Compléments de Mathématiques : Janvier 2010

Justifiez toutes vos réponses précisement!

Soit $A \subseteq \mathbb{R}$, on note $\chi_A : \mathbb{R} \to \mathbb{R}$ la fonction qui vaut 1 si $x \in A$ et 0 sinon.

1. Quel que soit $k \in \mathbb{Z}$, évaluez l'intégrale ci-dessous :

$$\int_{-\pi}^{\pi} e^{5\mathbf{i}x} e^{-k\mathbf{i}x} \, \mathrm{d}x$$

En déduire la série de Fourier de la fonction e^{5ix} . Le calcul des intégrales ci-dessus était-il nécéssaires?

2. Parmi les fonctionnelles suivantes $T_i: \mathcal{S} \to \mathbb{C}$, déterminez lesquelles sont des distributions tempérées :

$$T_{1}(\varphi) = \frac{1}{\varphi(0)} \quad ; \quad T_{2}(\varphi) = \int_{\mathbb{R}} \varphi(t) e^{t^{8}} dt \quad ; \quad T_{3}(\varphi) = \sup_{t \in \mathbb{R}} (\varphi(t)) \quad ;$$

$$T_{4}(\varphi) = \varphi(17) \quad ; \quad T_{5}(\varphi) = \begin{cases} 1 \text{ si } \int_{\mathbb{R}} |\varphi(t)| dt > 0 \\ 0 \text{ sinon} \end{cases} \quad ; \quad T_{6}(\varphi) = \begin{cases} \int_{\mathbb{R}} \varphi(t) dt \text{ si } \int_{\mathbb{R}} |\varphi(t)| dt > 0 \\ 0 \text{ sinon.} \end{cases}$$

3. On considère les suite de fonctions (f_n) , (g_n) , (h_n) : $[0,1] \to \mathbb{R}$ définies ci-dessous :

$$f_n(x) = \sqrt[4]{\frac{1}{x + \frac{1}{n}}} \qquad ; \qquad g_n(x) = \begin{cases} \sqrt[3]{n^2} & \text{si } 0 \le x \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} < x \le 1 \end{cases} \qquad ; \qquad h_n(x) = \frac{(2x)^n}{1 + (2x)^n}.$$

- (a) Tracez les suites de fonctions $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, et $(h_n)_{n\geq 0}$ (sur trois graphes différents).
- (b) Etudiez la convergence simple de (f_n) sur (0,1). En déduire (si possible) la convergence de la suite $\int_0^1 f_n(x) dx$.
- (c) Etudiez la convergence de (g_n) sur (0,1) au sens uniforme, au sens de $L^1(0,1)$ et au sens de $L^2(0,1)$.
- (d) Etudiez la convergence de (h_n) au sens simple sur [0,1], au sens uniforme sur [0,1], au sens uniforme sur [0,a] avec $a<\frac{1}{2}$.
- 4. Soit $g \in L^2([0,1],\mathbb{R})$, $\lambda_1, \lambda_2 \in \mathbb{R}$, on considère les deux polynômes $p_1(x) = 1$ et $p_2(x) = -2\sqrt{3}x + \sqrt{3}$.
 - (a) Pour quelle(s) valeur(s) de λ_1 , λ_2 l'égalité ci-dessous est-elle vérifiée quel que soit $g \in L^2([0,1],\mathbb{R})$:

$$\inf_{(\lambda_1,\lambda_2) \in \mathbb{R}^2} \left(\int_0^1 |g(x) - \lambda_1 p_1(x) - \lambda_2 p_2(x)|^2 dx \right) = \min_{(\lambda_1,\lambda_2) \in \mathbb{R}^2} \left(\int_0^1 |g(x) - \lambda_1 p_1(x) - \lambda_2 p_2(x)|^2 dx \right).$$

- (b) Déterminer cet infimum dans le cas où g(x) = x + 1. Interpréter géométriquement votre résultat.
- (c) Déterminer, si possible, les valeurs $\lambda_1, \lambda_2 \in \mathbb{R}$ qui satisfont l'équation ci-dessus dans le cas où $g(x) = x^2$.
- 5. On considère la fonction sign : $\mathbb{R} \to \mathbb{R}$ définie par :

$$\operatorname{sign}(x) = \begin{cases} +1 & \text{si } x \ge 0\\ -1 & \text{si } x < 0. \end{cases}$$

- (a) Soit $n \in \mathbb{N}$, la fonction sign(x-n) est-elle dérivable en tant que fonction? Si oui, calculer sa dérivée, si non donner son domaine de dérivabilité.
- (b) Prouver que sign(x-n) peut être vue comme un élément de S' et calculer sa dérivée distributionnelle.
- 6. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = (2 |x|) \chi_{[-2,2]}$.
 - (a) Tracez f(x) (b) Calculez $\chi_{[-1,1]} * \chi_{[-1,1]}$ (c) Evaluez $\mathcal{F}(f(x))$.
- 7. Etudier la convergence des séries suivantes au sens de \mathcal{D}' et de \mathcal{S}' :

(a)
$$\sum_{n=1}^{+\infty} \frac{\delta}{n}$$
 (b) $\sum_{n=0}^{+\infty} e^{n^4} \chi_{[n,n+3]}$ (c) $\sum_{n=0}^{+\infty} \operatorname{sign}(x-n)$ (d) $\left(\sum_{n=0}^{+\infty} \operatorname{sign}(x-n)\right)'$.