model companion of the L̃∗-theory T̃ ∗

0 .
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2. If T̃ is a model completion of T̃0 then T̃ ∗ ∪ (UC′
K) is a model completion of the L̃∗-theory T̃ ∗

0 .

3. If T̃ has quantifier elimination then T̃ ∗ ∪ (UC′
K) has quantifier elimination.

4. If T is complete and L is a differential valued field and a model of T then T̃ ∗∪(UC′
K)∪diag(F )

is complete where F is the L̃∗-substructure generated by ∅ in L.

Proof. See Proof of Theorem 7.2 in [13].

Proposition 3.18. Any differential henselian valued field 〈F, v, δ1, . . . , δK〉 which is a model of the
scheme (UC′

K) is a model of the scheme (UCK) (see Section 3 in [13]).

Proof. It suffices to prove that if any prime ideal I of a polynomial ring over F has a regular
F -rational point then it has a regular semigeneric F -rational point.

Let I be an ideal in F [X] of Krull dimension d with a set of semigenerators {Q1, . . . , Qn−d}.
Since F is a henselian valued field, F is a large field and; since I has a regular F -rational point,
we have that F is existentially closed in L := F [X]/I. So f̄ := X + I is a generic point of I in
F [X ]/I. In particular, f̄ is a regular semigeneric point of I. Since F is existentially closed in L in
the language of rings and the fact that X + I is a regular semigeneric point of I with respect to the
Qi’s is expressible by a first-order quantifier-free formula with parameters in F in the language of
rings, we get a regular semigeneric F -rational point of I.

4 Applications

4.1 Differential Ax-Kochen-Ersov Theorem

Now we are going to establish an Ax-Kochen-Ersov differential result for differential henselian valued
fields which satisfy the scheme of axioms (UC′

K).
First we recall the classical “Ax-Kochen-Ersov” theorem in its existentially closed form. A proof

of this result can be found in [6].

Theorem 4.1. Let 〈F1, v1〉 be a henselian valued field and let 〈F2, v2〉 be a valued field extension of
〈F1, v1〉 such that

• kF1 ⊆e.c kF2 ,

• v1(F
×
1 ) ⊆e.c v2(F

×
2 ).

Then 〈F1, v1〉 ⊆e.c 〈F2, v2〉 in the language LD.

Now we can easily prove the following differential analogue.

Theorem 4.2. Let 〈F1, δ1, · · · , δK , v1〉 be a differential henselian valued field such that F1 |= (UC′
K)

and let 〈F2, δ1, · · · , δK , v2〉 be a differential valued field extension of 〈F1, δ1, · · · , δK , v1〉 such that

• kF1 ⊆e.c kF2 ,

• v1(F
×
1 ) ⊆e.c v2(F

×
2 ).

Then 〈F1, v1, δ1, · · · , δK〉 ⊆e.c 〈F2, v2, δ1, · · · , δK〉 in L∗
D.

Proof. By Theorem 4.1, we deduce that 〈F2, v2〉 ≡∃,F1 〈F1, v1〉 in the language LD. Now it suffices
to apply Theorem 3.14 to obtain the result.

Now we prove a topological lemma which will be also useful in Theorem 4.10. In particular, it
shows that the field of constants of a differential valued field satisfying the scheme (UC′

K) is dense
in its underlying field with respect to the valuation topology.
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Lemma 4.3. Let 〈F, δ1, · · · , δK〉 be a differential henselian valued field which is a model of (UC′
K).

Then for any natural numbers N1, · · · , NK, the following set is dense in F
P

K
i=1(Ni+1) with respect

to the valuation topology

{(x, δ1(x), . . . , δ(N1)
1 (x), . . . , x, . . . , δ

(NK)
K (x))|x ∈ F}.

Proof. Let us consider a tuple ā := (a10, . . . , a1N1 , . . . , aK0, . . . , aKNK
) in F and γ ∈ v(F×). We

want to find an element x ∈ F such that
∧K

i=1

∧Ni

j=0 v(δ
(j)
i x− aij) > γ and

∧K
i=1 δ

(Ni+1)
i (x) = 0. To

this effect, we consider the following differential ideal [δ
(N1+1)
1 (X), . . . , δ

(NK+1)
K (X)] in F{X}.

It is a prime differential ideal and moreover, {δ(N1+1)
1 (X), . . . , δ

(NK+1)
K (X)} is a characteristic set

of this ideal. Indeed, {X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

} is a set of autoreduced and coherent differential poly-

nomials and (X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

) = (X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

) : H(X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

)∞ is a

prime ideal of the corresponding polynomial ring A(X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

) and does not contain

non-zero element reduced with respect to {X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

}. Hence by Rosenfeld’s Lemma

(see [5, p167]), {X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

} is a characteristic set of our considered differential ideal.

Moreover 0̄ is a regular semigeneric point of (X
δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

) with respect to the semigen-

erators {Qi := X
δ
(Ni+1)

i

}.
So we can find an element x having the required properties by applying the scheme of axioms

(UC′
K) at the regular semigeneric F -rational point 0̄ in FK of the ideal (X

δ
(N1+1)
1

, . . . , X
δ
(NK+1)

K

) for

the neighbourhood
∧K

i=1

∧Ni

j=0 v(xij − aij) > γ and the J-point ā where J is the set of differential

indeterminates
{
δ
(j)
i X

∣∣i ∈ {1, . . . ,K}, j ∈ {0, . . . , Ni}
}
.

4.2 Examples

Let V F0 be the LD-theory of non-trivially valued fields of equicharacteristic 0 (i.e. ¬D(c, 1) belongs
to V F0 and so, V F0 is a universal LD-theory). Then ACV F0 is the LD-theory of algebraically closed
non-trivially valued fields and it is model complete (see [10]), moreover using prime extensions, it
is easy to see that it admits quantifier elimination in LD (see [7, p. 83]). So we get the following

Corollary 4.4. The L∗
D-theory ACV F ∗

0 ∪ (UC′
K) is the model completion of the L∗

D-theory V F ∗
0 .

Proof. Since any algebraically closed valued field is clearly henselian, it suffices to apply Corollary
3.17.

Remark 4.5. Since any model of ACV F0 is a henselian valued field, Proposition 3.18 implies that
any model of ACV F ∗

0 ∪(UC′
K) is a model of the model completion of the theory of differential fields

equipped with K commuting derivations, denoted by ACF0 ∪ (UCK) (see Definition 8.2 (i) in [13]).

Let us recall that a p-valued field K of p-rank d (d ∈ N \ {0}), with p a prime number, is a
valued field of characteristic 0, residue field of characteristic p and the dimension of OK/(p) over
the prime field Fp is equal to d.

Let L̃ := LD ∪ {Pn;n ∈ N \ {0, 1}} ∪ {c2, · · · , cd}. This language is an expansion by definition
of the language LD since the predicates Pn are interpreted as the nth powers. The theory pCFd of
p-adically closed fields of p-rank d admits quantifier elimination in L̃ and so is the model completion
of its universal part (pCFd)∀. This last theory has been axiomatized by L. Bélair who denoted the
set of axioms by Td (see Theorem 2.4 in [2]).

Since p-adically closed fields are henselian by definition, we get the following result from Corollary
3.17

Corollary 4.6. The L̃∗-theory (pCFd)
∗ ∪ (UC′

K) is the model completion of (Td)
∗
.
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Let p be a prime number, let d, f be positive natural numbers. Let 〈F, v〉 be a differential p-
valued field of p-rank d where v : F 7−→ v(F×)∪{∞} is a p-valuation of p-rank d and [kF : Fp] = f .
Let π belonging to F be such that v(π) is the least positive element of the value group.

Set q = pf and let γ(X) := 1
π [ Xq−X

(Xq−X)2−1 ] be the π-adic Kochen operator.

We have that γ(F ) ⊆ OF (see Lemma 6.1 in [9]); if F is p-adically closed, then OF = γ(F ) (see
Theorem 6.15 in [9]).

Let us denote by F 〈X〉 := F 〈X1, . . . , Xn〉 the field of differential rational functions in n inde-
terminates. Assume now that 〈F, v〉 is a differential p-valued field of p-rank d with valuation v and
K commmuting derivations δ1, · · · , δK . Then we can extend the valuation and the derivation on
F 〈X〉 in such a way it becomes a differential p-valued field extension of F of p-rank d (see Section
5 in [4]).

Now assume that 〈F, v〉 is a differential p-adically closed field of p-rank d. Before recalling the
analogue of the Hilbert’s Seventeenth Problem for p-adically closed fields of p-rank d, we need to
introduce the following notation.

Let 〈L, v〉 be a valued extension of 〈F, v〉.

Definition 4.7 (See Section 6.2 in [9]). The γ-Kochen ring RL of L over F is the subring defined
by:

RL = { t

1 + π · s : t, s ∈ OF [γ(L)] and 1 + π · s 6= 0}.

The quotient field of RL is the field generated by F and γ(L) \ {∞} and by Merckel’s Lemma,
K(γ(L)) = L (see Lemma 6.6 in [9]).

Theorem 4.8 (See Theorem 7.12 in [9]). Let F be a model of pCFd. If f , g ∈ K[X] and f/g is

integral definite (i.e. g(ā) 6= 0 implies f(ā)
g(ā) ∈ OK for all ā ⊆ Fn), then there are t, t′ ∈ OF [γ(F (X))]

such that
f

g
=

t′

1 + π · t .

Now, let us state and prove the differential case using the technology of Section 3 and the
following result on holomorphy rings.

Theorem 4.9 (See Theorem 6.14 in [9]). Let L be a field extension of F which admits a p-
valuation of p-rank d. The γ-Kochen ring RL of L is the holomorphy ring

⋂
v∈Γ Ov, where Γ is the

set of all p-valuations of p-rank d of L which extends the p-valuation of p-rank d of F .

Theorem 4.10. Let 〈F, v, δ1, · · · , δK〉 be a model of (pCFd)∗ ∪ (UC′
K). Let us consider the ring

F{X} of differential polynomials in n differential indeterminates over F . Let f , g be two differential

polynomials in F{X} such that f
g is integral definite (i.e g(ā) 6= 0 implies f(ā)

g(ā) ∈ OF for all ā ⊆ Fn).

Then f
g belongs to the γ-Kochen ring RF 〈X〉 of F 〈X〉 over K.

Proof. Let us assume that f
g /∈ RF 〈X〉. Then, by Theorem 4.9, there exists one p-valuation w of

p-rank d of F 〈X〉 extending v over K such that w( f
g ) < 0.

We have:

〈F 〈X〉, w〉 |= φ := ∃ȳ [w(
f∗(ȳ)

g∗(ȳ)
) < 0 ∧ g∗(ȳ) 6= 0]

where f∗, g∗ are the usual ordinary polynomials corresponding to f and g. Then, using the fact
that pCFd is the model completion of Td, we embed F 〈X〉 in a differential p-adically closed field
of p-rank d. So, since F satisfies the scheme (UC′

K), we use the model completeness of pCFd and

apply Lemma 4.3. So, we get a contradiction with f
g integral definite.
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Let L̃ := LD ∪{6} and let OV F be the theory of non-trivially valued ordered fields, namely the
Lfields ∪{6}-theory of ordered fields together with the LD-theory of valued fields, and the following
compatibility condition between the valuation topology and the order topology:

∀a ∀b
(
0 < a 6 b⇒ D(b, a)

)
.

Let RV F be the L̃-theory of real closed valued fields, namely the theory OV F together with axioms
of real closed fields. Note that an L̃-substructure of a model of RV F is a model of OV F .

The theory RV F is model complete. Indeed, a real closed valued field is a henselian valued
ordered field with a real closed residue field and divisible ordered group (see Theorem 3 in [3]).
Since the theory of real closed fields RCF and the theory of divisible ordered groups are model
complete and complete, the L̃-theory RV F is model complete and complete by Ax-Kochen-Ersov
Theorems (see Theorems A and B in [3]) (note that the order in a real closed field is existentially
definable).

Then, we show that any L̃-substructure of a model of RV F has a prime extension and so RV F
is the model completion of OV F (see [11]). Let F be a model of OV F and let O be its valuation

ring and M its maximal ideal. Let F̃ be the real closure of F and let Õ be the convex hull of O
in F̃ . Then, Õ is a valuation ring of F̃ and its maximal ideal M eO is such that M eO ∩ O = M (see

Lemma 1.1, Lemma 1.8 and its proof in [1]) and so F̃ is an L̃-extension of F , satisfying RV F (see
Theorems 1 and 2 in [3]).

Therefore, we get the following

Corollary 4.11. The L̃∗-theory (RV F )∗∪(UC′
K) is the model completion of the L̃∗-theory (OV F )∗.

Remark 4.12. Since any real closed valued field is henselian, Proposition 3.18 implies that any model
of (RV F )∗ ∪ (UC′

K) is a model of the model completion of the Lrings ∪ {6}-theory of differential
ordered fields, denoted by RCF ∪ (UCK) (see Definition 8.2 (ii) in [13]).

By using our previous results, we can state a more topological axiomatization of RCF ∪ (UCK)
as follows.

Let 〈F,6, δ1, · · · , δK〉 be a differential ordered field. We say that F is a model of RCF ∪ (UC′
K)

if the following scheme of axioms, denoted by (UC′
K)6, holds:

for any J-algebraically prepared system {f1, . . . , fl;Q1, . . . , Qn−d} over F with respect to the
two tuples ā, ā′ and any ǫ > 0 in F , there is a differential solution b̄ of f1, . . . , fl in F which is
ǫ-close to (ā, ā′) with respect to the order topology on F .

Here the notion of ǫ-closeness of two tuples c̄ and d̄ means that for any i, |ai − bi| > ǫ.

Let us prove that this scheme of axioms for differential real closed fields proves that these are
models of RCF ∪(UCK). To this effect, it suffices to consider a differential real closed field F which
satisfies the scheme of axioms (UC′

K)6. We define on the ordered field F a non-trivial valuation
with respect to the following valuation subring OF of F

{x ∈ F | 0 6 |x| 6 q for some q ∈ Q>0}.

We easily see that this valuation v is compatible with the order on F and that 〈F, v,6〉 is then a
model of (UC′

K). So by Remark 4.12, 〈F,6〉 is a model of RCF ∪ (UCK).
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