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NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Non-linear Schrödinger equation:{
i∂tψ = −∆ψ − |ψ|q−2ψ, (t, x) ∈ [0,T [× RN ,

ψ(0, x) = ψ0(x), u0 : RN → C,
(NLS)

where
ψ : [0,T [× RN → C;
i2 = −1;
∂tψ is the derivative with respect to the time variable;
∆ =

∑
1≤i≤N ∂

2
xi is the Laplacian on RN ;

q > 2 is a real parameter.
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Conservation laws

Formally, the L2 norm (the mass)

‖ψ(t, ·)‖L2 :=
(∫

RN
|ψ(t, x)|2 dx

)1/2

and the energy

E(ψ(t, ·)) := 1
2

∫
RN
|∇ψ(t, x)|2 dx − 1

q

∫
RN
|ψ(t, x)|q dx

where
∇ := (∂x1 , . . . , ∂xN ).

are preserved during the evolution.

Natural space associated to the equation?
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Sobolev space H1

Definition (Sobolev space H1)

H1(RN ; C) :=
{
v ∈ L2(RN ; C)

∣∣∣ ∇v ∈ L2(RN ; C)N
}

For the L2 mass: if v ∈ H1(RN) then v belongs to L2(RN).
For the energy

E(v) = 1
2

∫
RN
|∇v |2 dx − 1

q

∫
RN
|v |q dx ,

we need to ensure that v belongs to Lq(RN).
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Sobolev embedding

Theorem (Sobolev embedding for H1)
The space H1(RN ; C) is embedded in Lp(RN ; C) for all p ∈ [2, 2∗[ where

2∗ :=
{
2N/(N − 2) si N ≥ 3,
∞ si N ∈ {1, 2}

is the critical Sobolev exponent.

Conclusion: if 2 < q < 2∗, the energy

E(v) = 1
2

∫
RN
|∇v |2 dx − 1

q

∫
RN
|v |q dx

is well defined for every function v ∈ H1(RN ; C).
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Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)
For every initial condition ψ0 ∈ H1(RN ; C) and every q ∈ ]2, 2∗[, there
exists a time Tmax ∈ ]0,+∞] and a unique continuous solution

ψ : [0,Tmax[→ H1(RN ; C), t 7→ u(t, ·)

to the nonlinear Schrödinger equation:

i∂tψ = −∆ψ − |ψ|q−2ψ, (t, x) ∈ [0,Tmax[× RN .

Moreover, the mass and energy conservation laws are satisfied.

If Tmax < +∞, there is finite-time blowup:

lim
t→Tmax

‖∇u(t, ·)‖L2 = +∞.

Damien Galant Blow-up Phenomena for NLS 25 November 2021 6 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)
For every initial condition ψ0 ∈ H1(RN ; C) and every q ∈ ]2, 2∗[, there
exists a time Tmax ∈ ]0,+∞] and a unique continuous solution

ψ : [0,Tmax[→ H1(RN ; C), t 7→ u(t, ·)

to the nonlinear Schrödinger equation:

i∂tψ = −∆ψ − |ψ|q−2ψ, (t, x) ∈ [0,Tmax[× RN .

Moreover, the mass and energy conservation laws are satisfied.

If Tmax < +∞, there is finite-time blowup:

lim
t→Tmax

‖∇u(t, ·)‖L2 = +∞.

Damien Galant Blow-up Phenomena for NLS 25 November 2021 6 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)
For every initial condition ψ0 ∈ H1(RN ; C) and every q ∈ ]2, 2∗[, there
exists a time Tmax ∈ ]0,+∞] and a unique continuous solution

ψ : [0,Tmax[→ H1(RN ; C), t 7→ u(t, ·)

to the nonlinear Schrödinger equation:

i∂tψ = −∆ψ − |ψ|q−2ψ, (t, x) ∈ [0,Tmax[× RN .

Moreover, the mass and energy conservation laws are satisfied.

If Tmax < +∞, there is finite-time blowup:

lim
t→Tmax

‖∇u(t, ·)‖L2 = +∞.

Damien Galant Blow-up Phenomena for NLS 25 November 2021 6 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Existence of blow-up: Glassey’s argument

If ψ0 ∈ H1(RN ; C) is such that xψ0 ∈ L2(RN ; C), then the variance of
|ψ(t, x)|2

V (t) :=
∫

RN
|x |2|ψ(t, x)|2 dx

is well-defined for all t ∈ [0,Tmax[.
Integration by parts shows that

∂ttV (t) = 16E(ψ0)− 4(N(q − 2)− 4)
q ‖ψ‖qLq .

Therefore, if q ≥ 2 + 4
N , we obtain

∂ttV (t) ≤ 16E(ψ0).
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Existence of blow-up: Glassey’s argument

Theorem
If q ≥ 2 + 4

N , ψ0 ∈ H1(RN ; C) is such that xψ0 ∈ L2(RN ; C) and
E(ψ0) < 0, then the corresponding solution ψ(t, x) of (NLS) blows up in
finite time.

Proof.
Under the assumptions of the theorem, the function

[0,Tmax[→ [0,+∞[ : t 7→ V (t)

is nonnegative and satisfies ∂ttV (t) ≤ E (ψ0) < 0.

R. T. Glassey. “On the blowing up of solutions to the Cauchy
problem for nonlinear Schrödinger equations”. In: J. Math. Phys.
18.9 (1977), pp. 1794–1797.
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Goal 1: Existence of solitary wave solutions for (NLS)

Opposed to blow-up: solitary waves of the form

ψ(t, x) = eitQ(x)

where Q ∈ H1(RN ; R) = H1(RN) is a distributional solution of the
nonlinear elliptic equation

−∆Q + Q = |Q|q−2Q. (PDEQ)

Damien Galant Blow-up Phenomena for NLS 25 November 2021 9 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Goal 2: Equality case in the Gagliardo-Nirenberg inequality

Theorem (Gagliardo-Nirenberg inequality)
For all q ∈ ]2, 2∗[, there exists a constant C(q) > 0 such that for every
function v ∈ H1(RN ; C), we have

‖u‖Lq ≤ C(q) ‖u‖1−s
L2 ‖∇u‖sL2

where s := (q−2)N
2q .

Inequality + conservation laws −→ non-explosion criteria.

Optimal constant C(q) −→ best criteria;

Passing to the modulus −→ only considering u ≥ 0 is enough.
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Variational formulation

Gagliardo-Nirenberg inequality:

‖u‖Lq ≤ C(q) ‖u‖1−s
L2 ‖∇u‖sL2 .

Goal: minimize the functional

J (u) :=
‖u‖q(1−s)

L2 ‖∇u‖qs
L2

‖u‖qLq

on H1(RN) \ {0}.
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Link between the two goals (Existence of solitary wave solutions for (NLS)
Equality case for the Gagliardo-Nirenberg inequality )

The functional J is of class C1 on H1(RN) \ {0} and its differential is
given by

dJ (u) · h = J (u)
(
q(1− s)
‖u‖2L2

∫
RN

u(x)h(x) dx

+ qs
‖∇u‖2L2

∫
RN
∇u(x) · ∇h(x) dx

− q
‖u‖qLq

∫
RN
|u(x)|q−2u(x)h(x) dx

)

for every h ∈ H1(RN). If u is a critical point of J , we have

−∆u +
(1− s)‖∇u‖2L2

s‖u‖2L2
u =
‖∇u‖2L2

s‖u‖qLq
|u|q−2u.
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Invariances of the functional

The functional

J (u) :=
‖u‖q(1−s)

L2 ‖∇u‖qs
L2

‖u‖qLq

where s := (q−2)N
2q is invariant by:

translations u(x) 7→ u(x − x0) (x0 ∈ RN);
homotheties u(x) 7→ µu(x) (µ > 0);
dilations u(x) 7→ u(λx) (λ > 0);
passings to the absolute value u(x) 7→ |u(x)|.
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Direct method from calculus of variations

Let’s consider a minimizing sequence (un)n≥1 ⊆ H1(RN) \ {0}, i.e. such
that

J (un) −−−→
n→∞

inf
u∈H1(RN)\{0}

J (u).

We would like to extract a subsequence of (un)n≥1 converging (weakly in
H1(RN) and strongly in Lq(RN)) to a function u ∈ H1(RN) \ {0} and show
that u is a minimum of J .
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Compactness

Problem: loss of compactness by translations. If u is a global minimum of
J and if ξ ∈ RN \ {0}, then the sequence of translates(

u(x − nξ)
)

n≥1

is a sequence of indistinguishable minima. If does not admit any strongly
convergent subsequence in Lq(RN).
Solution: work on the space H1

r (RN) of H1(RN) radial functions.

Theorem (W. Strauss 1977)
If N ≥ 2, the embedding of H1

r (RN) into Lp(RN) is compact for every
p ∈ ]2, 2∗[.

W. A. Strauss. “Existence of solitary waves in higher dimensions”.
In: Comm. Math. Phys. 55.2 (1977), pp. 149–162.
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Reduction to the nonnegative radial case
Data: minimizing sequence (un)n≥1 ⊆ H1(RN) \ {0} such that

J (un) −−−→
n→∞

inf
u∈H1(RN)\{0}

J (u).

By passing to the absolute value, we can suppose that un ≥ 0. We
can thus work in

H1
+(RN) :=

{
u ∈ H1(RN)

∣∣∣ u ≥ 0
}
.

We would like to map every function u ∈ H1
+(RN) to a function

u∗ ∈ H1
+(RN) ∩ H1

r (RN) such that

J (u∗) ≤ J (u).
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Symmetric decreasing rearrangement

Given a positive function u : RN → [0,+∞], we consider its superlevel sets

{x ∈ RN | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

|x |

t

t

u

|x |

t

t

u∗
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Rearrangement in H1
+

Theorem (Conservation of L2 norms, Pólya–Szegő inequality)
If u ∈ H1

+(RN), then u∗ also belongs to H1
+(RN) and we have

‖u∗‖L2 = ‖u‖L2 ,

‖∇u∗‖L2 ≤ ‖∇u‖L2 .

|x |

u

|x |

u∗
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Conclusion:
Existence of a radial positive minimum of J
Steps:(

un
)

n≥1 −→
(
|un|

)
n≥1 −→

(
|un|∗

)
n≥1 −→ compacity of the embedding

Theorem (M.I. Weinstein 1982)
The equation

−∆Q + Q = |Q|q−2Q (PDEQ)

admits a radial strictly positive solution Q ∈ H1(RN) \ {0} reaching the
global minimum of J on H1(RN) \ {0}.

M. I. Weinstein. “Nonlinear Schrödinger equations and sharp
interpolation estimates”. In: Comm. Math. Phys. 87.4 (1982–1983),
pp. 567–576.
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Existence of sign-changing radial bound states
Theorem (Bartsch-Willem, 1993)
For every k ≥ 0, there exists a radial sign-changing solution
Qk(x) = uk(|x |) ∈ H1(RN) such that [0,+∞[→ R : t 7→ uk(t) has
exactly k roots.

Figure: Graphs of u1 and u2 for N = 3 and q = 3
T. Bartsch and M. Willem. “Infinitely many radial solutions of a
semilinear elliptic problem on RN”. In: Arch. Rational Mech. Anal.
124.3 (1993), pp. 261–276.
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Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)
If N = 4 or N ≥ 6, then (PDEQ) has a nonradial solution.

The main strategy consists in constructing (using variational methods)
solutions based on another type of symmetry using the group

G = O(m)× O(m)× O(N − 2m),
then proving that the corresponding solutions are not radial since both
symmetries are “incompatible”.

T. Bartsch and M. Willem. “Infinitely many nonradial solutions of a
Euclidean scalar field equation”. In: J. Funct. Anal. 117.2 (1993),
pp. 447–460.
M. Willem. Minimax theorems. Vol. 24. Progress in Nonlinear
Differential Equations and their Applications. Birkhäuser Boston,
Inc., Boston, MA, 1996, pp. x+162.
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Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)
There exist infinitely many H1(R2; R) solutions of

−∆Q + Q = Q3

whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

Sapprox =
∑

z∈Z+

Q(· − z)−
∑

z ′∈Z−
Q(· − z ′)

for some well-chosen finite sets of points Z+,Z− ⊂ R2.
W. Ao et al. “Solutions without any symmetry for semilinear elliptic
problems”. In: J. Funct. Anal. 270.3 (2016), pp. 884–956.
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Qualitative properties (of all H1(RN) solutions of (PDEQ))

elliptic bootstrap → all H1(RN) solutions of (PDEQ) are C2(RN);
solutions of (PDEQ) decay exponentially at infinity, as well as their
first and second derivatives;
positive solutions of (PDEQ) are C∞(RN);
moving plane argument → all H1(RN) positive solutions of (PDEQ)
are radial up to translation.

B. Gidas, W. M. Ni, and L. Nirenberg. “Symmetry and related
properties via the maximum principle”. In: Comm. Math. Phys. 68.3
(1979), pp. 209–243.
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Energy and Pohožaev identites

Theorem
If Q̃ ∈ H1(RN) is a solution to (PDEQ), then

‖∇Q̃‖2L2 + ‖Q̃‖2L2 = ‖Q̃‖qLq , (N − 2)‖∇Q̃‖2L2 + N‖Q̃‖2L2 = 2N
q ‖Q̃‖

q
Lq .

S. I. Pohožaev. “On the eigenfunctions of the equation
∆u + λf (u) = 0”. In: Dokl. Akad. Nauk SSSR 165 (1965),
pp. 36–39.

Using those identities, one can show that

J (Q̃) =
2‖Q̃‖q−2

L2

q .

Damien Galant Blow-up Phenomena for NLS 25 November 2021 24 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Energy and Pohožaev identites

Theorem
If Q̃ ∈ H1(RN) is a solution to (PDEQ), then

‖∇Q̃‖2L2 + ‖Q̃‖2L2 = ‖Q̃‖qLq , (N − 2)‖∇Q̃‖2L2 + N‖Q̃‖2L2 = 2N
q ‖Q̃‖

q
Lq .

S. I. Pohožaev. “On the eigenfunctions of the equation
∆u + λf (u) = 0”. In: Dokl. Akad. Nauk SSSR 165 (1965),
pp. 36–39.

Using those identities, one can show that

J (Q̃) =
2‖Q̃‖q−2

L2

q .

Damien Galant Blow-up Phenomena for NLS 25 November 2021 24 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Energy and Pohožaev identites

Theorem
If Q̃ ∈ H1(RN) is a solution to (PDEQ), then

‖∇Q̃‖2L2 + ‖Q̃‖2L2 = ‖Q̃‖qLq , (N − 2)‖∇Q̃‖2L2 + N‖Q̃‖2L2 = 2N
q ‖Q̃‖

q
Lq .

S. I. Pohožaev. “On the eigenfunctions of the equation
∆u + λf (u) = 0”. In: Dokl. Akad. Nauk SSSR 165 (1965),
pp. 36–39.

Using those identities, one can show that

J (Q̃) =
2‖Q̃‖q−2

L2

q .

Damien Galant Blow-up Phenomena for NLS 25 November 2021 24 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Energy of solitary wave solutions

The solutions Q̃ ∈ H1(RN) to (PDEQ) correspond to solitary wave
solutions

ψ(t, x) = eitQ̃(x)

to (NLS). Their energy is given by

E(ψ(t, ·)) = 1
2‖∇ψ(t, ·)‖2L2 −

1
q ‖ψ(t, ·)‖qLq

= 1
2‖∇Q̃‖

2
L2 −

1
q ‖Q̃‖

q
Lq

= 1
q

(
N(q − 2)

4 − 1
)
‖Q̃‖qLq .

Therefore, solitary waves have a negative/zero/positive energy depending
on whether q < 2 + 4

N , q = 2 + 4
N or q > 2 + 4

N ;
Damien Galant Blow-up Phenomena for NLS 25 November 2021 25 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Energy of solitary wave solutions

The solutions Q̃ ∈ H1(RN) to (PDEQ) correspond to solitary wave
solutions

ψ(t, x) = eitQ̃(x)

to (NLS). Their energy is given by

E(ψ(t, ·)) = 1
2‖∇ψ(t, ·)‖2L2 −

1
q ‖ψ(t, ·)‖qLq

= 1
2‖∇Q̃‖

2
L2 −

1
q ‖Q̃‖

q
Lq

= 1
q

(
N(q − 2)

4 − 1
)
‖Q̃‖qLq .

Therefore, solitary waves have a negative/zero/positive energy depending
on whether q < 2 + 4

N , q = 2 + 4
N or q > 2 + 4

N ;
Damien Galant Blow-up Phenomena for NLS 25 November 2021 25 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Energy of solitary wave solutions

The solutions Q̃ ∈ H1(RN) to (PDEQ) correspond to solitary wave
solutions

ψ(t, x) = eitQ̃(x)

to (NLS). Their energy is given by

E(ψ(t, ·)) = 1
2‖∇ψ(t, ·)‖2L2 −

1
q ‖ψ(t, ·)‖qLq

= 1
2‖∇Q̃‖

2
L2 −

1
q ‖Q̃‖

q
Lq

= 1
q

(
N(q − 2)

4 − 1
)
‖Q̃‖qLq .

Therefore, solitary waves have a negative/zero/positive energy depending
on whether q < 2 + 4

N , q = 2 + 4
N or q > 2 + 4

N ;
Damien Galant Blow-up Phenomena for NLS 25 November 2021 25 / 50



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up

Studying radial solutions using ODEs
C2 radial solutions of (PDEQ) correspond to solutions of the following
Cauchy problem:{

∂ttuy + λ
t ∂tuy + |uy (t)|q−2uy (t)− uy (t) = 0,

uy (0) = y , ∂tuy (0) = 0, (ODEu)

where λ = N − 1 and t = |x |.
The existence of solutions to (ODEu) converging to 0 for t → +∞
provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. “An ODE approach to
the existence of positive solutions for semilinear problems in RN”. In:
Indiana Univ. Math. J. 30.1 (1981), pp. 141–157.

K. McLeod, W. C. Troy, and F. B. Weissler. “Radial solutions of
∆u + f (u) = 0 with prescribed numbers of zeros”. In: J. Differential
Equations 83.2 (1990), pp. 368–378.
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∂ttuy + λ
t ∂tuy + |uy (t)|q−2uy (t)− uy (t) = 0,

uy (0) = y , ∂tuy (0) = 0, (ODEu)

where λ = N − 1 and t = |x |.
The existence of solutions to (ODEu) converging to 0 for t → +∞
provides an alternate proof of existence of solitary waves.
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Interpretation: dynamics of a nonlinear damped oscillator
Potential:

V (u) := |u|
q

q − |u|
2

2 .

ODE:
∂ttuy + λ

t ∂tuy + V ′(uy (t)) = 0.

T. Tao. Nonlinear dispersive equations. Vol. 106. CBMS Regional
Conference Series in Mathematics. Local and global analysis.
Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society,
Providence, RI, 2006, pp. xvi+373.
R. L. Frank. “Ground states of semi-linear PDEs. Lecture notes from
the “Summer- school on Current Topics in Mathematical Physics”,
CIRM Marseille”. In: Sept. 2013.
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The potential well

u

V (u)

−1 1
−r r

r = (q/2)
1

q−2 > 1
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Behavior of solutions as t → +∞
Energy (unrelated to the energy of NLS as t = |x | in the ODE setting):

H(uy (t), ∂tuy (t)) = 1
2 |∂tuy (t)|2 + V (uy (t))

Damping:

∂t
(
t 7→ H(uy (t), ∂tuy (t))

)
= −λt |∂tuy (t)|2 ≤ 0

Theorem
Every solution of (ODEu) converges to −1, 0 or 1 as t → +∞.

A. Cabot, H. Engler, and S. Gadat. “On the long time behavior of
second order differential equations with asymptotically small
dissipation”. In: Trans. Amer. Math. Soc. 361.11 (2009),
pp. 5983–6017.
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Shooting method: illustration

See the blackboard and animations!

Used parameters:
λ = 1, q = 2,5.
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Uniqueness of the ground state: history

Theorem
There exists a unique y > 0 such that the associated solution of (ODEu)
(with u(0) = y) is a “ground state solution”, i.e.

∀t > 0, uy (t) > 0, lim
t→+∞

u(t) = 0.

C. V. Coffman. “Uniqueness of the ground state solution for
∆u − u + u3 = 0 and a variational characterization of other
solutions”. In: Arch. Rational Mech. Anal. 46 (1972), pp. 81–95.
M. K. Kwong. “Uniqueness of positive solutions of ∆u − u + up = 0
in Rn”. In: Arch. Rational Mech. Anal. 105.3 (1989), pp. 243–266.
K. McLeod. “Uniqueness of positive radial solutions of
∆u + f (u) = 0 in Rn. II”. In: Trans. Amer. Math. Soc. 339.2
(1993), pp. 495–505.
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Uniqueness: what about nodal solutions?

Conjecture
For every k ∈ N, there exists a unique initial condition yk > 0 such that
the associated solution uyk (t) has exactly k roots and converges to 0 as
t → +∞.

Open for most values of q and λ, even for k = 1.

Recent computer-assisted proof (for fixed k, q and λ = N − 1):
A. Cohen, Z. Li, and W. Schlag. Uniqueness of excited states to
−∆u + u − u3 = 0 in three dimensions. 2021.
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Back to the Gagliardo-Nirenberg inequality

Uniqueness of positive solutions to (PDEQ) allows to characterize all
equality cases in the Galigardo-Nirenberg inequality.

Theorem (Equality cases in the Gagliardo-Nirenberg inequality)
The global minima on H1(RN) \ {0} of functional

J (u) :=
‖u‖q(1−s)

L2 ‖∇u‖qs
L2

‖u‖qLq
,

where s := (q−2)N
2q , are the functions of the form

u(x) = µQ
(
λ(x − x0)

)
where µ ∈ R \ {0}, λ > 0 and x0 ∈ RN .
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Non-explosion criteria

Since Q is a global minimum of J , we obtain that

2‖Q‖q−2
L2

q = J (Q) ≤ J (u) =
‖u‖q(1−s)

L2 ‖∇u‖qs
L2

‖u‖qLq

for all u ∈ H1(RN) \ {0}.
Conservation laws and the Gagliardo-Nirenberg inequality with optimal
constant J (Q) imply that, for all t ∈ [0,Tmax[,

‖∇ψ(t, ·)‖2L2 ≤ 2E(ψ0) + 2
q ‖ψ(t, ·)‖qLq

≤ 2E(ψ0) +
‖ψ0‖q(1−s)

L2 ‖∇ψ(t, ·)‖qs
L2

‖Q‖q−2
L2
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Non-explosion below the mass-critical exponent

For all t ∈ [0,Tmax[, we obtained the bound

‖∇ψ(t, ·)‖2L2 ≤ 2E(ψ0) +
‖ψ0‖q(1−s)

L2 ‖∇ψ(t, ·)‖qs
L2

‖Q‖q−2
L2

.

If q < 2 + 4
N , then qs < 2 (since s := (q−2)N

2q ), so we obtain a uniform
bound in t for ‖∇ψ(t, ·)‖2L2 , and there is no blow-up.
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Many features of the mass-critical exponent

Glassey’s argument applies iff q ≥ 2 + 4
N ;

Solitary waves have a negative/zero/positive energy depending on
whether q < 2 + 4

N , q = 2 + 4
N or q > 2 + 4

N ;
Conservation laws and the Gagliardo-Nirenberg inequality imply a
uniform bound for ‖∇ψ(t, ·)‖2L2 for any ψ0 ∈ H1(RN ; C) iff
q < 2 + 4

N .
When q = 2 + 4

N , (NLS) enjoys an extra pseudo-conformal symmetry.
If ψ(t, x) solves (NLS) for q = 2 + 4

N , so does

( T
T − t

)N
2
ψ

( tT
T − t ,

xT
T − t

)
e−i |x|

2
4(T−t) .

From now on, we consider the mass-critical case q = 2 + 4
N .
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Blow-up thresholds in the mass-critical case

If q = 2 + 4
N , we can rewrite the bound

‖∇ψ(t, ·)‖2L2 ≤ 2E(ψ0) +
‖ψ0‖q(1−s)

L2 ‖∇ψ(t, ·)‖qs
L2

‖Q‖q−2
L2

,

where s := (q−2)N
2q , as

‖∇ψ(t, ·)‖2L2

(
1−
‖ψ0‖4/N

L2

‖Q‖4/N
L2

)
≤ 2E(ψ0),

since s = 2
q and so q(1− s) = q − 2 = 4

N .

If ‖ψ0‖L2 < ‖Q‖L2 , we obtain a uniform bound for ‖∇ψ(t, ·)‖2L2 and there
is no blow-up.
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Existence of minimal mass blow-up solutions
If ‖ψ0‖L2 = ‖Q‖L2 , blow-up is possible. The explicit solution

sT (t, x) :=
( T

T−t
)N/2Q

( xT
T−t

)
exp
(
i
( Tt

T−t −
|x |2

4(T−t)
))

(1)

obtained by the pseudo-conformal transform blows up at time t = T .

Remark
The complex exponential is very important. Indeed, for all x ∈ RN ,

|sT (0, x)| = |Q(x)|,

but the initial condition ψ0 = Q gives rise to the solitary wave solution
eitQ(x), which does not blow-up!

It turns out that solutions of the form (1) are the only minimal mass
solutions of (NLS) when q = 2 + 4

N , up to the symmetries of the equation.
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Classification of minimal mass solutions

Theorem (F. Merle 1993)
If ψ(t, x) is a solution of (NLS), defined for t ∈ [0,T [ and blowing up for
t = T, then there exist θ ∈ R, ω ∈ ]0,+∞[, x0 ∈ RN , x1 ∈ RN such that

ψ0 =
( ω
T
)N/2

eiθ−i |x−x1|/4T+iω2/TQ
(
ω
(x − x1

T − x0
))
.

F. Merle. “Determination of blow-up solutions with minimal mass
for nonlinear Schrödinger equations with critical power”. In: Duke
Math. J. 69.2 (1993), pp. 427–454.
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Further study of sT (t, x)
If

sT (t, x) :=
( T

T−t
)N/2Q

( xT
T−t

)
exp
(
i
( Tt

T−t −
|x |2

4(T−t)
))
,

then the variance of |sT (t, ·)|2 is given by

V (t) =
∫

RN
|x |2|sT (t, x)|2 dx

=
( T
T − t

)N ∫
RN
|x |2Q

( xT
T − t

)2
dx

=
(T − t

T

)2
V (0)

−−−→
t→T

0

The variance identity implies that

∂ttV (t) = 2
T 2V (0) = 16E(sT (t, ·))
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Further study of sT (t, x)

The pseudo-conformal solutions have a strictly positive energy;
The variance of sT (t, ·) converges to 0 as t → T ;
For all t ∈ [0,T [, we have

‖sT (t, ·)‖L2 = ‖Q‖L2 .

The two previous points imply that

|sT (t, ·)|2 S
′(RN)−−−−→

t→T
|Q|2L2δ0.

Blow-up rate:
|∇sT (t, ·)|L2 = T‖∇Q‖L2

T − t
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Bourgain-Wang solutions

Question: what happens if ‖ψ0‖L2 > ‖Q‖L2?

Theorem (J. Bourgain, W. Wang 1997)
If N = 1 or N = 2, the mass-critical (NLS) equation admits solutions
ψ(t, x) ∈ C([0,T [,H1(RN ; C)) with ‖ψ(t, ·)‖L2 > ‖Q‖L2 blowing up at
time T > 0 at the rate

‖ψ(t, ·)‖L2 ∼
C

T − t

near blow-up time.

J. Bourgain and W. Wang. “Construction of blowup solutions for
the nonlinear Schrödinger equation with critical nonlinearity”. In:
vol. 25. 1-2. Dedicated to Ennio De Giorgi. 1997, 197–215 (1998).
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The log-log blow-up rate
sT solutions have a strictly positive energy, while Glassey’s argument
shows that there are many solutions with a negative energy;
Solutions blowing up with rate C

T−t are not observed in numerical
simulations;
In the 1980s, it was suspected that the log-log law

‖ψ(t, ·)‖L2 ∼
(

log | log(T − t)|
T − t

)1/2

was the generic blow-up speed.
Historical context: see e.g.

G. Fibich, F. Merle, and P. Raphaël. “Proof of a spectral property
related to the singularity formation for the L2 critical nonlinear
Schrödinger equation”. In: Phys. D 220.1 (2006), pp. 1–13.
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Results of Frank Merle and Pierre Raphaël (context)
The following results will assume N = 1 or N ≥ 2 and a certain
“spectral property” holds true (see later).
They concern the mass-critical case q = 2 + 4

N .
We will consider initial profiles ψ0 ∈ H1(RN ; C) satisfying

‖Q‖2L2 ≤ ‖ψ0‖2L2 ≤ ‖Q‖2L2 + α∗. (2)

For all N, the following theorems will provide the existence of a
suitable α∗ > 0 such that the conclusions of the theorems hold for all
ψ0 ∈ H1(RN ; C) such that (2) holds.
We will denote the associated solution to (NLS) by ψ(t, ·) and assume
its maximal interval of definition [0,Tmax[, with Tmax ∈ ]0,+∞].

The statements that follow are taken from the Theorem 1 of
G. Fibich, F. Merle, and P. Raphaël. “Proof of a spectral property
related to the singularity formation for the L2 critical nonlinear
Schrödinger equation”. In: Phys. D 220.1 (2006), pp. 1–13.
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Description of the singularity

Theorem
Assume that u(t) blows up in finite time, i.e. Tmax < +∞. Then there
exist parameters (λ(t), x(t), γ(t)) ∈ ]0,+∞[× RN × R and an asymptotic
profile u∗ ∈ L2(RN) such that

ψ(t, ·)− 1
λ(t)N/2Q

(
x − x(t)
λ(t)

)
eiγ(t) L2

−−−→
t→T

u∗.

Moreover, the blow-up point is finite in the sense that

x(t) −−−→
t→T

x(T ) ∈ RN .
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Estimates on the blow up speed

Theorem
We have either

‖∇ψ(t, ·)‖L2

‖∇Q‖L2

(
T − t

log | log(T − t)|

)1/2

−−−→
t→T

1√
2π
,

or
‖∇ψ(t, ·)‖L2 ≥

C(ψ0)
T − t ,

as t → T.
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Sufficient condition for log-log blow-up, stability of the rate

Theorem
If E(u0) ≤ 0 and ‖ψ0‖L2 > ‖Q‖L2 , then ψ(t, ·) blows up in finite time with
the log-log speed.
Moreover, the set of initial profiles ψ0 ∈ H1(RN) such that

‖Q‖2L2 ≤ ‖ψ0‖2L2 ≤ ‖Q‖2L2 + α∗

such that the corresponding solution ψ(t, ·) to (NLS) blows up in finite
time Tmax < +∞ with the log-log speed is open in H1(RN).
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The spectral property (sketch)

The main concern is related to understanding what are the eigenvalues
and eigenvectors of the two real Schrödinger operators

L1 = −∆ + V1, L1 = −∆ + V2,

where, still using the convention t = |x | in the radial setting,

V1(t) = 2
N

(
4
N + 1

)
Q

4
N−1t∂tQ, V2(t) = 2

NQ
4
N−1t∂tQ.

In practice, we need to consider the ODE{
−∂ttUi (t)− N−1

t ∂tUi (t) + Vi (t)Ui (t) = 0
Ui (0) = 1, ∂tUi (0) = 0,

and counting the number of zeros of Ui , when i = 1 and i = 2.
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Papers on log-log blow-up
F. Merle and P. Raphaël. “The blow-up dynamic and upper bound
on the blow-up rate for critical nonlinear Schrödinger equation”. In:
Ann. of Math. (2) 161.1 (2005), pp. 157–222.
F. Merle and P. Raphaël. “On universality of blow-up profile for L2

critical nonlinear Schrödinger equation”. In: Invent. Math. 156.3
(2004), pp. 565–672.
F. Merle and P. Raphael. “Sharp upper bound on the blow-up rate
for the critical nonlinear Schrödinger equation”. In: Geom. Funct.
Anal. 13.3 (2003), pp. 591–642.

and many more! For overviews, see
N. Burq. “Explosion pour l’équation de Schrödinger au régime du
log log (d’apres Merle-Raphael)”. In: Astérisque 311 (2007).
Séminaire Bourbaki. Vol. 2005/2006, Exp. No. 953, vii, 33–53.
T. Cazenave. An overview of the nonlinear Schrödinger equation.
Nov. 2020.
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Towards a computer-assisted proof of the spectral property

Strategies to provide computer-assisted proofs of the spectral property
have been developed in the following papers:

G. Fibich, F. Merle, and P. Raphaël. “Proof of a spectral property
related to the singularity formation for the L2 critical nonlinear
Schrödinger equation”. In: Phys. D 220.1 (2006), pp. 1–13.

K. Yang, S. Roudenko, and Y. Zhao. “Blow-up dynamics and
spectral property in the L2-critical nonlinear Schrödinger equation in
high dimensions”. In: Nonlinearity 31.9 (2018), pp. 4354–4392.

A good understanding of Q and of dynamics of (NLS) is needed to provide
rigorous computer-assisted proofs, providing error bounds between the
numerical and the theoretical solutions and taking floating point roundoff
errors into account (using e.g. interval arithmetic).
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Thanks! References

Thanks for your attention!
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Main used references (good starting points into NLS!)

T. Tao. Nonlinear dispersive equations. Vol. 106. CBMS Regional
Conference Series in Mathematics. Local and global analysis.
Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society,
Providence, RI, 2006, pp. xvi+373.
T. Cazenave. An overview of the nonlinear Schrödinger equation.
Nov. 2020.
T. Cazenave. Semilinear Schrödinger equations. Vol. 10. Courant
Lecture Notes in Mathematics. New York University, Courant
Institute of Mathematical Sciences, New York; American
Mathematical Society, Providence, RI, 2003, pp. xiv+323.

Damien Galant Blow-up Phenomena for NLS 25 November 2021 2 / 2


	Nonlinear Schrödinger equation
	Solitary waves
	ODE approach
	Blow-up thresholds
	log-log blow-up
	Appendix
	Thanks!
	References


