NLS,	blow-up	

Solitary waves

ODE approach

Blow-up thresholds

log-log blow-up

Blow-up Phenomena for a Nonlinear Schrödinger Equation

Damien Galant

Undergoing PhD work under the supervision of Colette De Coster (UPHF) and Christophe Troestler (UMONS)

 $LMCM^2/DEMAV$

Département de Mathématique

Université Polytechnique Hauts-de-France Université de Mons F.R.S.-FNRS Research Fellow

25 November 2021

ELE DOG

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

$$egin{aligned} & (i\partial_t\psi=-\Delta\psi-|\psi|^{q-2}\psi, \quad (t,x)\in [0,T[imes \mathbb{R}^N,\ \psi(0,x)=\psi_0(x), & u_0:\mathbb{R}^N o\mathbb{C}, \end{aligned}$$

where

•
$$\psi$$
 : [0, T [$\times \mathbb{R}^N \to \mathbb{C}$;
• $i^2 = -1$;

• $\partial_t \psi$ is the derivative with respect to the time variable;

•
$$\Delta = \sum_{1 \le i \le N} \partial_{x_i}^2$$
 is the Laplacian on \mathbb{R}^N ;

$$q > 2$$
 is a real parameter.

(NLS)

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

$$egin{aligned} & oldsymbol{i}\partial_t\psi = -\Delta\psi - |\psi|^{q-2}\psi, \quad (t,x)\in [0,\,T[\, imes\,\mathbb{R}^N,\ \psi(0,x) = \psi_0(x), & u_0:\mathbb{R}^N o\mathbb{C}, \end{aligned}$$

where

•
$$\psi$$
: [0, T [$\times \mathbb{R}^N \to \mathbb{C}$;
• $i^2 = -1$;

• $\partial_t \psi$ is the derivative with respect to the time variable;

•
$$\Delta = \sum_{1 \le i \le N} \partial_{x_i}^2$$
 is the Laplacian on \mathbb{R}^N ;

• q > 2 is a real parameter.

(NLS

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

$$\begin{cases} i\partial_t \psi = -\Delta \psi - |\psi|^{q-2}\psi, & (t,x) \in [0, T[\times \mathbb{R}^N, \\ \psi(0,x) = \psi_0(x), & u_0 : \mathbb{R}^N \to \mathbb{C}, \end{cases}$$
(NLS)

where

$$\psi : [0, T[\times \mathbb{R}^N \to \mathbb{C};]$$
$$i^2 = -1;$$

• $\partial_t \psi$ is the derivative with respect to the time variable;

•
$$\Delta = \sum_{1 \le i \le N} \partial_{x_i}^2$$
 is the Laplacian on \mathbb{R}^N ;

•
$$q > 2$$
 is a real parameter.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

$$\begin{cases} i\partial_t \psi = -\Delta \psi - |\psi|^{q-2}\psi, & (t,x) \in [0, T[\times \mathbb{R}^N, \\ \psi(0,x) = \psi_0(x), & u_0 : \mathbb{R}^N \to \mathbb{C}, \end{cases}$$
(NLS)

where

$$\psi : [0, T[\times \mathbb{R}^N \to \mathbb{C};]$$
$$i^2 = -1;$$

• $\partial_t \psi$ is the derivative with respect to the time variable;

•
$$\Delta = \sum_{1 \le i \le N} \partial_{x_i}^2$$
 is the Laplacian on \mathbb{R}^N ;

• q > 2 is a real parameter.

	11.	0.0.5	BL III	
NLS, blow-up Se	olitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Conservation laws

Formally, the L^2 norm (the mass)

$$\|\psi(t,\cdot)\|_{L^2} := \left(\int_{\mathbb{R}^N} |\psi(t,x)|^2 \,\mathrm{d}x\right)^{1/2}$$

and the energy

$$\mathcal{E}(\psi(t,\cdot)) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \psi(t,x)|^2 \, \mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |\psi(t,x)|^q \, \mathrm{d}x$$

where

$$\nabla := (\partial_{x_1}, \ldots, \partial_{x_N}).$$

are preserved during the evolution.

Natural space associated to the equation?

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Conservation laws

Formally, the L^2 norm (the mass)

$$\|\psi(t,\cdot)\|_{L^2} := \left(\int_{\mathbb{R}^N} |\psi(t,x)|^2 \,\mathrm{d}x\right)^{1/2}$$

and the energy

$$\mathcal{E}(\psi(t,\cdot)) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \psi(t,x)|^2 \, \mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |\psi(t,x)|^q \, \mathrm{d}x$$

where

$$\nabla := (\partial_{x_1}, \ldots, \partial_{x_N}).$$

are preserved during the evolution.

Natural space associated to the equation?

Damien Galant

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sobolev space H^1

Definition (Sobolev space H^1)

$$H^1(\mathbb{R}^N;\mathbb{C}):=\left\{v\in L^2(\mathbb{R}^N;\mathbb{C})\;\Big|\;
abla v\in L^2(\mathbb{R}^N;\mathbb{C})^N
ight\}$$

For the L² mass: if v ∈ H¹(ℝ^N) then v belongs to L²(ℝ^N).
 For the energy

$$\mathcal{E}(v) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 \,\mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |v|^q \,\mathrm{d}x,$$

we need to ensure that v belongs to $L^q(\mathbb{R}^N)$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sobolev space H^1

Definition (Sobolev space H^1)

$$H^1(\mathbb{R}^N;\mathbb{C}):=\left\{v\in L^2(\mathbb{R}^N;\mathbb{C})\;\Big|\;
abla v\in L^2(\mathbb{R}^N;\mathbb{C})^N
ight\}$$

For the L² mass: if v ∈ H¹(ℝ^N) then v belongs to L²(ℝ^N).
For the energy

$$\mathcal{E}(v) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 \,\mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |v|^q \,\mathrm{d}x,$$

we need to ensure that v belongs to $L^q(\mathbb{R}^N)$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sobolev space H^1

Definition (Sobolev space H^1)

$$H^1(\mathbb{R}^N;\mathbb{C}) := \left\{ v \in L^2(\mathbb{R}^N;\mathbb{C}) \mid \nabla v \in L^2(\mathbb{R}^N;\mathbb{C})^N
ight\}$$

For the L² mass: if v ∈ H¹(ℝ^N) then v belongs to L²(ℝ^N).
For the energy

$$\mathcal{E}(\mathbf{v}) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \mathbf{v}|^2 \, \mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |\mathbf{v}|^q \, \mathrm{d}x,$$

we need to ensure that v belongs to $L^q(\mathbb{R}^N)$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sobolev embedding

Theorem (Sobolev embedding for H^1)

The space $H^1(\mathbb{R}^N; \mathbb{C})$ is embedded in $L^p(\mathbb{R}^N; \mathbb{C})$ for all $p \in [2, 2^*[$ where

$$2^* := \begin{cases} 2N/(N-2) & \text{si } N \ge 3, \\ \infty & \text{si } N \in \{1,2\} \end{cases}$$

is the critical Sobolev exponent.

Conclusion: if $2 < q < 2^*$, the energy

$$\mathcal{E}(v) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 \,\mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |v|^q \,\mathrm{d}x$$

is well defined for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sobolev embedding

Theorem (Sobolev embedding for H^1)

The space $H^1(\mathbb{R}^N; \mathbb{C})$ is embedded in $L^p(\mathbb{R}^N; \mathbb{C})$ for all $p \in [2, 2^*[$ where

$$2^* := egin{cases} 2N/(N-2) & \textit{si } N \geq 3, \ \infty & \textit{si } N \in \{1,2\} \end{cases}$$

is the critical Sobolev exponent.

Conclusion: if $2 < q < 2^*$, the energy

$$\mathcal{E}(\mathbf{v}) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \mathbf{v}|^2 \, \mathrm{d}x - \frac{1}{q} \int_{\mathbb{R}^N} |\mathbf{v}|^q \, \mathrm{d}x$$

is well defined for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ and every $q \in]2, 2^*[$, there exists a time $T_{\max} \in]0, +\infty]$ and a unique continuous solution

$$\psi: [0, T_{\max}[\to H^1(\mathbb{R}^N; \mathbb{C}), t \mapsto u(t, \cdot)$$

to the nonlinear Schrödinger equation:

$$i\partial_t \psi = -\Delta \psi - |\psi|^{q-2}\psi, \qquad (t,x) \in [0, T_{\max}[\times \mathbb{R}^N].$$

Moreover, the mass and energy conservation laws are satisfied.

If $T_{\max} < +\infty$, there is *finite-time blowup*:

$$\lim_{t\to T_{\max}} \|\nabla u(t,\cdot)\|_{L^2} = +\infty.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ and every $q \in]2, 2^*[$, there exists a time $T_{\max} \in]0, +\infty]$ and a unique continuous solution

$$\psi: [0, T_{\max}[\to H^1(\mathbb{R}^N; \mathbb{C}), t \mapsto u(t, \cdot)$$

to the nonlinear Schrödinger equation:

$$i\partial_t \psi = -\Delta \psi - |\psi|^{q-2}\psi, \qquad (t,x) \in [0, T_{\max}[\times \mathbb{R}^N.$$

Moreover, the mass and energy conservation laws are satisfied.

If $T_{\text{max}} < +\infty$, there is *finite-time blowup*:

$$\lim_{t\to T_{\max}} \|\nabla u(t,\cdot)\|_{L^2} = +\infty.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ and every $q \in]2, 2^*[$, there exists a time $T_{\max} \in]0, +\infty]$ and a unique continuous solution

$$\psi: [0, T_{\max}[\to H^1(\mathbb{R}^N; \mathbb{C}), t \mapsto u(t, \cdot)$$

to the nonlinear Schrödinger equation:

$$i\partial_t \psi = -\Delta \psi - |\psi|^{q-2}\psi, \qquad (t,x) \in [0, T_{\max}[\times \mathbb{R}^N.$$

Moreover, the mass and energy conservation laws are satisfied.

If $T_{\max} < +\infty$, there is *finite-time blowup*:

$$\lim_{t\to T_{\max}} \|\nabla u(t,\cdot)\|_{L^2} = +\infty.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

If $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$, then the variance of $|\psi(t, x)|^2$

$$V(t) := \int_{\mathbb{R}^N} |x|^2 |\psi(t,x)|^2 \,\mathrm{d}x$$

is well-defined for all $t \in [0, T_{\max}[.$

Integration by parts shows that

$$\partial_{tt}V(t) = 16\mathcal{E}(\psi_0) - \frac{4(N(q-2)-4)}{q} \|\psi\|_{L^q}^q.$$

Therefore, if $q \ge 2 + \frac{4}{N}$, we obtain

$$\partial_{tt}V(t) \leq 16\mathcal{E}(\psi_0).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

If $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$, then the variance of $|\psi(t, x)|^2$

$$V(t) := \int_{\mathbb{R}^N} |x|^2 |\psi(t,x)|^2 \,\mathrm{d}x$$

is well-defined for all $t \in [0, T_{\max}[.$

Integration by parts shows that

$$\partial_{tt}V(t) = 16\mathcal{E}(\psi_0) - rac{4(N(q-2)-4)}{q} \|\psi\|_{L^q}^q.$$

Therefore, if $q \ge 2 + \frac{4}{N}$, we obtain

$$\partial_{tt}V(t) \leq 16\mathcal{E}(\psi_0).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

If $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$, then the variance of $|\psi(t, x)|^2$

$$V(t) := \int_{\mathbb{R}^N} |x|^2 |\psi(t,x)|^2 \,\mathrm{d}x$$

is well-defined for all $t \in [0, T_{\max}[.$

Integration by parts shows that

$$\partial_{tt}V(t) = 16\mathcal{E}(\psi_0) - rac{4(N(q-2)-4)}{q} \|\psi\|_{L^q}^q.$$

Therefore, if $q \ge 2 + \frac{4}{N}$, we obtain

$$\partial_{tt}V(t) \leq 16\mathcal{E}(\psi_0).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

If $q \ge 2 + \frac{4}{N}$, $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$ and $\mathcal{E}(\psi_0) < 0$, then the corresponding solution $\psi(t, x)$ of (NLS) blows up in finite time.

Proof.

Under the assumptions of the theorem, the function

```
[0, T_{\max}[ \rightarrow [0, +\infty[: t \mapsto V(t)]]
```

is nonnegative and satisfies $\partial_{tt}V(t) \leq E(\psi_0) < 0$.

R. T. Glassey. "On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations". In: *J. Math. Phys.* 18.9 (1977), pp. 1794–1797.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

If $q \ge 2 + \frac{4}{N}$, $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$ and $\mathcal{E}(\psi_0) < 0$, then the corresponding solution $\psi(t, x)$ of (NLS) blows up in finite time.

Proof.

Under the assumptions of the theorem, the function

$$[0, T_{\max}[\rightarrow [0, +\infty[:t \mapsto V(t)]]$$

is nonnegative and satisfies $\partial_{tt}V(t) \leq E(\psi_0) < 0$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

If $q \ge 2 + \frac{4}{N}$, $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ is such that $x\psi_0 \in L^2(\mathbb{R}^N; \mathbb{C})$ and $\mathcal{E}(\psi_0) < 0$, then the corresponding solution $\psi(t, x)$ of (NLS) blows up in finite time.

Proof.

Under the assumptions of the theorem, the function

$$[0, T_{\max}[\rightarrow [0, +\infty[: t \mapsto V(t)]])$$

is nonnegative and satisfies $\partial_{tt}V(t) \leq E(\psi_0) < 0$.

R. T. Glassey. "On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations". In: *J. Math. Phys.* 18.9 (1977), pp. 1794–1797.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Goal 1: Existence of solitary wave solutions for (NLS)

Opposed to blow-up: solitary waves of the form

$$\psi(t,x) = \mathrm{e}^{it}Q(x)$$

where $Q \in H^1(\mathbb{R}^N; \mathbb{R}) = H^1(\mathbb{R}^N)$ is a distributional solution of the nonlinear elliptic equation

$$-\Delta Q + Q = |Q|^{q-2}Q.$$
 (PDE_Q)

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem (Gagliardo-Nirenberg inequality)

For all $q \in]2, 2^*[$, there exists a constant C(q) > 0 such that for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$, we have

 $\|u\|_{L^q} \leq C(q) \|u\|_{L^2}^{1-s} \|\nabla u\|_{L^2}^s$

where $s := \frac{(q-2)N}{2q}$.

Inequality + conservation laws \rightarrow non-explosion criteria.

Optimal constant $C(q) \longrightarrow$ best criteria;

Passing to the modulus \longrightarrow only considering $u \ge 0$ is enough.

EL SOCO

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem (Gagliardo-Nirenberg inequality)

For all $q \in]2, 2^*[$, there exists a constant C(q) > 0 such that for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$, we have

 $\|u\|_{L^q} \leq C(q) \|u\|_{L^2}^{1-s} \|\nabla u\|_{L^2}^s$

where $s := \frac{(q-2)N}{2q}$.

Inequality + conservation laws \longrightarrow non-explosion criteria.

Optimal constant $C(q) \longrightarrow$ best criteria;

Passing to the modulus \longrightarrow only considering $u \ge 0$ is enough.

EL SOCO

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem (Gagliardo-Nirenberg inequality)

For all $q \in]2, 2^*[$, there exists a constant C(q) > 0 such that for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$, we have

 $\|u\|_{L^q} \leq C(q) \|u\|_{L^2}^{1-s} \|\nabla u\|_{L^2}^s$

where $s := \frac{(q-2)N}{2q}$.

Inequality + conservation laws \rightarrow non-explosion criteria.

Optimal constant $C(q) \rightarrow$ best criteria;

Passing to the modulus \longrightarrow only considering $u \ge 0$ is enough.

EL SOCO

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem (Gagliardo-Nirenberg inequality)

For all $q \in]2, 2^*[$, there exists a constant C(q) > 0 such that for every function $v \in H^1(\mathbb{R}^N; \mathbb{C})$, we have

 $\|u\|_{L^q} \leq C(q) \|u\|_{L^2}^{1-s} \|\nabla u\|_{L^2}^s$

where $s := \frac{(q-2)N}{2q}$.

Inequality + conservation laws \rightarrow non-explosion criteria.

Optimal constant $C(q) \rightarrow$ best criteria;

Passing to the modulus \rightarrow only considering $u \ge 0$ is enough.

1= 990

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Variational formulation

Gagliardo-Nirenberg inequality:

$$||u||_{L^q} \leq C(q) ||u||_{L^2}^{1-s} ||\nabla u||_{L^2}^s.$$

Goal: minimize the functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^q}$$

on $H^1(\mathbb{R}^N) \setminus \{0\}$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Variational formulation

Gagliardo-Nirenberg inequality:

$$\|u\|_{L^q} \leq C(q) \|u\|_{L^2}^{1-s} \|\nabla u\|_{L^2}^s.$$

Goal: minimize the functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{qs}}$$

on $H^1(\mathbb{R}^N) \setminus \{0\}$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Link between the two goals $\begin{pmatrix} Existence of solitary wave solutions for (NLS) \\ Equality case for the Gagliardo-Nirenberg inequality \end{pmatrix}$

The functional \mathcal{J} is of class \mathcal{C}^1 on $H^1(\mathbb{R}^N)\setminus\{0\}$ and its differential is given by

$$d\mathcal{J}(u) \cdot h = \mathcal{J}(u) \left(\frac{q(1-s)}{\|u\|_{L^2}^2} \int_{\mathbb{R}^N} u(x)h(x) \, dx + \frac{qs}{\|\nabla u\|_{L^2}^2} \int_{\mathbb{R}^N} \nabla u(x) \cdot \nabla h(x) \, dx - \frac{q}{\|u\|_{L^q}^q} \int_{\mathbb{R}^N} |u(x)|^{q-2} u(x)h(x) \, dx \right)$$

for every $h \in H^1(\mathbb{R}^N)$. If u is a critical point of \mathcal{J} , we have

$$-\Delta u + \frac{(1-s)\|\nabla u\|_{L^2}^2}{s\|u\|_{L^2}^2}u = \frac{\|\nabla u\|_{L^2}^2}{s\|u\|_{L^q}^q}|u|^{q-2}u.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Link between the two goals $\begin{pmatrix} Existence of solitary wave solutions for (NLS) \\ Equality case for the Gagliardo-Nirenberg inequality \end{pmatrix}$

The functional \mathcal{J} is of class \mathcal{C}^1 on $H^1(\mathbb{R}^N)\setminus\{0\}$ and its differential is given by

$$d\mathcal{J}(u) \cdot h = \mathcal{J}(u) \left(\frac{q(1-s)}{\|u\|_{L^2}^2} \int_{\mathbb{R}^N} u(x)h(x) dx + \frac{qs}{\|\nabla u\|_{L^2}^2} \int_{\mathbb{R}^N} \nabla u(x) \cdot \nabla h(x) dx - \frac{q}{\|u\|_{L^q}^q} \int_{\mathbb{R}^N} |u(x)|^{q-2} u(x)h(x) dx \right)$$

for every $h \in H^1(\mathbb{R}^N)$. If u is a critical point of \mathcal{J} , we have

$$-\Delta u + \frac{(1-s)\|\nabla u\|_{L^2}^2}{s\|u\|_{L^2}^2}u = \frac{\|\nabla u\|_{L^2}^2}{s\|u\|_{L^q}^q}|u|^{q-2}u.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The functional $\mathcal{J}(u):=\frac{\|u\|_{L^2}^{q(1-s)}\ \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^q}$

where $s := \frac{(q-2)N}{2q}$ is invariant by:

- translations $u(x)\mapsto u(x-x_0)\;(x_0\in\mathbb{R}^N);$
- homotheties $u(x) \mapsto \mu u(x) \ (\mu > 0);$
- dilations $u(x) \mapsto u(\lambda x) \ (\lambda > 0);$
- passings to the absolute value $u(x) \mapsto |u(x)|$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

where $s := \frac{(q-2)N}{2q}$ is invariant by:

- translations $u(x) \mapsto u(x x_0)$ $(x_0 \in \mathbb{R}^N)$;
- homotheties $u(x) \mapsto \mu u(x) \ (\mu > 0);$
- dilations $u(x) \mapsto u(\lambda x) \ (\lambda > 0);$
- passings to the absolute value $u(x) \mapsto |u(x)|$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

where $s := \frac{(q-2)N}{2q}$ is invariant by:

• translations $u(x) \mapsto u(x - x_0)$ $(x_0 \in \mathbb{R}^N)$;

• homotheties
$$u(x) \mapsto \mu u(x) \ (\mu > 0);$$

dilations $u(x) \mapsto u(\lambda x) \ (\lambda > 0);$

• passings to the absolute value $u(x) \mapsto |u(x)|$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

where $s := \frac{(q-2)N}{2q}$ is invariant by:

• translations $u(x) \mapsto u(x - x_0)$ $(x_0 \in \mathbb{R}^N)$;

• homotheties
$$u(x) \mapsto \mu u(x) \ (\mu > 0);$$

• dilations $u(x) \mapsto u(\lambda x) \ (\lambda > 0);$

• passings to the absolute value $u(x) \mapsto |u(x)|$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

where $s := \frac{(q-2)N}{2q}$ is invariant by:

- translations $u(x) \mapsto u(x x_0)$ $(x_0 \in \mathbb{R}^N)$;
- homotheties $u(x) \mapsto \mu u(x) \ (\mu > 0);$
- dilations $u(x) \mapsto u(\lambda x) \ (\lambda > 0);$
- passings to the absolute value $u(x) \mapsto |u(x)|$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Direct method from calculus of variations

Let's consider a minimizing sequence $(u_n)_{n\geq 1}\subseteq H^1(\mathbb{R}^N)\setminus\{0\}$, i.e. such that

$$\mathcal{J}(u_n) \xrightarrow[n\to\infty]{} \inf_{u \in H^1(\mathbb{R}^N) \setminus \{0\}} \mathcal{J}(u).$$

We would like to extract a subsequence of $(u_n)_{n\geq 1}$ converging (weakly in $H^1(\mathbb{R}^N)$ and strongly in $L^q(\mathbb{R}^N)$) to a function $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and show that u is a minimum of \mathcal{J} .

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Direct method from calculus of variations

Let's consider a minimizing sequence $(u_n)_{n\geq 1}\subseteq H^1(\mathbb{R}^N)\setminus\{0\}$, i.e. such that

$$\mathcal{J}(u_n) \xrightarrow[n\to\infty]{} \inf_{u \in H^1(\mathbb{R}^N) \setminus \{0\}} \mathcal{J}(u).$$

We would like to extract a subsequence of $(u_n)_{n\geq 1}$ converging (weakly in $H^1(\mathbb{R}^N)$ and strongly in $L^q(\mathbb{R}^N)$) to a function $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and show that u is a minimum of \mathcal{J} .

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Compactness

Problem: loss of compactness by translations. If u is a global minimum of \mathcal{J} and if $\xi \in \mathbb{R}^N \setminus \{0\}$, then the sequence of translates

$$(u(x-n\xi))_{n\geq 1}$$

is a sequence of indistinguishable minima. If does not admit any strongly convergent subsequence in $L^q(\mathbb{R}^N)$.

Solution: work on the space $H^1_r(\mathbb{R}^N)$ of $H^1(\mathbb{R}^N)$ radial functions.

Theorem (W. Strauss 1977)

If $N \ge 2$, the embedding of $H^1_r(\mathbb{R}^N)$ into $L^p(\mathbb{R}^N)$ is compact for every $p \in]2, 2^*[$.

W. A. Strauss. "Existence of solitary waves in higher dimensions". In: Comm. Math. Phys. 55.2 (1977), pp. 149–162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Compactness

Problem: loss of compactness by translations. If u is a global minimum of \mathcal{J} and if $\xi \in \mathbb{R}^N \setminus \{0\}$, then the sequence of translates

$$(u(x-n\xi))_{n\geq 1}$$

is a sequence of indistinguishable minima. If does not admit any strongly convergent subsequence in $L^q(\mathbb{R}^N)$.

Solution: work on the space $H^1_r(\mathbb{R}^N)$ of $H^1(\mathbb{R}^N)$ radial functions.

Theorem (W. Strauss 1977)

If $N \ge 2$, the embedding of $H^1_r(\mathbb{R}^N)$ into $L^p(\mathbb{R}^N)$ is compact for every $p \in]2, 2^*[$.

W. A. Strauss. "Existence of solitary waves in higher dimensions". In: Comm. Math. Phys. 55.2 (1977), pp. 149–162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Compactness

Problem: loss of compactness by translations. If u is a global minimum of \mathcal{J} and if $\xi \in \mathbb{R}^N \setminus \{0\}$, then the sequence of translates

$$(u(x-n\xi))_{n\geq 1}$$

is a sequence of indistinguishable minima. If does not admit any strongly convergent subsequence in $L^q(\mathbb{R}^N)$.

Solution: work on the space $H^1_r(\mathbb{R}^N)$ of $H^1(\mathbb{R}^N)$ radial functions.

Theorem (W. Strauss 1977)

If $N \ge 2$, the embedding of $H^1_r(\mathbb{R}^N)$ into $L^p(\mathbb{R}^N)$ is compact for every $p \in]2, 2^*[$.

W. A. Strauss. "Existence of solitary waves in higher dimensions". In: *Comm. Math. Phys.* 55.2 (1977), pp. 149–162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Reduction to the nonnegative radial case

Data: minimizing sequence $(u_n)_{n\geq 1} \subseteq H^1(\mathbb{R}^N)\setminus\{0\}$ such that

$$\mathcal{J}(u_n) \xrightarrow[n\to\infty]{} \inf_{u \in H^1(\mathbb{R}^N) \setminus \{0\}} \mathcal{J}(u).$$

■ By passing to the absolute value, we can suppose that *u_n* ≥ 0. We can thus work in

$$H^1_+(\mathbb{R}^N) := \Big\{ u \in H^1(\mathbb{R}^N) \ \Big| \ u \ge 0 \Big\}.$$

We would like to map every function $u \in H^1_+(\mathbb{R}^N)$ to a function $u^* \in H^1_+(\mathbb{R}^N) \cap H^1_r(\mathbb{R}^N)$ such that

$$\mathcal{J}(u^*) \leq \mathcal{J}(u).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Reduction to the nonnegative radial case

Data: minimizing sequence $(u_n)_{n\geq 1} \subseteq H^1(\mathbb{R}^N)\setminus\{0\}$ such that

$$\mathcal{J}(u_n) \xrightarrow[n \to \infty]{} \inf_{u \in H^1(\mathbb{R}^N) \setminus \{0\}} \mathcal{J}(u).$$

■ By passing to the absolute value, we can suppose that *u_n* ≥ 0. We can thus work in

$$H^1_+(\mathbb{R}^N) := \Big\{ u \in H^1(\mathbb{R}^N) \ \Big| \ u \ge 0 \Big\}.$$

We would like to map every function $u \in H^1_+(\mathbb{R}^N)$ to a function $u^* \in H^1_+(\mathbb{R}^N) \cap H^1_r(\mathbb{R}^N)$ such that

$$\mathcal{J}(u^*) \leq \mathcal{J}(u).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Reduction to the nonnegative radial case

Data: minimizing sequence $(u_n)_{n\geq 1} \subseteq H^1(\mathbb{R}^N)\setminus\{0\}$ such that

$$\mathcal{J}(u_n) \xrightarrow[n \to \infty]{} \inf_{u \in H^1(\mathbb{R}^N) \setminus \{0\}} \mathcal{J}(u).$$

By passing to the absolute value, we can suppose that $u_n \ge 0$. We can thus work in

$$H^1_+(\mathbb{R}^N) := \Big\{ u \in H^1(\mathbb{R}^N) \ \Big| \ u \ge 0 \Big\}.$$

• We would like to map every function $u \in H^1_+(\mathbb{R}^N)$ to a function $u^* \in H^1_+(\mathbb{R}^N) \cap H^1_r(\mathbb{R}^N)$ such that

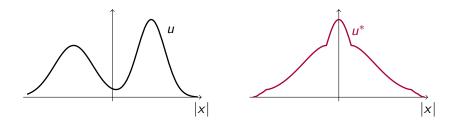
$$\mathcal{J}(u^*) \leq \mathcal{J}(u).$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Given a positive function $u: \mathbb{R}^N \to [0, +\infty]$, we consider its superlevel sets

$$\{x\in\mathbb{R}^N\mid u(x)>t\}$$

and we symmetrize them in an open ball centered in $\ensuremath{\mathsf{0}}$ with the same volume.

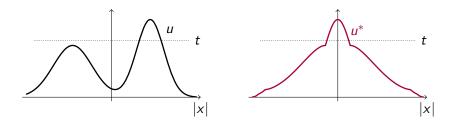


NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Given a positive function $u: \mathbb{R}^N \to [0, +\infty]$, we consider its superlevel sets

$$\{x\in\mathbb{R}^N\mid u(x)>t\}$$

and we symmetrize them in an open ball centered in 0 with the same volume.

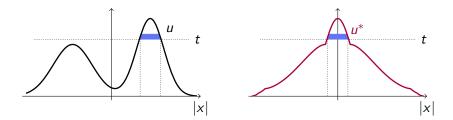


NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Given a positive function $u: \mathbb{R}^N \to [0, +\infty]$, we consider its superlevel sets

$$\{x\in\mathbb{R}^N\mid u(x)>t\}$$

and we symmetrize them in an open ball centered in 0 with the same volume.

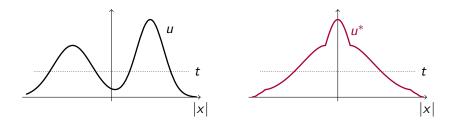


NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Given a positive function $u: \mathbb{R}^N \to [0, +\infty]$, we consider its superlevel sets

$$\{x\in\mathbb{R}^N\mid u(x)>t\}$$

and we symmetrize them in an open ball centered in $\ensuremath{\mathsf{0}}$ with the same volume.



NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Given a positive function $u: \mathbb{R}^N \to [0, +\infty]$, we consider its superlevel sets

$$\{x\in\mathbb{R}^N\mid u(x)>t\}$$

and we symmetrize them in an open ball centered in 0 with the same volume.

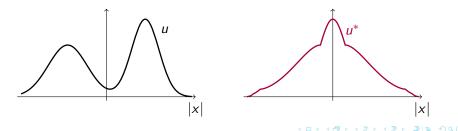


NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Rearrangement in H^1_+

Theorem (Conservation of L^2 norms, Pólya–Szegő inequality) If $u \in H^1_+(\mathbb{R}^N)$, then u^* also belongs to $H^1_+(\mathbb{R}^N)$ and we have $\|u^*\|_{L^2} = \|u\|_{L^2}$,

 $\|\nabla u^*\|_{L^2} \leq \|\nabla u\|_{L^2}.$



NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Conclusion: Existence of a radial positive minimum of $\ensuremath{\mathcal{J}}$

Steps:

$$\big(u_n\big)_{n\geq 1} \longrightarrow \big(|u_n|\big)_{n\geq 1} \longrightarrow \big(|u_n|^*\big)_{n\geq 1} \longrightarrow \text{compacity of the embedding}$$

Theorem (M.I. Weinstein 1982)

The equation

$$-\Delta Q + Q = |Q|^{q-2}Q \qquad (PDE_Q)$$

admits a radial strictly positive solution $Q \in H^1(\mathbb{R}^N) \setminus \{0\}$ reaching the global minimum of \mathcal{J} on $H^1(\mathbb{R}^N) \setminus \{0\}$.

M. I. Weinstein. "Nonlinear Schrödinger equations and sharp interpolation estimates". In: *Comm. Math. Phys.* 87.4 (1982–1983), pp. 567–576.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Conclusion: Existence of a radial positive minimum of $\ensuremath{\mathcal{J}}$

Steps:

 $\big(u_n\big)_{n\geq 1} \longrightarrow \big(|u_n|\big)_{n\geq 1} \longrightarrow \big(|u_n|^*\big)_{n\geq 1} \longrightarrow \text{compacity of the embedding}$

Theorem (M.I. Weinstein 1982)

The equation

$$-\Delta Q + Q = |Q|^{q-2}Q \qquad (PDE_Q)$$

admits a radial strictly positive solution $Q \in H^1(\mathbb{R}^N) \setminus \{0\}$ reaching the global minimum of \mathcal{J} on $H^1(\mathbb{R}^N) \setminus \{0\}$.

M. I. Weinstein. "Nonlinear Schrödinger equations and sharp interpolation estimates". In: *Comm. Math. Phys.* 87.4 (1982–1983), pp. 567–576.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Conclusion: Existence of a radial positive minimum of $\ensuremath{\mathcal{J}}$

Steps:

 $\big(u_n\big)_{n\geq 1} \longrightarrow \big(|u_n|\big)_{n\geq 1} \longrightarrow \big(|u_n|^*\big)_{n\geq 1} \longrightarrow \text{compacity of the embedding}$

Theorem (M.I. Weinstein 1982)

The equation

$$-\Delta Q + Q = |Q|^{q-2}Q \qquad (PDE_Q)$$

admits a radial strictly positive solution $Q \in H^1(\mathbb{R}^N) \setminus \{0\}$ reaching the global minimum of \mathcal{J} on $H^1(\mathbb{R}^N) \setminus \{0\}$.

M. I. Weinstein. "Nonlinear Schrödinger equations and sharp interpolation estimates". In: Comm. Math. Phys. 87.4 (1982–1983), pp. 567–576.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of sign-changing radial bound states

Theorem (Bartsch-Willem, 1993)

For every $k \ge 0$, there exists a radial sign-changing solution $Q_k(x) = u_k(|x|) \in H^1(\mathbb{R}^N)$ such that $[0, +\infty[\rightarrow \mathbb{R} : t \mapsto u_k(t)$ has exactly k roots.

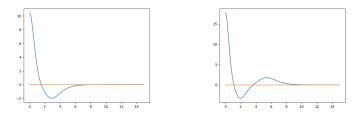


Figure: Graphs of u_1 and u_2 for N = 3 and q = 3

T. Bartsch and M. Willem. "Infinitely many radial solutions of a semilinear elliptic problem on **R**^N". In: Arch. Rational Mech. Anal. 124.3 (1993), pp. 261–276.

Damien Galant

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of sign-changing radial bound states

Theorem (Bartsch-Willem, 1993)

For every $k \ge 0$, there exists a radial sign-changing solution $Q_k(x) = u_k(|x|) \in H^1(\mathbb{R}^N)$ such that $[0, +\infty[\rightarrow \mathbb{R} : t \mapsto u_k(t)$ has exactly k roots.

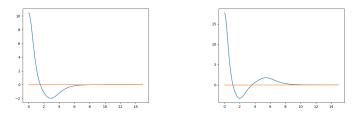


Figure: Graphs of u_1 and u_2 for N = 3 and q = 3

T. Bartsch and M. Willem. "Infinitely many radial solutions of a semilinear elliptic problem on **R**^N". In: Arch. Rational Mech. Anal. 124.3 (1993), pp. 261–276.

Damien Galant

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)

If N = 4 or $N \ge 6$, then (PDE_Q) has a nonradial solution.

The main strategy consists in constructing (using variational methods) solutions based on another type of symmetry using the group

$$G = O(m) \times O(m) \times O(N-2m),$$

then proving that the corresponding solutions are not radial since both symmetries are "incompatible".

T. Bartsch and M. Willem. "Infinitely many nonradial solutions of a Euclidean scalar field equation". In: J. Funct. Anal. 117.2 (1993), pp. 447–460.

M. Willem. *Minimax theorems*. Vol. 24. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996, pp. x+162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)

If N = 4 or $N \ge 6$, then (PDE_Q) has a nonradial solution.

The main strategy consists in constructing (using variational methods) solutions based on another type of symmetry using the group

$$G = O(m) \times O(m) \times O(N-2m),$$

then proving that the corresponding solutions are not radial since both symmetries are "incompatible".

T. Bartsch and M. Willem. "Infinitely many nonradial solutions of a Euclidean scalar field equation". In: *J. Funct. Anal.* 117.2 (1993), pp. 447–460.

M. Willem. *Minimax theorems*. Vol. 24. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996, pp. ×+162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)

If N = 4 or $N \ge 6$, then (PDE_Q) has a nonradial solution.

The main strategy consists in constructing (using variational methods) solutions based on another type of symmetry using the group

$$G = O(m) \times O(m) \times O(N-2m),$$

then proving that the corresponding solutions are not radial since both symmetries are "incompatible".

- T. Bartsch and M. Willem. "Infinitely many nonradial solutions of a Euclidean scalar field equation". In: *J. Funct. Anal.* 117.2 (1993), pp. 447–460.
 - M. Willem. *Minimax theorems*. Vol. 24. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996, pp. x+162.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many $H^1(\mathbb{R}^2;\mathbb{R})$ solutions of

 $-\Delta Q + Q = Q^3$

whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

$$S_{ ext{approx}} = \sum_{z \in Z^+} Q(\cdot - z) - \sum_{z' \in Z^-} Q(\cdot - z')$$

for some well-chosen finite sets of points $Z^+, Z^- \subset \mathbb{R}^2$.

W. Ao et al. "Solutions without any symmetry for semilinear elliptic problems". In: *J. Funct. Anal.* 270.3 (2016), pp. 884–956.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many $H^1(\mathbb{R}^2;\mathbb{R})$ solutions of

 $-\Delta Q + Q = Q^3$

whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

$$\mathcal{S}_{ ext{approx}} = \sum_{z \in Z^+} \mathcal{Q}(\cdot - z) - \sum_{z' \in Z^-} \mathcal{Q}(\cdot - z')$$

for some *well-chosen* finite sets of points $Z^+, Z^- \subset \mathbb{R}^2$.

W. Ao et al. "Solutions without any symmetry for semilinear elliptic problems". In: *J. Funct. Anal.* 270.3 (2016), pp. 884–956.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many $H^1(\mathbb{R}^2;\mathbb{R})$ solutions of

 $-\Delta Q + Q = Q^3$

whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

$$\mathcal{S}_{ ext{approx}} = \sum_{z \in Z^+} \mathcal{Q}(\cdot - z) - \sum_{z' \in Z^-} \mathcal{Q}(\cdot - z')$$

for some *well-chosen* finite sets of points $Z^+, Z^- \subset \mathbb{R}^2$.

W. Ao et al. "Solutions without any symmetry for semilinear elliptic problems". In: *J. Funct. Anal.* 270.3 (2016), pp. 884–956.

- elliptic bootstrap \rightarrow all $H^1(\mathbb{R}^N)$ solutions of (PDE_Q) are $\mathcal{C}^2(\mathbb{R}^N)$;
- solutions of (PDE_Q) decay exponentially at infinity, as well as their first and second derivatives;
- positive solutions of (PDE_Q) are $\mathcal{C}^{\infty}(\mathbb{R}^N)$;
- moving plane argument \rightarrow all $H^1(\mathbb{R}^N)$ positive solutions of (PDE_Q) are radial up to translation.
- B. Gidas, W. M. Ni, and L. Nirenberg. "Symmetry and related properties via the maximum principle". In: *Comm. Math. Phys.* 68.3 (1979), pp. 209–243.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- elliptic bootstrap \rightarrow all $H^1(\mathbb{R}^N)$ solutions of (PDE_Q) are $\mathcal{C}^2(\mathbb{R}^N)$;
- solutions of (PDE_Q) decay exponentially at infinity, as well as their first and second derivatives;
- positive solutions of (PDE_Q) are $\mathcal{C}^{\infty}(\mathbb{R}^N)$;
- moving plane argument \rightarrow all $H^1(\mathbb{R}^N)$ positive solutions of (PDE_Q) are radial up to translation.
- B. Gidas, W. M. Ni, and L. Nirenberg. "Symmetry and related properties via the maximum principle". In: *Comm. Math. Phys.* 68.3 (1979), pp. 209–243.

E SQA

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- elliptic bootstrap \rightarrow all $H^1(\mathbb{R}^N)$ solutions of (PDE_Q) are $\mathcal{C}^2(\mathbb{R}^N)$;
- solutions of (PDE_Q) decay exponentially at infinity, as well as their first and second derivatives;
- positive solutions of (PDE_Q) are $\mathcal{C}^{\infty}(\mathbb{R}^N)$;
- moving plane argument \rightarrow all $H^1(\mathbb{R}^N)$ positive solutions of (PDE_Q) are radial up to translation.
- B. Gidas, W. M. Ni, and L. Nirenberg. "Symmetry and related properties via the maximum principle". In: *Comm. Math. Phys.* 68.3 (1979), pp. 209–243.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- elliptic bootstrap \rightarrow all $H^1(\mathbb{R}^N)$ solutions of (PDE_Q) are $\mathcal{C}^2(\mathbb{R}^N)$;
- solutions of (PDE_Q) decay exponentially at infinity, as well as their first and second derivatives;
- positive solutions of (PDE_Q) are $\mathcal{C}^{\infty}(\mathbb{R}^N)$;
- moving plane argument \rightarrow all $H^1(\mathbb{R}^N)$ positive solutions of (PDE_Q) are radial up to translation.
 - B. Gidas, W. M. Ni, and L. Nirenberg. "Symmetry and related properties via the maximum principle". In: *Comm. Math. Phys.* 68.3 (1979), pp. 209–243.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy and Pohožaev identites

Theorem

If $\tilde{Q} \in H^1(\mathbb{R}^N)$ is a solution to (PDE_Q) , then

$$\|\nabla \tilde{Q}\|_{L^2}^2 + \|\tilde{Q}\|_{L^2}^2 = \|\tilde{Q}\|_{L^q}^q, \qquad (N-2)\|\nabla \tilde{Q}\|_{L^2}^2 + N\|\tilde{Q}\|_{L^2}^2 = \frac{2N}{q}\|\tilde{Q}\|_{L^q}^q.$$

S. I. Pohožaev. "On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$ ". In: *Dokl. Akad. Nauk SSSR* 165 (1965), pp. 36–39.

Using those identities, one can show that

$$\mathcal{J}(\tilde{Q}) = \frac{2\|\tilde{Q}\|_{L^2}^{q-2}}{q}.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy and Pohožaev identites

Theorem

If $\tilde{Q} \in H^1(\mathbb{R}^N)$ is a solution to (PDE_Q) , then

$$\|\nabla \tilde{Q}\|_{L^{2}}^{2} + \|\tilde{Q}\|_{L^{2}}^{2} = \|\tilde{Q}\|_{L^{q}}^{q}, \qquad (N-2)\|\nabla \tilde{Q}\|_{L^{2}}^{2} + N\|\tilde{Q}\|_{L^{2}}^{2} = \frac{2N}{q}\|\tilde{Q}\|_{L^{q}}^{q}.$$

S. I. Pohožaev. "On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$ ". In: *Dokl. Akad. Nauk SSSR* 165 (1965), pp. 36–39.

Using those identities, one can show that

$$\mathcal{J}(\tilde{Q}) = \frac{2\|\tilde{Q}\|_{L^2}^{q-2}}{q}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy and Pohožaev identites

Theorem

If $\tilde{Q} \in H^1(\mathbb{R}^N)$ is a solution to (PDE_Q) , then

 $\|\nabla \tilde{Q}\|_{L^{2}}^{2} + \|\tilde{Q}\|_{L^{2}}^{2} = \|\tilde{Q}\|_{L^{q}}^{q}, \qquad (N-2)\|\nabla \tilde{Q}\|_{L^{2}}^{2} + N\|\tilde{Q}\|_{L^{2}}^{2} = \frac{2N}{q}\|\tilde{Q}\|_{L^{q}}^{q}.$

S. I. Pohožaev. "On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$ ". In: *Dokl. Akad. Nauk SSSR* 165 (1965), pp. 36–39.

Using those identities, one can show that

$$\mathcal{J}(\tilde{Q}) = \frac{2\|\tilde{Q}\|_{L^2}^{q-2}}{q}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy of solitary wave solutions

The solutions $\tilde{Q} \in H^1(\mathbb{R}^N)$ to (PDE_Q) correspond to solitary wave solutions

$$\psi(t,x) = \mathrm{e}^{it} \tilde{Q}(x)$$

to (NLS). Their energy is given by

$$egin{split} \mathcal{E}(\psi(t,\cdot)) &= rac{1}{2} \|
abla \psi(t,\cdot) \|_{L^2}^2 - rac{1}{q} \| \psi(t,\cdot) \|_{L^q}^q \ &= rac{1}{2} \|
abla ilde Q \|_{L^2}^2 - rac{1}{q} \| ilde Q \|_{L^q}^q \ &= rac{1}{q} igg(rac{N(q-2)}{4} - 1 igg) \| ilde Q \|_{L^q}^q. \end{split}$$

Therefore, solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;

Damien Galant

Blow-up Phenomena for NLS

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy of solitary wave solutions

The solutions $\tilde{Q} \in H^1(\mathbb{R}^N)$ to (PDE_Q) correspond to solitary wave solutions

$$\psi(t,x) = \mathrm{e}^{it} \tilde{Q}(x)$$

to (NLS). Their energy is given by

$$egin{aligned} \mathcal{E}(\psi(t,\cdot)) &= rac{1}{2} \|
abla \psi(t,\cdot) \|_{L^2}^2 - rac{1}{q} \| \psi(t,\cdot) \|_{L^q}^q \ &= rac{1}{2} \|
abla ilde Q \|_{L^2}^2 - rac{1}{q} \| ilde Q \|_{L^q}^q \ &= rac{1}{q} igg(rac{N(q-2)}{4} - 1 igg) \| ilde Q \|_{L^q}^q. \end{aligned}$$

Therefore, solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy of solitary wave solutions

The solutions $\tilde{Q} \in H^1(\mathbb{R}^N)$ to (PDE_Q) correspond to solitary wave solutions

$$\psi(t,x) = \mathrm{e}^{it} \tilde{Q}(x)$$

to (NLS). Their energy is given by

$$egin{split} \mathcal{E}(\psi(t,\cdot)) &= rac{1}{2} \|
abla \psi(t,\cdot) \|_{L^2}^2 - rac{1}{q} \| \psi(t,\cdot) \|_{L^q}^q \ &= rac{1}{2} \|
abla ilde Q \|_{L^2}^2 - rac{1}{q} \| ilde Q \|_{L^q}^q \ &= rac{1}{q} igg(rac{N(q-2)}{4} - 1 igg) \| ilde Q \|_{L^q}^q. \end{split}$$

Therefore, solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Studying radial solutions using ODEs

 C^2 radial solutions of (PDE_Q) correspond to solutions of the following Cauchy problem:

$$\begin{cases} \partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + |u_y(t)|^{q-2}u_y(t) - u_y(t) = 0, \\ u_y(0) = y, \partial_t u_y(0) = 0, \end{cases}$$
(ODE_u)

where $\lambda = N - 1$ and t = |x|.

The existence of solutions to (ODE_u) converging to 0 for $t \to +\infty$ provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. "An ODE approach to the existence of positive solutions for semilinear problems in **R**^N". In: *Indiana Univ. Math. J.* 30.1 (1981), pp. 141–157.

K. McLeod, W. C. Troy, and F. B. Weissler. "Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros". In: *J. Differential Equations* 83.2 (1990), pp. 368–378.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Studying radial solutions using ODEs

 C^2 radial solutions of (PDE_Q) correspond to solutions of the following Cauchy problem:

$$\begin{cases} \partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + |u_y(t)|^{q-2}u_y(t) - u_y(t) = 0, \\ u_y(0) = y, \partial_t u_y(0) = 0, \end{cases}$$
(ODE_u)

where $\lambda = N - 1$ and t = |x|.

The existence of solutions to (ODE_u) converging to 0 for $t \to +\infty$ provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. "An ODE approach to the existence of positive solutions for semilinear problems in **R**^{*N*}". In: *Indiana Univ. Math. J.* 30.1 (1981), pp. 141–157.

K. McLeod, W. C. Troy, and F. B. Weissler. "Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros". In: J. Differential Equations 83.2 (1990), pp. 368–378.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Studying radial solutions using ODEs

 C^2 radial solutions of (PDE_Q) correspond to solutions of the following Cauchy problem:

$$\begin{cases} \partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + |u_y(t)|^{q-2}u_y(t) - u_y(t) = 0, \\ u_y(0) = y, \partial_t u_y(0) = 0, \end{cases}$$
(ODE_u)

where $\lambda = N - 1$ and t = |x|.

The existence of solutions to (ODE_u) converging to 0 for $t \to +\infty$ provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. "An ODE approach to the existence of positive solutions for semilinear problems in **R**^N". In: *Indiana Univ. Math. J.* 30.1 (1981), pp. 141–157.

K. McLeod, W. C. Troy, and F. B. Weissler. "Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros". In: J. Differential Equations 83.2 (1990), pp. 368–378.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Studying radial solutions using ODEs

 C^2 radial solutions of (PDE_Q) correspond to solutions of the following Cauchy problem:

$$\begin{cases} \partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + |u_y(t)|^{q-2}u_y(t) - u_y(t) = 0, \\ u_y(0) = y, \partial_t u_y(0) = 0, \end{cases}$$
(ODE_u)

where $\lambda = N - 1$ and t = |x|.

The existence of solutions to (ODE_u) converging to 0 for $t \to +\infty$ provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. "An ODE approach to the existence of positive solutions for semilinear problems in **R**^{*N*}". In: *Indiana Univ. Math. J.* 30.1 (1981), pp. 141–157.

K. McLeod, W. C. Troy, and F. B. Weissler. "Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros". In: *J. Differential Equations* 83.2 (1990), pp. 368–378.

26 / 50

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Interpretation: dynamics of a nonlinear damped oscillator

Potential:

$$V(u) := \frac{|u|^q}{q} - \frac{|u|^2}{2}.$$

ODE:

$$\partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + V'(u_y(t)) = 0.$$

T. Tao. Nonlinear dispersive equations. Vol. 106. CBMS Regional Conference Series in Mathematics. Local and global analysis. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006, pp. xvi+373.

R. L. Frank. "Ground states of semi-linear PDEs. Lecture notes from the "Summer- school on Current Topics in Mathematical Physics", CIRM Marseille". In: Sept. 2013.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Interpretation: dynamics of a nonlinear damped oscillator

Potential:

$$V(u):=\frac{|u|^q}{q}-\frac{|u|^2}{2}.$$

ODE:

$$\partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + V'(u_y(t)) = 0.$$

T. Tao. *Nonlinear dispersive equations.* Vol. 106. CBMS Regional Conference Series in Mathematics. Local and global analysis. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006, pp. xvi+373.

R. L. Frank. "Ground states of semi-linear PDEs. Lecture notes from the "Summer- school on Current Topics in Mathematical Physics", CIRM Marseille". In: Sept. 2013.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Interpretation: dynamics of a nonlinear damped oscillator

Potential:

$$V(u):=\frac{|u|^q}{q}-\frac{|u|^2}{2}.$$

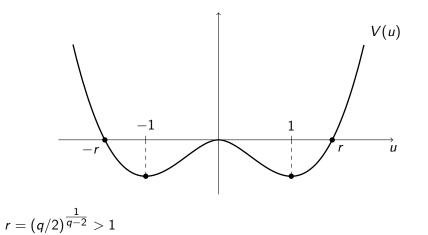
ODE:

$$\partial_{tt}u_y + \frac{\lambda}{t}\partial_t u_y + V'(u_y(t)) = 0.$$

- T. Tao. *Nonlinear dispersive equations*. Vol. 106. CBMS Regional Conference Series in Mathematics. Local and global analysis. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006, pp. xvi+373.
 - R. L. Frank. "Ground states of semi-linear PDEs. Lecture notes from the "Summer- school on Current Topics in Mathematical Physics", CIRM Marseille". In: Sept. 2013.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The potential well



ъ.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy (*unrelated* to the energy of NLS as t = |x| in the ODE setting):

$$H(u_y(t),\partial_t u_y(t)) = \frac{1}{2} |\partial_t u_y(t)|^2 + V(u_y(t))$$

Damping:

$$\partial_t \Big(t \mapsto H(u_y(t), \partial_t u_y(t)) \Big) = -\frac{\lambda}{t} |\partial_t u_y(t)|^2 \le 0$$

Theorem

Every solution of (ODE_u) converges to -1, 0 or 1 as $t \to +\infty$.

A. Cabot, H. Engler, and S. Gadat. "On the long time behavior of second order differential equations with asymptotically small dissipation". In: *Trans. Amer. Math. Soc.* 361.11 (2009), pp. 5983–6017.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy (*unrelated* to the energy of NLS as t = |x| in the ODE setting):

$$H(u_y(t),\partial_t u_y(t)) = \frac{1}{2} |\partial_t u_y(t)|^2 + V(u_y(t))$$

Damping:

$$\partial_t (t \mapsto H(u_y(t), \partial_t u_y(t))) = -\frac{\lambda}{t} |\partial_t u_y(t)|^2 \leq 0$$

Theorem

Every solution of (ODE_u) converges to -1, 0 or 1 as $t \to +\infty$.

A. Cabot, H. Engler, and S. Gadat. "On the long time behavior of second order differential equations with asymptotically small dissipation". In: *Trans. Amer. Math. Soc.* 361.11 (2009), pp. 5983–6017.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy (*unrelated* to the energy of NLS as t = |x| in the ODE setting):

$$H(u_y(t),\partial_t u_y(t)) = \frac{1}{2} |\partial_t u_y(t)|^2 + V(u_y(t))$$

Damping:

$$\partial_t \Big(t \mapsto H(u_y(t), \partial_t u_y(t)) \Big) = -\frac{\lambda}{t} |\partial_t u_y(t)|^2 \leq 0$$

Theorem

Every solution of (ODE_u) converges to -1, 0 or 1 as $t \to +\infty$.

A. Cabot, H. Engler, and S. Gadat. "On the long time behavior of second order differential equations with asymptotically small dissipation". In: *Trans. Amer. Math. Soc.* 361.11 (2009), pp. 5983–6017.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Energy (*unrelated* to the energy of NLS as t = |x| in the ODE setting):

$$H(u_y(t),\partial_t u_y(t)) = \frac{1}{2} |\partial_t u_y(t)|^2 + V(u_y(t))$$

Damping:

$$\partial_t \Big(t \mapsto H(u_y(t), \partial_t u_y(t)) \Big) = -\frac{\lambda}{t} |\partial_t u_y(t)|^2 \leq 0$$

Theorem

Every solution of (ODE_u) converges to -1, 0 or 1 as $t \to +\infty$.

A. Cabot, H. Engler, and S. Gadat. "On the long time behavior of second order differential equations with asymptotically small dissipation". In: *Trans. Amer. Math. Soc.* 361.11 (2009), pp. 5983–6017.

Damien Galant

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Shooting method: illustration

See the blackboard and animations!

Used parameters:

$$\lambda = 1, \qquad q = 2,5.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

There exists a unique y > 0 such that the associated solution of (ODE_u) (with u(0) = y) is a "ground state solution", i.e.

$$\forall t > 0, u_y(t) > 0, \qquad \lim_{t \to +\infty} u(t) = 0.$$

- C. V. Coffman. "Uniqueness of the ground state solution for $\Delta u u + u^3 = 0$ and a variational characterization of other solutions". In: *Arch. Rational Mech. Anal.* 46 (1972), pp. 81–95
- M. K. Kwong. "Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in **R**^{*n*}". In: *Arch. Rational Mech. Anal.* 105.3 (1989), pp. 243–266.
 - K. McLeod. "Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^n . II". In: *Trans. Amer. Math. Soc.* 339.2 (1993), pp. 495–505.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

There exists a unique y > 0 such that the associated solution of (ODE_u) (with u(0) = y) is a "ground state solution", i.e.

$$\forall t > 0, u_y(t) > 0, \qquad \lim_{t \to +\infty} u(t) = 0.$$

- C. V. Coffman. "Uniqueness of the ground state solution for $\Delta u u + u^3 = 0$ and a variational characterization of other solutions". In: Arch. Rational Mech. Anal. 46 (1972), pp. 81–95.
- M. K. Kwong. "Uniqueness of positive solutions of $\Delta u u + u^{p} = 0$ in **R**^{*n*}". In: *Arch. Rational Mech. Anal.* 105.3 (1989), pp. 243–266.

K. McLeod. "Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^n . II". In: *Trans. Amer. Math. Soc.* 339.2 (1993), pp. 495–505.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

There exists a unique y > 0 such that the associated solution of (ODE_u) (with u(0) = y) is a "ground state solution", i.e.

$$\forall t > 0, u_y(t) > 0, \qquad \lim_{t \to +\infty} u(t) = 0.$$

- C. V. Coffman. "Uniqueness of the ground state solution for $\Delta u u + u^3 = 0$ and a variational characterization of other solutions". In: *Arch. Rational Mech. Anal.* 46 (1972), pp. 81–95.
- M. K. Kwong. "Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in **R**^{*n*}". In: Arch. Rational Mech. Anal. 105.3 (1989), pp. 243–266.

K. McLeod. "Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^n . II". In: *Trans. Amer. Math. Soc.* 339.2 (1993), pp. 495–505.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Theorem

There exists a unique y > 0 such that the associated solution of (ODE_u) (with u(0) = y) is a "ground state solution", i.e.

$$\forall t > 0, u_y(t) > 0, \qquad \lim_{t \to +\infty} u(t) = 0.$$

- C. V. Coffman. "Uniqueness of the ground state solution for $\Delta u u + u^3 = 0$ and a variational characterization of other solutions". In: *Arch. Rational Mech. Anal.* 46 (1972), pp. 81–95.
- M. K. Kwong. "Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in **R**^{*n*}". In: Arch. Rational Mech. Anal. 105.3 (1989), pp. 243–266.
 - K. McLeod. "Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^n . II". In: *Trans. Amer. Math. Soc.* 339.2 (1993), pp. 495–505.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Uniqueness: what about nodal solutions?

Conjecture

For every $k \in \mathbb{N}$, there exists a unique initial condition $y_k > 0$ such that the associated solution $u_{y_k}(t)$ has exactly k roots and converges to 0 as $t \to +\infty$.

Open for most values of q and λ , even for k = 1.

Recent computer-assisted proof (for fixed k, q and $\lambda = N - 1$):

A. Cohen, Z. Li, and W. Schlag. Uniqueness of excited states to $-\Delta u + u - u^3 = 0$ in three dimensions. 2021.

E SQA

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Uniqueness: what about nodal solutions?

Conjecture

For every $k \in \mathbb{N}$, there exists a unique initial condition $y_k > 0$ such that the associated solution $u_{y_k}(t)$ has exactly k roots and converges to 0 as $t \to +\infty$.

Open for most values of q and λ , even for k = 1.

Recent computer-assisted proof (for fixed k, q and $\lambda = N - 1$):

A. Cohen, Z. Li, and W. Schlag. Uniqueness of excited states to $-\Delta u + u - u^3 = 0$ in three dimensions. 2021.

= 200

Back to the Gagliardo-Nirenberg inequality

Uniqueness of positive solutions to (PDE_Q) allows to characterize all equality cases in the Galigardo-Nirenberg inequality.

Theorem (Equality cases in the Gagliardo-Nirenberg inequality)

The global minima on $H^1(\mathbb{R}^N) \setminus \{0\}$ of functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^q},$$

where $s := \frac{(q-2)N}{2q}$, are the functions of the form

 $u(x) = \mu Q(\lambda(x - x_0))$

where $\mu \in \mathbb{R} \setminus \{0\}$, $\lambda > 0$ and $x_0 \in \mathbb{R}^N$.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

Back to the Gagliardo-Nirenberg inequality

Uniqueness of positive solutions to (PDE_Q) allows to characterize all equality cases in the Galigardo-Nirenberg inequality.

Theorem (Equality cases in the Gagliardo-Nirenberg inequality)

The global minima on $H^1(\mathbb{R}^N)\setminus\{0\}$ of functional

$$\mathcal{J}(u) := \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^q},$$

where $s := \frac{(q-2)N}{2q}$, are the functions of the form

$$u(x) = \mu Q(\lambda(x - x_0))$$

where $\mu \in \mathbb{R} \setminus \{0\}$, $\lambda > 0$ and $x_0 \in \mathbb{R}^N$.

▲■▶ ▲■▶ ▲■▶ 差|= のQ@

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Non-explosion criteria

Since Q is a global minimum of $\mathcal J$, we obtain that

$$\frac{2\|Q\|_{L^2}^{q-2}}{q} = \mathcal{J}(Q) \le \mathcal{J}(u) = \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

for all $u \in H^1(\mathbb{R}^N) \setminus \{0\}$.

Conservation laws and the Gagliardo-Nirenberg inequality with optimal constant $\mathcal{J}(Q)$ imply that, for all $t \in [0, T_{\max}[$,

$$\begin{split} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{2} &\leq 2\mathcal{E}(\psi_{0}) + \frac{2}{q} \|\psi(t,\cdot)\|_{L^{q}}^{q} \\ &\leq 2\mathcal{E}(\psi_{0}) + \frac{\|\psi_{0}\|_{L^{2}}^{q(1-s)} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{q}}{\|Q\|_{L^{2}}^{q-2}} \end{split}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Non-explosion criteria

Since Q is a global minimum of \mathcal{J} , we obtain that

$$\frac{2\|Q\|_{L^2}^{q-2}}{q} = \mathcal{J}(Q) \le \mathcal{J}(u) = \frac{\|u\|_{L^2}^{q(1-s)} \|\nabla u\|_{L^2}^{qs}}{\|u\|_{L^q}^{q}}$$

for all $u \in H^1(\mathbb{R}^N) \setminus \{0\}$.

Conservation laws and the Gagliardo-Nirenberg inequality with optimal constant $\mathcal{J}(Q)$ imply that, for all $t \in [0, T_{\max}[$,

$$egin{aligned} \|
abla\psi(t,\cdot)\|^2_{L^2} &\leq 2\mathcal{E}(\psi_0) + rac{2}{q} \|\psi(t,\cdot)\|^q_{L^q} \ &\leq 2\mathcal{E}(\psi_0) + rac{\|\psi_0\|^{q(1-s)}_{L^2}}{\|Q\|^{q-2}_{L^2}} \|
abla\psi(t,\cdot)\|^{q}_{L^2} \end{aligned}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Non-explosion below the mass-critical exponent

For all $t \in [0, \mathcal{T}_{\max}[$, we obtained the bound

$$\|\nabla\psi(t,\cdot)\|_{L^{2}}^{2} \leq 2\mathcal{E}(\psi_{0}) + \frac{\|\psi_{0}\|_{L^{2}}^{q(1-s)} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{qs}}{\|Q\|_{L^{2}}^{q-2}}.$$

If $q < 2 + \frac{4}{N}$, then qs < 2 (since $s := \frac{(q-2)N}{2q}$), so we obtain a uniform bound in t for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$, and there is no blow-up.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Non-explosion below the mass-critical exponent

For all $t \in [0, \mathcal{T}_{\max}[$, we obtained the bound

$$\|\nabla\psi(t,\cdot)\|_{L^{2}}^{2} \leq 2\mathcal{E}(\psi_{0}) + \frac{\|\psi_{0}\|_{L^{2}}^{q(1-s)} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{qs}}{\|Q\|_{L^{2}}^{q-2}}$$

If $q < 2 + \frac{4}{N}$, then qs < 2 (since $s := \frac{(q-2)N}{2q}$), so we obtain a uniform bound in t for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$, and there is no blow-up.

Glassey's argument applies iff $q \ge 2 + \frac{4}{N}$;

- Solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;
- Conservation laws and the Gagliardo-Nirenberg inequality imply a uniform bound for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$ for any $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ iff $q < 2 + \frac{4}{N}$.
- When $q = 2 + \frac{4}{N}$, (NLS) enjoys an extra *pseudo-conformal* symmetry. If $\psi(t, x)$ solves (NLS) for $q = 2 + \frac{4}{N}$, so does

$$\left(\frac{T}{T-t}\right)^{\frac{N}{2}}\psi\left(\frac{tT}{T-t},\frac{xT}{T-t}\right)e^{-i\frac{|x|^2}{4(T-t)}}$$

From now on, we consider the mass-critical case $q = 2 + \frac{4}{N}$.

ELE DQC

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- Glassey's argument applies iff $q \ge 2 + \frac{4}{N}$;
- Solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;
- Conservation laws and the Gagliardo-Nirenberg inequality imply a uniform bound for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$ for any $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ iff $q < 2 + \frac{4}{N}$.
- When $q = 2 + \frac{4}{N}$, (NLS) enjoys an extra *pseudo-conformal* symmetry. If $\psi(t, x)$ solves (NLS) for $q = 2 + \frac{4}{N}$, so does

$$\left(\frac{T}{T-t}\right)^{\frac{N}{2}}\psi\left(\frac{tT}{T-t},\frac{xT}{T-t}\right)e^{-i\frac{|x|^2}{4(T-t)}}$$

From now on, we consider the mass-critical case $q = 2 + \frac{4}{N}$.

ELE DOG

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- Glassey's argument applies iff $q \ge 2 + \frac{4}{N}$;
- Solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;
- Conservation laws and the Gagliardo-Nirenberg inequality imply a uniform bound for $\|\nabla \psi(t,\cdot)\|_{L^2}^2$ for any $\psi_0 \in H^1(\mathbb{R}^N;\mathbb{C})$ iff $q < 2 + \frac{4}{N}$.
- When $q = 2 + \frac{4}{N}$, (NLS) enjoys an extra *pseudo-conformal* symmetry. If $\psi(t, x)$ solves (NLS) for $q = 2 + \frac{4}{N}$, so does

$$\left(\frac{T}{T-t}\right)^{\frac{N}{2}}\psi\left(\frac{tT}{T-t},\frac{xT}{T-t}\right)e^{-i\frac{|x|^2}{4(T-t)}}$$

From now on, we consider the mass-critical case $q = 2 + \frac{4}{N}$.

ELE DOG

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- Glassey's argument applies iff $q \ge 2 + \frac{4}{N}$;
- Solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;
- Conservation laws and the Gagliardo-Nirenberg inequality imply a uniform bound for $\|\nabla \psi(t,\cdot)\|_{L^2}^2$ for any $\psi_0 \in H^1(\mathbb{R}^N;\mathbb{C})$ iff $q < 2 + \frac{4}{N}$.
- When $q = 2 + \frac{4}{N}$, (NLS) enjoys an extra *pseudo-conformal* symmetry. If $\psi(t, x)$ solves (NLS) for $q = 2 + \frac{4}{N}$, so does

$$\left(\frac{T}{T-t}\right)^{\frac{N}{2}}\psi\left(\frac{tT}{T-t},\frac{xT}{T-t}\right)e^{-i\frac{|x|^2}{4(T-t)}}.$$

From now on, we consider the mass-critical case $q = 2 + \frac{4}{N}$.

ELE NOR

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- Glassey's argument applies iff $q \ge 2 + \frac{4}{N}$;
- Solitary waves have a negative/zero/positive energy depending on whether $q < 2 + \frac{4}{N}$, $q = 2 + \frac{4}{N}$ or $q > 2 + \frac{4}{N}$;
- Conservation laws and the Gagliardo-Nirenberg inequality imply a uniform bound for $\|\nabla \psi(t,\cdot)\|_{L^2}^2$ for any $\psi_0 \in H^1(\mathbb{R}^N;\mathbb{C})$ iff $q < 2 + \frac{4}{N}$.
- When $q = 2 + \frac{4}{N}$, (NLS) enjoys an extra *pseudo-conformal* symmetry. If $\psi(t, x)$ solves (NLS) for $q = 2 + \frac{4}{N}$, so does

$$\left(\frac{T}{T-t}\right)^{\frac{N}{2}}\psi\left(\frac{tT}{T-t},\frac{xT}{T-t}\right)e^{-i\frac{|x|^2}{4(T-t)}}.$$

From now on, we consider the mass-critical case $q = 2 + \frac{4}{N}$.

ELE SOO

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Blow-up thresholds in the mass-critical case

If $q = 2 + \frac{4}{N}$, we can rewrite the bound

$$\|\nabla\psi(t,\cdot)\|_{L^{2}}^{2} \leq 2\mathcal{E}(\psi_{0}) + \frac{\|\psi_{0}\|_{L^{2}}^{q(1-s)} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{qs}}{\|Q\|_{L^{2}}^{q-2}},$$

where $s := \frac{(q-2)N}{2q}$, as

$$\|
abla\psi(t,\cdot)\|^2_{L^2}igg(1-rac{\|\psi_0\|^{4/N}_{L^2}}{\|Q\|^{4/N}_{L^2}}igg)\leq 2\mathcal{E}(\psi_0),$$

since $s = \frac{2}{q}$ and so $q(1-s) = q - 2 = \frac{4}{N}$.

If $\|\psi_0\|_{L^2} < \|Q\|_{L^2}$, we obtain a uniform bound for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$ and there is no blow-up.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Blow-up thresholds in the mass-critical case

If $q = 2 + \frac{4}{N}$, we can rewrite the bound

$$\|\nabla\psi(t,\cdot)\|_{L^{2}}^{2} \leq 2\mathcal{E}(\psi_{0}) + \frac{\|\psi_{0}\|_{L^{2}}^{q(1-s)} \|\nabla\psi(t,\cdot)\|_{L^{2}}^{qs}}{\|Q\|_{L^{2}}^{q-2}},$$

where $s := \frac{(q-2)N}{2q}$, as

$$\|
abla\psi(t,\cdot)\|^2_{L^2}igg(1-rac{\|\psi_0\|^{4/N}_{L^2}}{\|Q\|^{4/N}_{L^2}}igg)\leq 2\mathcal{E}(\psi_0),$$

since $s = \frac{2}{q}$ and so $q(1-s) = q - 2 = \frac{4}{N}$.

If $\|\psi_0\|_{L^2} < \|Q\|_{L^2}$, we obtain a uniform bound for $\|\nabla \psi(t, \cdot)\|_{L^2}^2$ and there is no blow-up.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of minimal mass blow-up solutions

If $\|\psi_0\|_{L^2} = \|Q\|_{L^2}$, blow-up is possible. The explicit solution

$$s_{T}(t,x) := \left(\frac{T}{T-t}\right)^{N/2} Q\left(\frac{xT}{T-t}\right) \exp\left(i\left(\frac{Tt}{T-t} - \frac{|x|^2}{4(T-t)}\right)\right)$$
(1)

obtained by the pseudo-conformal transform blows up at time t = T.

Remark

The complex exponential is very important. Indeed, for all $x \in \mathbb{R}^N$,

 $|s_T(0,x)| = |Q(x)|,$

but the initial condition $\psi_0 = Q$ gives rise to the solitary wave solution $e^{it}Q(x)$, which does not blow-up!

It turns out that solutions of the form (1) are the only minimal mass solutions of (NLS) when $q = 2 + \frac{4}{N}$, up to the symmetries of the equation.

= 9Q@

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of minimal mass blow-up solutions

If $\|\psi_0\|_{L^2} = \|Q\|_{L^2}$, blow-up is possible. The explicit solution

$$s_{T}(t,x) := \left(\frac{T}{T-t}\right)^{N/2} Q\left(\frac{xT}{T-t}\right) \exp\left(i\left(\frac{Tt}{T-t} - \frac{|x|^2}{4(T-t)}\right)\right)$$
(1)

obtained by the pseudo-conformal transform blows up at time t = T.

Remark

The complex exponential is very important. Indeed, for all $x \in \mathbb{R}^N$,

 $|s_T(0,x)| = |Q(x)|,$

but the initial condition $\psi_0 = Q$ gives rise to the solitary wave solution $e^{it}Q(x)$, which does not blow-up!

It turns out that solutions of the form (1) are the only minimal mass solutions of (NLS) when $q=2+rac{4}{N}$, up to the symmetries of the equation.

1= 990

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Existence of minimal mass blow-up solutions

If $\|\psi_0\|_{L^2} = \|Q\|_{L^2}$, blow-up is possible. The explicit solution

$$s_{T}(t,x) := \left(\frac{T}{T-t}\right)^{N/2} Q\left(\frac{xT}{T-t}\right) \exp\left(i\left(\frac{Tt}{T-t} - \frac{|x|^2}{4(T-t)}\right)\right)$$
(1)

obtained by the pseudo-conformal transform blows up at time t = T.

Remark

The complex exponential is very important. Indeed, for all $x \in \mathbb{R}^N$,

 $|s_T(0,x)| = |Q(x)|,$

but the initial condition $\psi_0 = Q$ gives rise to the solitary wave solution $e^{it}Q(x)$, which does not blow-up!

It turns out that solutions of the form (1) are the only minimal mass solutions of (NLS) when $q = 2 + \frac{4}{N}$, up to the symmetries of the equation.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Classification of minimal mass solutions

Theorem (F. Merle 1993)

If $\psi(t, x)$ is a solution of (NLS), defined for $t \in [0, T[$ and blowing up for t = T, then there exist $\theta \in \mathbb{R}, \omega \in]0, +\infty[, x_0 \in \mathbb{R}^N, x_1 \in \mathbb{R}^N$ such that

$$\psi_0 = \left(\frac{\omega}{T}\right)^{N/2} \mathrm{e}^{i\theta - i|x - x_1|/4T + i\omega^2/T} Q\left(\omega\left(\frac{x - x_1}{T} - x_0\right)\right).$$

F. Merle. "Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power". In: *Duke Math. J.* 69.2 (1993), pp. 427–454.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Classification of minimal mass solutions

Theorem (F. Merle 1993)

If $\psi(t, x)$ is a solution of (NLS), defined for $t \in [0, T[$ and blowing up for t = T, then there exist $\theta \in \mathbb{R}, \omega \in]0, +\infty[, x_0 \in \mathbb{R}^N, x_1 \in \mathbb{R}^N$ such that

$$\psi_0 = \left(\frac{\omega}{T}\right)^{N/2} \mathrm{e}^{i\theta - i|\mathbf{x} - \mathbf{x}_1|/4T + i\omega^2/T} Q\left(\omega\left(\frac{\mathbf{x} - \mathbf{x}_1}{T} - \mathbf{x}_0\right)\right).$$

F. Merle. "Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power". In: *Duke Math. J.* 69.2 (1993), pp. 427–454.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Further study of $s_T(t, x)$

lf

$$s_T(t,x) := \left(\frac{T}{T-t}\right)^{N/2} Q\left(\frac{xT}{T-t}\right) \exp\left(i\left(\frac{Tt}{T-t} - \frac{|x|^2}{4(T-t)}\right)\right),$$

then the variance of $|s_{\mathcal{T}}(t,\cdot)|^2$ is given by

$$V(t) = \int_{\mathbb{R}^N} |x|^2 |s_T(t, x)|^2 dx$$

= $\left(\frac{T}{T-t}\right)^N \int_{\mathbb{R}^N} |x|^2 Q\left(\frac{xT}{T-t}\right)^2 dx$
= $\left(\frac{T-t}{T}\right)^2 V(0)$
 $\xrightarrow[t \to T]{} 0$

The variance identity implies that

$$\partial_{tt}V(t) = \frac{2}{T^2}V(0) = 16\mathcal{E}(s_T(t,\cdot))$$

The pseudo-conformal solutions have a strictly positive energy;

- The variance of $s_{\mathcal{T}}(t,\cdot)$ converges to 0 as $t o {\mathcal{T}};$
- For all $t \in [0, T[$, we have

 $\|s_T(t,\cdot)\|_{L^2} = \|Q\|_{L^2}.$

The two previous points imply that

$$|s_T(t,\cdot)|^2 \xrightarrow{\mathcal{S}'(\mathbb{R}^N)} |Q|_{L^2}^2 \delta_0.$$

Blow-up rate:

$$|\nabla s_T(t,\cdot)|_{L^2} = \frac{T \|\nabla Q\|_{L^2}}{T-t}$$

▲■ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

The pseudo-conformal solutions have a strictly positive energy;

• The variance of $s_T(t, \cdot)$ converges to 0 as $t \to T$;

For all $t \in [0, T[$, we have

 $\|s_T(t,\cdot)\|_{L^2} = \|Q\|_{L^2}.$

The two previous points imply that

$$|s_{\mathcal{T}}(t,\cdot)|^2 \xrightarrow[t \to T]{\mathcal{S}'(\mathbb{R}^N)} |Q|^2_{L^2} \delta_0.$$

Blow-up rate:

$$|\nabla s_T(t,\cdot)|_{L^2} = \frac{T \|\nabla Q\|_{L^2}}{T-t}$$

1 = 1 = 9 Q (P

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The pseudo-conformal solutions have a strictly positive energy;
- The variance of $s_T(t, \cdot)$ converges to 0 as $t \to T$;
- For all $t \in [0, T[$, we have

$$\|s_T(t,\cdot)\|_{L^2} = \|Q\|_{L^2}.$$

The two previous points imply that

$$|s_{\mathcal{T}}(t,\cdot)|^2 \xrightarrow{\mathcal{S}'(\mathbb{R}^N)} |Q|^2_{L^2} \delta_0.$$

Blow-up rate:

$$|
abla s_T(t,\cdot)|_{L^2} = rac{T \|
abla Q\|_{L^2}}{T-t}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The pseudo-conformal solutions have a strictly positive energy;
- The variance of $s_T(t, \cdot)$ converges to 0 as $t \to T$;
- For all $t \in [0, T[$, we have

$$\|s_T(t,\cdot)\|_{L^2} = \|Q\|_{L^2}.$$

The two previous points imply that

$$|s_T(t,\cdot)|^2 \xrightarrow{\mathcal{S}'(\mathbb{R}^N)} |Q|^2_{L^2} \delta_0.$$

Blow-up rate:

$$|\nabla s_T(t,\cdot)|_{L^2} = \frac{T \|\nabla Q\|_{L^2}}{T-t}$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The pseudo-conformal solutions have a strictly positive energy;
- The variance of $s_T(t, \cdot)$ converges to 0 as $t \to T$;
- For all $t \in [0, T[$, we have

$$\|s_T(t,\cdot)\|_{L^2} = \|Q\|_{L^2}.$$

The two previous points imply that

$$|s_T(t,\cdot)|^2 \xrightarrow{\mathcal{S}'(\mathbb{R}^N)} |Q|_{L^2}^2 \delta_0.$$

Blow-up rate:

$$|
abla s_T(t,\cdot)|_{L^2} = rac{T \|
abla Q\|_{L^2}}{T-t}$$

Bourgain-Wang solutions

Question: what happens if $\|\psi_0\|_{L^2} > \|Q\|_{L^2}$?

Theorem (J. Bourgain, W. Wang 1997)

If N = 1 or N = 2, the mass-critical (NLS) equation admits solutions $\psi(t, x) \in \mathcal{C}([0, T[, H^1(\mathbb{R}^N; \mathbb{C})))$ with $\|\psi(t, \cdot)\|_{L^2} > \|Q\|_{L^2}$ blowing up at time T > 0 at the rate

$$\|\psi(t,\cdot)\|_{L^2}\sim rac{C}{T-t}$$

near blow-up time.

J. Bourgain and W. Wang. "Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity". In: vol. 25. 1-2. Dedicated to Ennio De Giorgi. 1997, 197–215 (1998).

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Bourgain-Wang solutions

Question: what happens if $\|\psi_0\|_{L^2} > \|Q\|_{L^2}$?

Theorem (J. Bourgain, W. Wang 1997)

If N = 1 or N = 2, the mass-critical (NLS) equation admits solutions $\psi(t, x) \in \mathcal{C}([0, T[, H^1(\mathbb{R}^N; \mathbb{C})))$ with $\|\psi(t, \cdot)\|_{L^2} > \|Q\|_{L^2}$ blowing up at time T > 0 at the rate

$$\|\psi(t,\cdot)\|_{L^2}\sim \frac{C}{T-t}$$

near blow-up time.

J. Bourgain and W. Wang. "Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity". In: vol. 25. 1-2. Dedicated to Ennio De Giorgi. 1997, 197–215 (1998).

JI NOR

Bourgain-Wang solutions

Question: what happens if $\|\psi_0\|_{L^2} > \|Q\|_{L^2}$?

Theorem (J. Bourgain, W. Wang 1997)

If N = 1 or N = 2, the mass-critical (NLS) equation admits solutions $\psi(t, x) \in \mathcal{C}([0, T[, H^1(\mathbb{R}^N; \mathbb{C})))$ with $\|\psi(t, \cdot)\|_{L^2} > \|Q\|_{L^2}$ blowing up at time T > 0 at the rate

$$\|\psi(t,\cdot)\|_{L^2}\sim \frac{C}{T-t}$$

near blow-up time.

J. Bourgain and W. Wang. "Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity". In: vol. 25. 1-2. Dedicated to Ennio De Giorgi. 1997, 197–215 (1998).

JI SOCO

- s_T solutions have a strictly positive energy, while Glassey's argument shows that there are many solutions with a negative energy;
- Solutions blowing up with rate C T-t are not observed in numerical simulations;
- In the 1980s, it was suspected that the log-log law

$$\|\psi(t,\cdot)\|_{L^2}\sim \left(rac{\log|\log(\mathcal{T}-t)|}{\mathcal{T}-t}
ight)^{1/2}$$

was the generic blow-up speed.

Historical context: see e.g.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- s_T solutions have a strictly positive energy, while Glassey's argument shows that there are many solutions with a negative energy;
- Solutions blowing up with rate C
 C re not observed in numerical simulations;
- In the 1980s, it was suspected that the log-log law

$$\|\psi(t,\cdot)\|_{L^2}\sim \left(rac{\log|\log(\mathcal{T}-t)|}{\mathcal{T}-t}
ight)^{1/2}$$

was the generic blow-up speed.

Historical context: see e.g.

G. Fibich, F. Merle, and P. Raphaël. "Proof of a spectral property related to the singularity formation for the *L*² critical nonlinear Schrödinger equation". In: *Phys. D* 220.1 (2006), pp. 1–13.

= nar

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- s_T solutions have a strictly positive energy, while Glassey's argument shows that there are many solutions with a negative energy;
- Solutions blowing up with rate C
 C re not observed in numerical simulations;
- In the 1980s, it was suspected that the log-log law

$$\|\psi(t,\cdot)\|_{L^2}\sim \left(rac{\log|\log(\mathcal{T}-t)|}{\mathcal{T}-t}
ight)^{1/2}$$

was the generic blow-up speed.

Historical context: see e.g.

G. Fibich, F. Merle, and P. Raphaël. "Proof of a spectral property related to the singularity formation for the *L*² critical nonlinear Schrödinger equation". In: *Phys. D* 220.1 (2006), pp. 1–13.

SOC =

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- s_T solutions have a strictly positive energy, while Glassey's argument shows that there are many solutions with a negative energy;
- Solutions blowing up with rate C
 C re not observed in numerical simulations;
- In the 1980s, it was suspected that the log-log law

$$\|\psi(t,\cdot)\|_{L^2}\sim \left(rac{\log|\log(\mathcal{T}-t)|}{\mathcal{T}-t}
ight)^{1/2}$$

was the generic blow-up speed.

Historical context: see e.g.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The following results will assume N = 1 or $N \ge 2$ and a certain "spectral property" holds true (see later).
- They concern the mass-critical case $q = 2 + \frac{4}{N}$.
- We will consider initial profiles $\psi_0 \in H^1(\mathbb{R}^N;\mathbb{C})$ satisfying

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*.$$
(2)

For all N, the following theorems will provide the existence of a suitable $\alpha^* > 0$ such that the conclusions of the theorems hold for all $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ such that (2) holds.

• We will denote the associated solution to (NLS) by $\psi(t, \cdot)$ and assume its maximal interval of definition $[0, T_{\max}[$, with $T_{\max} \in]0, +\infty]$.

The statements that follow are taken from the Theorem 1 of

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The following results will assume N = 1 or $N \ge 2$ and a certain "spectral property" holds true (see later).
- They concern the mass-critical case $q = 2 + \frac{4}{N}$.
- We will consider initial profiles $\psi_0\in H^1(\mathbb{R}^N;\mathbb{C})$ satisfying

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*.$$
(2)

For all N, the following theorems will provide the existence of a suitable $\alpha^* > 0$ such that the conclusions of the theorems hold for all $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ such that (2) holds.

We will denote the associated solution to (NLS) by $\psi(t, \cdot)$ and assume its maximal interval of definition $[0, T_{\max}[$, with $T_{\max} \in]0, +\infty]$.

The statements that follow are taken from the Theorem 1 of

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The following results will assume N = 1 or $N \ge 2$ and a certain "spectral property" holds true (see later).
- They concern the mass-critical case $q = 2 + \frac{4}{N}$.
- We will consider initial profiles $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ satisfying

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*.$$
(2)

For all N, the following theorems will provide the existence of a suitable $\alpha^* > 0$ such that the conclusions of the theorems hold for all $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ such that (2) holds.

We will denote the associated solution to (NLS) by $\psi(t, \cdot)$ and assume its maximal interval of definition $[0, T_{\max}[$, with $T_{\max} \in]0, +\infty]$.

The statements that follow are taken from the Theorem 1 of

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The following results will assume N = 1 or $N \ge 2$ and a certain "spectral property" holds true (see later).
- They concern the mass-critical case $q = 2 + \frac{4}{N}$.
- We will consider initial profiles $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ satisfying

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*.$$
(2)

For all N, the following theorems will provide the existence of a suitable $\alpha^* > 0$ such that the conclusions of the theorems hold for all $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ such that (2) holds.

We will denote the associated solution to (NLS) by ψ(t, ·) and assume its maximal interval of definition [0, T_{max}[, with T_{max} ∈]0, +∞].

The statements that follow are taken from the Theorem 1 of

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

- The following results will assume N = 1 or $N \ge 2$ and a certain "spectral property" holds true (see later).
- They concern the mass-critical case $q = 2 + \frac{4}{N}$.
- We will consider initial profiles $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ satisfying

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*.$$
(2)

For all N, the following theorems will provide the existence of a suitable $\alpha^* > 0$ such that the conclusions of the theorems hold for all $\psi_0 \in H^1(\mathbb{R}^N; \mathbb{C})$ such that (2) holds.

• We will denote the associated solution to (NLS) by $\psi(t, \cdot)$ and assume its maximal interval of definition $[0, T_{\max}[$, with $T_{\max} \in]0, +\infty]$.

The statements that follow are taken from the Theorem $1 \mbox{ of }$

G. Fibich, F. Merle, and P. Raphaël. "Proof of a spectral property related to the singularity formation for the *L*² critical nonlinear Schrödinger equation". In: *Phys. D* 220.1 (2006), pp. 1–13.

Damien Galant

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Description of the singularity

Theorem

Assume that u(t) blows up in finite time, i.e. $T_{\max} < +\infty$. Then there exist parameters $(\lambda(t), x(t), \gamma(t)) \in]0, +\infty[\times \mathbb{R}^N \times \mathbb{R}$ and an asymptotic profile $u^* \in L^2(\mathbb{R}^N)$ such that

$$\psi(t,\cdot) - rac{1}{\lambda(t)^{N/2}} Q\left(rac{x-x(t)}{\lambda(t)}
ight) \mathrm{e}^{i\gamma(t)} \xrightarrow{L^2}{t o T} u^*.$$

Moreover, the blow-up point is finite in the sense that

$$x(t) \xrightarrow[t \to T]{} x(T) \in \mathbb{R}^N.$$

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Estimates on the blow up speed

Theorem

We have either

$$\begin{split} \frac{\|\nabla\psi(t,\cdot)\|_{L^2}}{\|\nabla Q\|_{L^2}} & \left(\frac{T-t}{\log|\log(T-t)|}\right)^{1/2} \xrightarrow[t \to T]{} \frac{1}{\sqrt{2\pi}}, \\ \|\nabla\psi(t,\cdot)\|_{L^2} \geq \frac{C(\psi_0)}{T-t}, \end{split}$$

as $t \rightarrow T$.

or

= 990

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sufficient condition for log-log blow-up, stability of the rate

Theorem

If $\mathcal{E}(u_0) \leq 0$ and $\|\psi_0\|_{L^2} > \|Q\|_{L^2}$, then $\psi(t, \cdot)$ blows up in finite time with the log-log speed.

Moreover, the set of initial profiles $\psi_0 \in H^1(\mathbb{R}^N)$ such that

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*$$

such that the corresponding solution $\psi(t, \cdot)$ to (NLS) blows up in finite time $T_{\max} < +\infty$ with the log-log speed is open in $H^1(\mathbb{R}^N)$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Sufficient condition for log-log blow-up, stability of the rate

Theorem

If $\mathcal{E}(u_0) \leq 0$ and $\|\psi_0\|_{L^2} > \|Q\|_{L^2}$, then $\psi(t, \cdot)$ blows up in finite time with the log-log speed.

Moreover, the set of initial profiles $\psi_0 \in H^1(\mathbb{R}^N)$ such that

$$\|Q\|_{L^2}^2 \le \|\psi_0\|_{L^2}^2 \le \|Q\|_{L^2}^2 + \alpha^*$$

such that the corresponding solution $\psi(t, \cdot)$ to (NLS) blows up in finite time $T_{\max} < +\infty$ with the log-log speed is open in $H^1(\mathbb{R}^N)$.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The spectral property (sketch)

The main concern is related to understanding what are the eigenvalues and eigenvectors of the two real Schrödinger operators

$$L_1 = -\Delta + V_1, \qquad L_1 = -\Delta + V_2,$$

where, still using the convention t = |x| in the radial setting,

$$V_1(t)=rac{2}{N}igg(rac{4}{N}+1igg)Q^{rac{4}{N}-1}t\partial_tQ,\qquad V_2(t)=rac{2}{N}Q^{rac{4}{N}-1}t\partial_tQ.$$

In practice, we need to consider the ODE

$$\begin{bmatrix} -\partial_{tt}U_i(t) - \frac{N-1}{t}\partial_tU_i(t) + V_i(t)U_i(t) = 0\\ U_i(0) = 1, \quad \partial_tU_i(0) = 0, \end{bmatrix}$$

and counting the number of zeros of U_i , when i = 1 and i = 2.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

The spectral property (sketch)

The main concern is related to understanding what are the eigenvalues and eigenvectors of the two real Schrödinger operators

$$L_1 = -\Delta + V_1, \qquad L_1 = -\Delta + V_2,$$

where, still using the convention t = |x| in the radial setting,

$$V_1(t)=rac{2}{N}igg(rac{4}{N}+1igg)Q^{rac{4}{N}-1}t\partial_tQ,\qquad V_2(t)=rac{2}{N}Q^{rac{4}{N}-1}t\partial_tQ.$$

In practice, we need to consider the ODE

$$\begin{cases} -\partial_{tt}U_i(t) - \frac{N-1}{t}\partial_tU_i(t) + V_i(t)U_i(t) = 0\\ U_i(0) = 1, \quad \partial_tU_i(0) = 0, \end{cases}$$

and counting the number of zeros of U_i , when i = 1 and i = 2.

1= 900

Papers on log-log blow-up

- F. Merle and P. Raphaël. "The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation". In: *Ann. of Math. (2)* 161.1 (2005), pp. 157–222.
 - F. Merle and P. Raphaël. "On universality of blow-up profile for *L*² critical nonlinear Schrödinger equation". In: *Invent. Math.* 156.3 (2004), pp. 565–672.
- **F**. Merle and P. Raphael. "Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation". In: *Geom. Funct. Anal.* 13.3 (2003), pp. 591–642.

and many more! For overviews, see

N. Burq. "Explosion pour l'équation de Schrödinger au régime du log log (d'apres Merle-Raphael)". In: *Astérisque* 311 (2007). Séminaire Bourbaki. Vol. 2005/2006, Exp. No. 953, vii, 33–53.

T. Cazenave. An overview of the nonlinear Schrödinger equation.

Papers on log-log blow-up

- F. Merle and P. Raphaël. "The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation". In: *Ann. of Math. (2)* 161.1 (2005), pp. 157–222.
 - F. Merle and P. Raphaël. "On universality of blow-up profile for *L*² critical nonlinear Schrödinger equation". In: *Invent. Math.* 156.3 (2004), pp. 565–672.
- F. Merle and P. Raphael. "Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation". In: *Geom. Funct. Anal.* 13.3 (2003), pp. 591–642.
- and many more! For overviews, see
- N. Burq. "Explosion pour l'équation de Schrödinger au régime du log log (d'apres Merle-Raphael)". In: Astérisque 311 (2007).
 Séminaire Bourbaki. Vol. 2005/2006, Exp. No. 953, vii, 33–53.

T. Cazenave. An overview of the nonlinear Schrödinger equation.Nov. 2020.

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Towards a computer-assisted proof of the spectral property

Strategies to provide computer-assisted proofs of the spectral property have been developed in the following papers:

- G. Fibich, F. Merle, and P. Raphaël. "Proof of a spectral property related to the singularity formation for the *L*² critical nonlinear Schrödinger equation". In: *Phys. D* 220.1 (2006), pp. 1–13.
- K. Yang, S. Roudenko, and Y. Zhao. "Blow-up dynamics and spectral property in the *L*²-critical nonlinear Schrödinger equation in high dimensions". In: *Nonlinearity* 31.9 (2018), pp. 4354–4392.

A good understanding of Q and of dynamics of (NLS) is needed to provide rigorous computer-assisted proofs, providing error bounds between the numerical and the theoretical solutions and taking floating point roundoff errors into account (using e.g. interval arithmetic).

I= nac

NLS, blow-up	Solitary waves	ODE approach	Blow-up thresholds	log-log blow-up

Towards a computer-assisted proof of the spectral property

Strategies to provide computer-assisted proofs of the spectral property have been developed in the following papers:

- G. Fibich, F. Merle, and P. Raphaël. "Proof of a spectral property related to the singularity formation for the *L*² critical nonlinear Schrödinger equation". In: *Phys. D* 220.1 (2006), pp. 1–13.
- K. Yang, S. Roudenko, and Y. Zhao. "Blow-up dynamics and spectral property in the *L*²-critical nonlinear Schrödinger equation in high dimensions". In: *Nonlinearity* 31.9 (2018), pp. 4354–4392.

A good understanding of Q and of dynamics of (NLS) is needed to provide rigorous computer-assisted proofs, providing error bounds between the numerical and the theoretical solutions and taking floating point roundoff errors into account (using e.g. interval arithmetic).

ELE DOG

Thanks for your attention!

ъ.

Main used references (good starting points into NLS!)

- T. Tao. Nonlinear dispersive equations. Vol. 106. CBMS Regional Conference Series in Mathematics. Local and global analysis.
 Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006, pp. xvi+373.

- T. Cazenave. An overview of the nonlinear Schrödinger equation. Nov. 2020.
- T. Cazenave. Semilinear Schrödinger equations. Vol. 10. Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003, pp. xiv+323.