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Abstract

We recall the definition of Legendrian knots in (R3, ξstd) and the basic tools to study
them. We define the contact homology of such Legendrian knots. We explain linerization
processes which allow to extract information from the infinite-dimensional contact homol-
ogy algebra. Augmentations are auxiliary objects needed for linerization. They turn out
to be natural and interesting objects by themselves and we discuss a notion of equivalence
of augmentations. We then introduce bilinearized Legendrian contact homology (BLCH),
a generalisation of Legendrian contact homology introduced by Bourgeois and Chantraine.
The first goal of the talk is to introduce combinatorial methods for the effective compu-
tation of BLCH which can be implemented informatically. We then discuss theoretical
results obtained by these computational means. The second goal of the talk is to explain
that BLCH is a complete invariant for the equivalence of augmentations.

1 Introduction and general context

1.1 The standard contact structure on R3

Below are reproduced some parts of [5].
In this talk, we will use (R3, ξstd) where

ξstd = span{ ∂

∂y
,
∂

∂x
+ y ∂

∂z
} .

ξstd is the kernel of the 1–form α = dz − ydx. The plane field is shown in Figure 1.
A Reeb field is associated to this contact structure, here it is simply given by ∂

∂z .
Being in R3 with an “explicit” contact structure will allow to develop combinatorial methods,
as it will soon be discussed.

1.2 Legendrian knots and their front projection

A Legendrian knot K in (R3, ξstd) is an embedded S1 that is always tangent to ξstd ∶

TxL ∈ ξx, x ∈ L.
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Figure 1: The standard contact structure ξstd (Figure: Patrick Massot1).

A classical way to picture Legendrian knots in (R3, ξstd) is via their front projection, defined by
the map

Π ∶ R3 → R2 ∶ (x, y, z)→ (x, z).

The image Π(K) of K under Π is called the front projection of K.
A knot diagram represents the front projection of a Legendrian knot iff

1. It has no vertical tangencies;

2. Its only non-smooth points are generalized cusps;

3. At each crossing, the slope of the overcrossing is smaller (that is, more negative) than the
undercrossing.

Figure 2: Front projection of the right-handed trefoil (from [5]).

1https://www.math.u-psud.fr/~pmassot/exposition/gallerie_contact/
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The Lagrangian projection is defined by the map

π ∶ R3 → R2 ∶ (x, y, z)→ (x, y).

The image π(K) of K under π is called the Lagrangian projection of K.

1.3 Legendrian isotopies

Two Legendrian knots K0 and K1 are said to be Legendrian isotopic if there is a continuous
family (Kt)t∈[0,1] of Legendrian knots starting at K0 and ending at K1 (see [5]).

1.4 Ng’s resolution procedure

Our goal is to introduce the Legendrian contact homology of a Legendrian knot K.
We will formulate it in terms of the front projection. From a “Legendrian knot theorist” point
of view, front projections have two main advantages 2:

• Existence of Legendrian Reidemeister moves (see [5])

Figure 3: Legendrian Reidemeister moves in front projection (from [13]).

• Appropriate diagrams always correspond to projections of Legendrian knots.

Following Ng [13], we will use the resolution of a front projection. In these notes we will not
go into details, the interested reader should refer to [13]. Instead, we describe this procedure
visually, see figures 4 and 5:
The important property ensured by the resolution procedure is that for all strands i, j,

z[i] < z[j]⇔ slope[i] < slope[j]

Figure 4: Resolving a front into the Lagrangian projection of a knot (from [13]).

2Compared to e.g. Lagrangian projections. Further discussion can be found in Ng’s paper [13].
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In more geometrical terms, note that

Reeb chords←→ crossings in the Lagrangian projection
←→ crossings and right cusps in the front projection

x

z

x

y

x

z

Figure 5: A front projection for the left-handed trefoil (top) is distorted (middle) so that the
corresponding Lagrangian projection (bottom), given by y = dz/dx, with the same x axis as the
middle diagram, is the resolution of the original front (from [13]).
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The important property associated to the resolution procedure is the following:

Proposition 1. The resolution of the front projection of any Legendrian knot K is the
Lagrangian projection of a knot Legendrian isotopic to K.

1.5 Crossings, degrees, Maslov potentials and differentials

This part is heavily based on [11].

• Let K be a Legendrian knot with rotation number zero (see below).

For computational convenience we assume following Ng [12] that the front of K is simple,
i.e. that all the right cusps have the same x–coordinate. This can be arranged by a
Legendrian isotopy of K.

• We will introduce Chekanov-Eliashberg’s differential graded algebra (DGA) (A, ∂) for K.
The underlying algebra A is the free noncommutative unital algebra over Z2 generated
by the crossings c1, . . . , cn and right cusps cn+1, . . . , cn+r in the front. Thus the elements of
A are finite sums of words in the ci, where the empty word, denoted by 1, is the identity.
The full set {c1, . . . , cn+r} of generators will be denoted by C.

• The grading on A is defined by assigning an integer degree ∣c∣ to each c ∈ C, and then
extending to higher order terms by the rule ∣ab∣ = ∣a∣ + ∣b∣. To define ∣c∣, choose a Maslov
potential µ on the front of K. By definition, µ assigns a real number to each spanning
arc in the front in such a way that the upper arc at any cusp is assigned one more than
the lower arc; such an assignment can be made consistently if the rotation number of K
if 0 (r(K) = 0, see [5]). Now set ∣c∣ = 1 if c is a cusp, and

∣c∣ = µ(α) − µ(β)

if c is a crossing, where α is the upper arc (the one with a smaller slope) at the crossing
and β is the lower arc.

• Finally the differentials ∂c for c ∈ C are defined by counting suitable immersed disks. The
differential is then extended to all of A by the Leibniz rule and linearity, setting ∂1 = 0.
We will not go into the formal definition of ∂c and instead refer the reader to [3] or [5].

• With the suitable definitions, ∂ lowers degree by 1, and ∂2 = 0. This leads to a graded
homology H∗(A, ∂), which coincides with the contact homology of (R3, ξstd) relative to
K (see [6]) and is invariant under Legendrian isotopy of K.
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1.6 Augmentations

The algebra (A, ∂) is infinite dimensional (over Z2) and not very convenient to use or compute.
However, useful information can be extracted from its finite dimensional quotients.

Definition 2. An augmentation of (A, ∂) (or “augmentation of K”) is an algebra map

ε ∶ A→ Z2

that vanishes on elements of nonzero degree and satisfies ε∂ = 0.

The generators c ∈ C with ε(c) = 1, which are all crossings of degree zero, will be called the
augmented crossings of ε.

1.7 Linearized contact homology

The differential of generators can always be written as

∂ci =∑
l≥0

∑
1≤i1,⋯ ,il≤k

M i
i1 ⋯ il

ci1 ⋯ cil (1)

for some finite number of coefficients M i
i1 ⋯ il

∈ Z2.

Definition 3 [Linearization].
The linearization ∂ε is a differential on the graded Z2 vector space freely generated by
A. It is defined by

∂εci =∑
l≥1

∑
1≤i1,⋯ ,il≤k

M i
i1 ⋯ il

l

∑
j=1
ε(ci1)⋯ ε(cij−1)cijε(cij+1)⋯ ε(cil) (2)

i.e. obtained from ∂ by applying the following “linearization procedure”

ci1 ⋯ cil z→
l

∑
j=1
ε(ci1)⋯ ε(cij−1)cijε(cij+1)⋯ ε(cil)

Theorem 4 [Chekanov 2002, [3]].
∂ε is a differential and the set

{LCHε(K) ∶=H(A, ∂ε) ∣ ε augmentation of (A, ∂)}

is invariant under Legendrian isotopy.
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The Chekanov polynomial PK,ε is the Poincaré polynomial of this complex,

PK,ε(t) =∑
k∈Z

dim(Hk) tk

where Hk = ker∂εk/ im∂εk+1.
The “big picture” is the following:

Chekanov-Eliashberg DGA εÐ→ linearized chain complex with differential ∂ε
Ð→ linearized contact homology LCHε

Ð→ Poincaré polynomial PK,ε(t)

1.8 Example of the trefoil

This part was adaptated from [5].
Consider the Legendrian right handed trefoil whose front projection is shown in figure 2.
Let’s denote the right cusps by a1 and a2 from top to bottom and the crossings by b1, b2, b3

from left to right.
The algebra has five generators a1, a2, b1, b2, b3. Their gradings are

∣ai∣ = 1, ∣bi∣ = 0.

One easily computes

∂a1 = 1 + b1 + b3 + b1b2b3

∂a2 = 1 + b1 + b3 + b3b2b1

∂bi = 0.

The equation that an augmentation must satisfy is

0 = 1 + ε(b1) + ε(b3) + ε(b1)ε(b2)ε(b3)

It has 5 solutions for ε(b1), ε(b2), ε(b3) ∈ {0,1}.

1.9 Equivalence of augmentations

Several notions of equivalence for augmentations of DGAs were introduced in the literature
and used in the context of the Chekanov-Eliashberg DGA. It turns out that the equivalence
relation among augmentations that controls best the behavior of BLCH (see the next section)
is the notion of DGA homotopic augmentations [14, Definition 5.13].
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Definition 5 [(ε1, ε2)-derivation].
Let ε1, ε2 be two augmentations of the DGA (A, ∂) over Z2. A linear map T ∶ A → Z2 is
said to be an (ε1, ε2)-derivation if T (ab) = ε1(a)T (b) + T (a)ε2(b) for any a, b ∈ A.

Definition 6 [DGA homotopies for augmentations].
We say that ε1 is DGA homotopic to ε2, and we write ε1 ∼ ε2, if there exists an
(ε1, ε2)-derivation T ∶ A→ Z2 of degree +1 such that ε1 − ε2 = T ○ ∂.
DGA homotopy is an equivalence relation [7, Lemma 26.3].

It can be shown that
ε1 ∼ ε2 ⇒ LCHε1(K) = LCHε2(K)

so the “real” invariant to consider is rather

{LCH[ε](K) ∣ ε augmentation of (A, ∂)}

where [ε] is the equivalence class of ε for DGA homotopy.
Remark 7 : LCH can therefore provide information about equivalence of augmentations, since

LCHε1(K) ≠ LCHε2(K)⇒ ε1 ≁ ε2

We will see soon that BLCH in in fact the right tool to detect equivalence of augmentations.

2 Bilinearized contact homology

2.1 Motivation

Bilinearized contact homology (BLCH) was introduced by Frédéric Bourgeois and Baptiste
Chantraine in [1], following discussions with Petya Pushkar.
We start with a basic observation: the Chekanov-Eliashberg DGA is a noncommutative algebra.
However, the linearization process loses all this “noncommutative” information since both c1c2

and c2c1 are linearized as ε(c2)c1 + ε(c1)c2.
BLCH sees the non-commutativity of the algebra by using two augmentations instead of one.
We will see that LCH is a special case of BLCH by using twice the same augmentation and
that BLCH is a complete invariant for DGA homotopy of augmentations.

2.2 Definition and first properties

Due to the combinatorial approach taken in the talk, we will introduce BLCH in a rather formal
(symbolic!) way. Natural geometrical interpretations do exist, we refer the reader to [1] and to
Frédéric Bourgeois himself to hear more about this.
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We recall that the differential of generators of the DGA was given by equation (1) and the
linearization process by equation (2).
Given two augmentations ε1 and ε2, we can proceed similarly:

Definition 8 [Bilinearization].
Given two augmentations ε1 and ε2, the bilinearization ∂ε1, ε2 is a differential on the
graded Z2 vector space freely generated by A. It is defined by

∂ε1,ε2ci =∑
l≥1

∑
1≤i1,⋯ ,il≤k

M i
i1 ⋯ il

l

∑
j=1
ε1(ci1)⋯ ε1(cij−1)cijε2(cij+1)⋯ ε2(cil) (3)

i.e. obtained from ∂ by applying the following “bilinearization procedure”

ci1 ⋯ cil z→
l

∑
j=1
ε1(ci1)⋯ ε1(cij−1)cijε2(cij+1)⋯ ε2(cil)

This gives rise to an homological notion:

BLCHε1, ε2(K) ∶=H(A, ∂ε1, ε2)

We have the same kind of results as for LCH (see [1]):

ε1 ∼ ε′1, ε2 ∼ ε′2 ⇒ BLCHε1, ε2(K) = BLCHε′1, ε
′

2(K)

Theorem 9 [Bourgeois-Chantraine 2012, [1]].
∂ε1,ε2 is a differential and the set

{BLCH[ε1],[ε2](K) ∣ ε1, ε2 augmentations of (A, ∂)}

is invariant under Legendrian isotopy.

Remark 10 : An easy but important remark is to note that

LCHε(K) = BLCHε, ε(K)

so that
BLCHε1, ε2(K) = BLCHε2, ε1(K) = LCHε1(K) = LCHε2(K)

whenever ε1 ∼ ε2.
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Just as for LCH, we define PK,ε1, ε2 , the Poincaré polynomial of this complex, as

PK,ε1, ε2(t) =∑
k∈Z

dim(Hk) tk

where Hk = ker∂ε1,ε2
k / im∂ε1,ε2

k+1 .

2.3 Criteria for the equivalence of augmentations

Computer-assisted inspection of several examples led to a striking conjecture about the be-
haviour of BLCH with respect to equivalence of augmentations. This conjecture was then
proved soon after, we may therefore call it a theorem:

Theorem 11 [Bourgeois-G. 2018, [2]]. Let ε1, ε2 be two augmentations of a Legendrian
knot K. Let PK,ε1,ε2(t) and PK,ε2,ε1(t) denote the BLCH Poincaré polynomials. Then,

• If ε1 ∼ ε2, there exist coefficients (ci)i∈Z such that

PK,ε1, ε2(t) = PK,ε2, ε1(t) = t +∑
i∈Z
cit

i

with ci = c−i for all i ∈ Z.

• If ε1 ≁ ε2, there exist coefficients (ci)i∈Z such that

PK,ε1, ε2(t) = 1 +∑
i∈Z
cit

i and PK,ε2, ε1(t) = 1 +∑
i∈Z
cit

−i

In particular, checking if the t coefficient of PK,ε1, ε2(t) is equal to the t−1 coefficient of
PK,ε2, ε1(t) determines whether ε1 ∼ ε2.

Remark 12 : Actually, this theorem can be formulated in much greater generality, and the
preceding result makes sense and is proved in higher dimensions as well.

2.4 Geography questions

After proving the criteria for the equivalence of augmentations, the second goal of [2] is to
characterize polynomials which can be realized as BLCH polynomials of non DGA homotopic
augmenations.

Definition 13 [BLCH-admissible polynomials].
In dimension 3, a Laurent polynomial P with integral coefficients is said to be BLCH-
admissible if it can be written as 1 plus a Laurent polynomial with integral coefficients such
that its value at −1 is even.
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Theorem 14 [Bourgeois-G. 2018, [2]].
Poincaré polynomials realizable as BLCH polynomials of non DGA homotopic augmenta-
tions are exactly BLCH-admissible polynomials.

We refer the interested reader to [2] for precise statements and proofs in a more general setting.
In particular, the geography is given in all dimensions.

2.5 BLCH matrix

A convenient way to speak of BLCH is via the “BLCH matrix” defined by

(PK, [ε1], [ε2](t))
[ε1], [ε2] distinct equivalence classes of augmentations

To build the BLCH matrix in practice, one proceeds as follows:

1. Compute all polynomials PK,ε1, ε2(t) for all couples of augmentations (ε1, ε2),
e.g. by putting them in a big matrix (PK,ε1, ε2(t))

ε1,ε2
;

2. Determine the equivalence classes of augmentations;

3. Compress the big matrix by collapsing equivalence classes of augmentations.

Note that such matrices are only defined up to the order of the augmentations (i.e. up to swaps
of rows and columns). Having this in mind, the previous results can be restated as follows:

The BLCH matrix is a Legendrian knot invariant.

One of the goals of the following sections is to propose an

Effective algorithm to compute the BLCH matrix.

2.6 2-copies and BLCH

Definition 15 [2-copies of Legendrian knots].
Given a Legendrian knot K in (R3, ξstd), its 2-copy is the Legendrian link obtained by taking
K and a copy of K shifted slightly in the z direction.

We will denote the two components of such a 2-copy by K1 and K2 respectively, see figure 6.
To each crossing on the diagram of a knot correspond 4 crossings on the diagram of its 2-copy,
of 4 types: (1,1), (1,2), (2,1) and (2,2), see figure 7.
Crossings of type (1,1) and (2,2) will be called pure, those of type (1,2) and (2,1) will be
called mixed.
Gradings of crossings of the two components give rise to gradings of pure crossings (or we can
directly introduce a Maslov potential on the 2-copy).
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Figure 6: A 2-copy of the right handed trefoil (modified from [5]).

Figure 7: Types of crossings.

Given two augmentations ε1 and ε2 of K, we can build an augmentation ε1 ⋆ ε2 on its 2-copy
by using augmentation ε1 for crossings of type (1,1), ε2 for crossings of type (2,2), and by
sending mixed crossings to 0. This is useful due to the following result:

Proposition 16. Let K be a Legendrian knot and ε1, ε2 be two augmentations of K. Let
ε1 ⋆ ε2 be an augmentation defined on its 2-copy as above. Then

LCHε1⋆ ε2(K1 ∪K2) ≅ LCHε1(K)⊕LCHε2(K)⊕BLCHε1, ε2(K)⊕ B̃LCHε2, ε1(K)

Remark 17 : B̃LCHε2, ε1(K) is related to BLCHε2, ε1(K) but is not indentical to it. What
matters for us is the part consisting of BLCHε1, ε2(K).
Remark 18 : Morally, “BLCH can be seen as LCH on the 2-copy with suitable augmentations”.
So BLCH is somehow “both a generalization and a special case of LCH”!
In the next section, we will discuss combinatorial methods which will allow to compute LCH
from a given front diagram. This will suffice to compute BLCH since handling 2-copies, types
of crossings, building ε1 ⋆ ε2, ... do not present real computational challenges but only some
slightly tedious but straightforward manipulations.
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3 Combinatorial methods

3.1 Summary and goals

• We now have an interesting homological invariant defined for Legendrian knots that we
want to further investigate.

• We have seen that the invariant can be described in terms of the front projection of the
knot in a suitable “normal form”. With effective computations as a target, we notice that
these normal forms can naturally be described as braids, which can themselves be encoded
as a vector of integers denoting the crossing of the various braids. This is particularly
nice for computational applications:

Front projections in normal forms are naturally encoded as vectors of integers.

For an example of such an encoding, see figure 10 and the box after it.

• Along the way, we have encountered an interesting class of objects: augmentations.
These can be naturally seen as subsets of the set of degree 0 generators of the DGA
(augmentations are determined by their set of augmented generators).

• We have introduced notions of linearized and bilinearized homologies. We have seen that,
up to some combinatorial manipulations, it suffices to compute LCH. This will allow to
compute BLCH and then to build the BLCH matrix.

We want to have effective methods which can achieve the following:

Program
Encoding of the front projection
of a Legendrian knot K

List of all augmentations ε of
the diagram

LCHε(K) for all these augmen-
tations

Figure 8: The effectiveness we are looking for.

As we will see, having such methods will suffice (up to some combinatorial work) to answer the
problem of equivalence of augmentations and to compute the BLCH matrix.

3.2 A few words about Morse complex sequences and their history

Remark 19 : We will be very sketchy in this section. Instead of trying to give precise definitions
of Morse complex sequences (MCS), we will dicuss why and how they were introduced and try
to give an idea of what MCS are.
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We refer the interested reader to [9] (and also [8], [10]) for precise definitions and proofs.
This section is based heavily on [9].
Morse complex sequences were introduced by Petya Pushkar as a combinatorial substitute for
generating families (though he did not publish most of his original ideas and is instead credited3

in [8], which is the first paper to define MCS). They were further developed mostly by Brad
Henry and Dan Rutherford ([8], [9], [10]).
The differential topological motivation behind MCS comes from generating families. Technical
difficulties arise when trying to rigourously define and use a generating family DGA. MCS use a
combinatorial approach instead. This allows to prove theorems by a “hands-on anaysis” (using
the terms of [9]), avoiding technical difficulties.
There is a natural equivalence relation on the set of MCSs.
The main result of [10] states, roughly speaking, that

Theorem 20 [Henry-Rutherford 2014, [10]]. For any Legendrian knot K, there is a
bijection between equivalence classes of Morse complex sequences and equivalence classes of
augmentations (for DGA homotopy).

3.3 Effectiveness

MCS are built from front projections in standard from of Legendrian knots. The results of
Henry and Rutherford give effective bijections from combinatorial objects (MCS in their various
“standard forms”), thereby fulfilling the requirements shown in figure 8.
Once the augmentations are found and the differentials are computed, we are done. Indeed,
computationally speaking “homology is just linear algebra” which is treated using standard
libraries.

4 Effective computation of BLCH for Legendrian knots

4.1 Putting everything together

Morse complex sequences and the associated procedures allow to find augmentations and to
compute LCH from the encoding of the front projection (in normal form) of a Legendrian knot.
Combining this with the previous sections (mostly the section 2.6), we obtain:

3From [8]: “In emails to D. Fuchs in 2001 and 2008, Pushkar outlines his “Spring Morse theory” (. . . )
The ideas behind Morse complex sequences and the equivalence relation we define in this article originate with
Petya Pushkar.”
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Program
Encoding of the front projection
of a Legendrian knot K

List of all augmentations ε of
the diagram

Answer to questions “Is ε1

equivalent to ε2?”

BLCH matrix, indexed by
classes of augmentations

Figure 9: What MCS give us, computationally speaking (after some extra processing and using
the “2-copy trick”).

4.2 First results

Now we are able to run the program on all examples from a table of knots.
This provides very useful data to investigate properties of BLCH. For instance, this allowed to
find an example of a knot whose BLCH matrix is not symmetric.
Such an example was not known before (see for example what the BLCH matrix of the right-
handed trefoil looks like). This example turned out to have a very interesting behaviour with
respect to BLCH, and we discuss it in the section 4.3.
Remark 21 : At least [11] and [4] had already done computer-based computations with Legen-
drian knots. The introduction of [4] provides a striking list of “by-products” of computational
methods.

4.3 m(821)
In this section (adaptated from [2]), we further investgate the “first interesting example from
the list of knots” (according to several different criteria).
Let K denote the Legendrian knot (already studied by Melvin and Shrestha4 in [11, Section 3]),
which is topologically the mirror image of the knot 821, and illustrated in Figure 10.

4It is interesting to remark that their 2005 paper is entitled “The nonuniqueness of Chekanov polynomials
of Legendrian knots”. Somehow this example is also “the first interesting one for the diagonal of the BLCH
matrix”.
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Figure 10: Front projection of m(821).

m(821) from a computational perspective

• Braid encoding:
[2, 4, 2, 4, 3, 3, 2, 4]

• Number of augmentations of this front: 16

• Size of the matrix before compression: 16 × 16

• Number of equivalence classes of augmentations: 10

• BLCH matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

t−1
+ 4 + 2t t−1

+ 3 + t t−1
+ 3 + t t−1

+ 3 + t 2 + t 2 + t 2 + t t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 3 + t t−1

+ 4 + 2t t−1
+ 3 + t t−1

+ 3 + t 2 + t 2 + t 2 + t t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 3 + t t−1

+ 3 + t t−1
+ 4 + 2t t−1

+ 3 + t 2 + t 2 + t 2 + t t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 3 + t t−1

+ 3 + t t−1
+ 3 + t t−1

+ 4 + 2t 2 + t 2 + t 2 + t t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 2 t−1

+ 2 t−1
+ 2 t−1

+ 2 2 + t 1 1 t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 2 t−1

+ 2 t−1
+ 2 t−1

+ 2 1 2 + t 1 t−1
+ 2 t−1

+ 2 t−1
+ 2

t−1
+ 2 t−1

+ 2 t−1
+ 2 t−1

+ 2 1 1 2 + t t−1
+ 2 t−1

+ 2 t−1
+ 2

2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 1 1
2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 1 2 + t 1
2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 2 + t 1 1 2 + t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

It was shown in [11, Section 3] that the Chekanov-Eliashberg DGA of K has 16 augmentations,
which split into a set A of 4 augmentations and a set B of 12 augmentations such that

PK,ε(t) = t−1 + 4 + 2t if ε ∈ A

and
PK,ε(t) = 2 + t if ε ∈ B

This implies that augmentations in A are not DGA homotopic to augmentations in B. However,
the number of DGA homotopy classes of augmentations for K was not determined in [11] as
LCH does not suffice to obtain this information.
Using the BLCH criteria, the DGA homotopy classes can be determined systematically. It
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turns out that the augmentations in A are pairwise not DGA homotopic, because the Poincaré
polynomial of any such pair of augmentations is t−1 + 3 + t. On the other hand, the set B splits
into 6 DGA homotopy classes of augmentations.
Remark 22 : Actually, the braid encoding present in the data file was

[4, 3, 2, 1, 1, 5, 3, 2, 5, 4, 4, 4, 3, 2, 5, 4]

This encoding is not optimal, there are more crossings then necessary. This is due to automation
in the standardization process of the Legendrian front, which causes fronts to be sometimes
unnatural, with extra crossings.
There were 64 different augmentations and the matrix before compression was 64 × 64.
However, since these two braids correspond to Legendrian isotopic knots, the same BLCH
matrices were obtained in both cases, with 10 equivalence classes of augmentations. The order of
the rows and columns was different though: the BLCH matrix associated to the more “natural”
braid encoding also gives a more natural ordering in the BLCH matrix (the previous discussion
shows that “similar” augmentations are grouped together).

5 Further perspectives: the product structure on BLCH

If K is a Legendrian knot, let us denote by Cn(K) the Z2 vector space freely generated by
monomials of degree n and

C(K) =⊕
n∈Z

Cn(K)

Given two augmentations ε1 and ε2, we have defined a differential

Cn(K) ∂ε1, ε2ÐÐÐ→ Cn−1(K)

BLCH was then obtained as the associated homological notion.
In terms of cohomology, we have a map

Cn(K)←ÐÐÐ
µ1

ε1, ε2

Cn−1(K)

There is more structure over C(K). Given an integer d ≥ 1 and augmentations ε0,⋯, ed, one
can define a map

µdε0,...,εd
∶ C(K)⊗d → C(K)

Definitions and properties can be found in [1], where µ was first defined. In fact, µ defines an
A∞-category whose objects are augmentations.
µ2 provides a product structure:

BLCHε0, ε1(Λ)⊗BLCHε1, ε2(Λ)ÐÐÐÐ→
µ2

ε0, ε1, ε2

BLCHε0, ε2(Λ)
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In particular, by taking ε0 = ε2, we have a map

BLCHn
ε0, ε1(Λ)⊗BLCH−n

ε1, ε0(Λ)ÐÐÐÐ→
µ2

ε0, ε1, ε0

BLCH1
ε0, ε0(Λ)

There is a duality between BLCHε0, ε1(Λ) and BLCH−n
ε1, ε0(Λ). Since BLCH1

ε0, ε0 contains the
fundamental class [S1], a natural question is to ask whether µ2 identifies exactly the duality
relation:

Conjecture 23. Let a ∈ LCHn
ε (Λ) and a∗ ∈ LCH−n

ε (Λ) be its dual, then

µ2(a, a∗) = [S1]

Remark 24 : Does not seem to hold in the case of not equivalent augmentations.
However, µ2 is not known for almost any “interesting” example. To study further the properties
of µ2 (e.g. to investigate the previous conjecture), it is important to first investigate how it
behaves on examples.
This can be done computationally: in terms of Morse complex sequences, determining the prod-
uct structure boils down to counting chord paths with one corner: the necessary combinatorial
work is already done in [9].
The related programming task and the analysis of computed results still needs to be done. So
this is not the end of the BLCH story!
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