Dilation of regular polygons

Algorithmic aspects

Damien Galant
UMONS - Erasmus Université Paris-Sud

October 29, 2019

UMONS
University of Mons

Introduction and notations

- focus on regular n-gons
- S : set of vertices of a regular n-gon
- triangulation on S : maximal set of segments whose endpoints are in S and which only intersect at points of S
- \mathcal{T} : set of triangulations of S
- dilation of $T \in \mathcal{T}: \operatorname{dil}(T) \geq 1$

Example of a triangulation

A triangulation T of a 10-gon. Corresponding dilation: $\operatorname{dil}(T)=1.42705098$

Example of a triangulation

The path between a critical pair for this triangulation is shown in red. $\operatorname{dil}(T)=\frac{\text { total length of the red path }}{\text { euclidean distance between the endpoints }}$

What are we looking for?

Computing the dilation of regular n-gons, i.e.

$$
\min _{T \in \mathcal{T}} \operatorname{dil}(T)
$$

For a given $T \in \mathcal{T}$:

- Computing shortest paths in the graph: $O\left(n^{3}\right)$ using Floyd-Warshall's algorithm.
- Iterate over all pairs of points in $O\left(n^{2}\right)$ to get $\operatorname{dil}(T)$.
$\rightarrow O\left(n^{3}\right)$ overall

Combinatorial explosion

- Straightforward algorithm: iterate over all possible triangulations T (see e.g. Mulzer (2004)).
- Impossible for $n \geq 25$: the number of triangulations of a n-gon is equal to the Catalan number C_{n-2}, where

$$
C_{k}=\frac{1}{k+1} \cdot\binom{2 k}{k}
$$

($C_{23}=343.059 .613 .650$)
\rightarrow combinatorial explosion

Proposed solution

- "Branch-and-bound-like" approach.
- Lower bound method: inspired by Dumitrescu and Ghosh (2016).

Lower bound: what are we looking for?

- We want a proven lower bound for the dilation of regular n-gons.
- If the found lower bound can be realized as $\operatorname{dil}(T)$ for some $T \in \mathcal{T}$, we are done.

Partial triangulations

- Partial triangulation: set of segments whose endpoints are in S and which only intersect at points of S (no maximality condition).
- We consider that the edges of the polygon are always present.
- \mathcal{P} : set of (possibly) partial triangulations.
- Natural notion of inclusion $P_{1} \subset P_{2}$ for $P_{1}, P_{2} \in \mathcal{P}$.

Examples of (partial) triangulations

P_{1}

P_{2}

P_{3}

$$
\begin{gathered}
P_{1} \subset P_{2} \subset P_{3} \\
P_{3} \in \mathcal{T}
\end{gathered}
$$

Graphs with cliques

- Given P, we are interested in all triangulations containing P.
- The graph $G C_{P}$ is obtained by taking all segments between points of S which do not intersect segments of P.
- "Duality": for $T \in \mathcal{T}, P \subseteq T \Leftrightarrow T \subseteq G C_{P}$

A graph with cliques $G C_{P}$

10-gon, three segments in P (shown in green), $G C_{P}$: green and red segments $\operatorname{nlb}(P)=1.42705098$

Lower bound from a partial configuration

- Given P, "naive" lower bound on the dilation of all triangulations containing P given by

$$
\operatorname{nlb}(P):=\max _{\substack{p, q \in S \\ p \neq q}} \frac{d_{G C_{P}}(p, q)}{d_{\text {Euclidean }}(p, q)}
$$

- Monotonicity:

$$
P \subseteq P^{\prime} \Rightarrow \operatorname{nlb}(P) \leq \operatorname{nlb}\left(P^{\prime}\right)
$$

- If $T \in \mathcal{T}$ is a triangulation,

$$
\operatorname{nlb}(T)=\operatorname{dil}(T)
$$

Summary of the "naive" lower bound technique

P	\rightarrow	partial triangulation
\Downarrow		
$G C_{P}$	\rightarrow	add all segments which don't intersect P
\Downarrow		distance using only segments in $G C_{P}$
$d_{G C_{P}}$	\rightarrow	
\Downarrow		
$\operatorname{nlb}(P)$	\rightarrow	"naive" lower bound from P

The lower bound technique

- We want a better bound $\operatorname{lb}(P)$ with

$$
\operatorname{nlb}(P) \leq \operatorname{lb}(P) \leq \min _{\substack{T \in \mathcal{T} \\ P \subseteq T}} \operatorname{dil}(T)
$$

- We use $G C_{P}$ (as for nlb).

Pairs of pairs of points

- Idea of nlb: use the inequality

$$
d_{G C_{p}}(p, q) \leq d_{G r a p h ~ o f ~} T(p, q)
$$

for a fixed pair of points $p, q \in S, p \neq q$.

- Problem: pairs of points are considered independently.
- Solution (inspired by Dumitrescu and Ghosh (2016)): consider two pairs of points at once.

Pairs of pairs of points

Simple observation: if $s_{1}, s_{2}, e_{1}, e_{2} \in S$ are distinct points in clockwise order, then the paths from s_{1} to e_{1} and from s_{2} to e_{2} must intersect at some point $p \in S$.

Pairs of pairs of points

- We have no idea of which p is optimal \rightarrow take the one which gives the lowest bound.
- The bound $\operatorname{lb}\left(s_{1}, s_{2}, e_{1}, e_{2}\right)$ associated to $s_{1}, s_{2}, e_{1}, e_{2} \in S$ is

$$
\min _{p \in S} \max \left\{\frac{d_{G C_{P}}\left(s_{1}, p\right)+d_{G C_{p}}\left(p, e_{1}\right)}{d_{\text {Euclidean }}\left(s_{1}, e_{1}\right)}, \frac{d_{G C_{P}}\left(s_{2}, p\right)+d_{G C_{P}}\left(p, e_{2}\right)}{d_{\text {Euclidean }}\left(s_{2}, e_{2}\right)}\right\}
$$

- We obtain our better bound

$$
\operatorname{lb}(P)=\max _{\substack{s_{1}, s_{2}, e_{1}, e_{2} \in S \\ \text { is ats } \\ \text { in cisctick } \\ \text { cockise onder }}} \operatorname{lb}\left(s_{1}, s_{2}, e_{1}, e_{2}\right)
$$

What we have and what we want

- Lower bound technique: lower bound $\operatorname{lb}(P)$ on the dilation of triangulations which contain P.
- Our goal: find a global lower bound glb with

$$
\mathrm{glb} \leq \min _{T \in \mathcal{T}} \operatorname{dil}(T)
$$

and a sharp inequality (" $=$ " \rightarrow dil computed).

Algorithm to find a global lower bound

- Algorithm for glb: take

$$
\mathrm{glb}=\min _{P \in \mathcal{C}} \operatorname{lb}(P)
$$

where $\mathcal{C} \subseteq \mathcal{P}$ is a set of partial configurations.

- Exhaustive method: case $\mathcal{C}=\mathcal{T}$!

Global lower bound: which configurations should we consider?

- How does the algorithm choose \mathcal{C} ?
- Key point: good tradeoff between \mathcal{C} small (fast algo, possibly poor bound) and \mathcal{C} large (slower, better bound).

The search tree

- Abstract "search tree" of partial configurations $P \in \mathcal{P}$.
- For each P, we have a bound $\operatorname{lb}(P)$.
- Monotonicity is important: if $P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}=T \in \mathcal{T}$, then

$$
\operatorname{lb}\left(P_{0}\right) \leq \operatorname{lb}\left(P_{1}\right) \leq \cdots \leq \operatorname{lb}\left(P_{k}\right)=\operatorname{dil}(T)
$$

Pruning the search tree

Pruning is very efficient for optimisation problems on search trees
\rightarrow need a "target value"
Lower bound, with a "target value" c
Given a constant

$$
c \geq \min _{T \in \mathcal{T}} \operatorname{dil}(T)
$$

return a proven lower bound

$$
\operatorname{glb} \leq \min _{T \in \mathcal{T}} \operatorname{dil}(T)
$$

In practice, $c=\operatorname{dil}\left(T_{\text {candidate }}\right) \in \mathcal{T}$ for a very good triangulation T.

What is c useful for?

- c is only used for pruning purposes
\rightarrow "cut" branches of the search tree
- c, given as input to the lower bound algorithm, does not change the result returned by the algorithm (!)
- The speed of the proposed method depends crucially on the "quality" of c.
- Hope: prove that c is in fact equal to the dilation, i.e.

$$
\mathrm{glb}=c=\operatorname{dil}\left(T_{\text {candidate }}\right)
$$

Important edges first

- The order in which partial configurations are considered matters.
- Important to first put some edges that will cause $\mathrm{lb}(P)$ to be big, to cut early.
- Our program puts the edges of the triangle which contains the center first.
- It then puts three smaller triangles on the 3 zones delimitated by the central triangle.

Central triangle

A possible central triangle in a 10-gon.

Putting it all together

Lower bound algorithm

(1) Take a positive integer n and a "target value" c as input.
(2) Go through the search tree of partial triangulations, considering important edges first (adding triangles gradually).
(3) Prune while going through the search tree.

- Stop at a specified depth.
- Return the global lower bound glb.

Upper bound: what are we looking for?

As we saw before, we need a good target constant $c=\operatorname{dil}\left(T_{\text {good }}\right)$ if we want our lower bound algorithm to run fast enough, and we can only conclude if

$$
c=\min _{T \in \mathcal{T}} \operatorname{dil}(T)
$$

Classical techniques

- Most articles only focus on the upper bound part: find $T_{\text {good }}$,

$$
\min _{T \in \mathcal{T}} \operatorname{dil}(T) \lesssim \operatorname{dil}\left(T_{\text {good }}\right)
$$

- Two typical steps:
(1) Describe a class of "seemingly good" triangulations (classes with 4 and 6 parameters in Sattari and Izadi (2019)).
(2) Find the optimal triangulation among the members of the class.

Discussion of such techniques

Two main advantages:

- The number of considered configurations is polynomial in n.
- Finding the best configuration
\rightarrow doable either with a computer or by hand.
Intrinsic issues:
- No formal justification regarding why these classes are considered, only heuristic motivations.
- (!) No control on the sharpness of the inequality

$$
\min _{T \in \mathcal{T}} \operatorname{dil}(T) \leq \operatorname{dil}\left(T_{\text {good }}\right)
$$

Discussion of such techniques

- Second issue: due to the nature of the methods, i.e. living in $\mathcal{S} \subseteq \mathcal{T}$ and forgetting about the rest of \mathcal{T}.
- Lower bound algorithm \rightarrow response to the second issue.
- To avoid these issues, we will use metaheuristics instead to find good configurations.

Metaheuristics

- Goal: explore the search space \mathcal{T} and find good configurations.
- Metaheuristics: generic methods to solve optimization problems.
- Here: hill climbing.

Hill climbing

Given "neighbourhood operations" on the search space:
Hill climbing
(1) Start from some initial state s_{0} in the configuration space.
(2) Consider all neighbours of s_{0}.
(0) Go to the neighbour which corresponds to the highest value.

- When all neighbours produce a lower value, stop the algorithm and return the current state and the current value.

From local maxima to candidates of global maxima

Hill climbing \rightarrow local maxima.

Source: https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-intelligence/

Solution \rightarrow "randomized multistart" strategy.

An example of neighbourhood operation

Example of 42-gons

Let's do it live!

Known values for the dilation before our work

n	$\operatorname{dil}\left(S_{n}\right)$	n	$\operatorname{dil}\left(S_{n}\right)$	n	$\operatorname{dil}\left(S_{n}\right)$
4	1.4142	12	1.3836	20	1.4142
5	1.2360	13	1.3912	21	1.4161
6	1.3660	14	1.4053	22	1.4047
7	1.3351	15	1.4089	$\mathbf{2 3}$	$\mathbf{1 . 4 3 0 8}$
8	1.4142	16	1.4092	24	1.4013
9	1.3472	17	1.4084	25	<1.4296
10	1.3968	18	1.3816	26	<1.4202
11	1.3770	19	1.4098		

The values of $\operatorname{dil}\left(S_{n}\right)$ for $n=4, \ldots, 26$, from Dumitrescu and Ghosh (2016).

New exact values computed by our algorithm

n	$\operatorname{dil}\left(S_{n}\right)$	time	n	$\operatorname{dil}\left(S_{n}\right)$	time	n	$\operatorname{dil}\left(S_{n}\right)$	time
20	1.4142	$<5 \mathrm{~s}$	28	1.4147	20 s	36	$?$	-
21	1.4161	$<5 \mathrm{~s}$	29	1.4198	$<10 \mathrm{~s}$	37	$?$	-
22	1.4047	$<5 \mathrm{~s}$	30	1.4236	2 min	38	1.4130	1 min
23	1.4308	$<5 \mathrm{~s}$	31	1.4119	1 min	39	$?$	-
24	1.4013	$<5 \mathrm{~s}$	32	1.4160	20 s	40	$?$	-
25	1.4049	15 s	33	1.4184	2 min	41	$?$	-
26	1.4169	15 s	34	1.4167	1 min	42	1.4222	15 s
27	1.4185	15 s	35	1.4212	3 min	43	1.4307	3 min

The values of $\operatorname{dil}\left(S_{n}\right)$ computed by our programs, with the associated total runtime (upper bound + lower bound).

Maximal dilation of a convex polygon

- Our method gives (after approximately 30 min)

$$
\operatorname{dil}(53 \text {-gons) } \geq 1.4336
$$

- This improves the bound of $\operatorname{dil}(23$-gons) ≈ 1.4308 obtained in Dumitrescu and Ghosh (2016) for the "worst-case dilation of plane spanners":

$$
\sup _{\substack{S \subset \mathbb{R}^{2} \\ S \text { finite }}} \operatorname{dil}(S)
$$

Further goals

- Study the asymptotic case, i.e. the dilation of the circle.
- Find "small" classes containing optimal configurations.
- Finer information about small configurations: all good configurations, their symmetries, ...
- Perhaps a "real branch-and-bound" instead of our "two-steps" method.

Bibliography

- Adrian Dumitrescu and Anirban Ghosh. "Lower Bounds on the Dilation of Plane Spanners". In: Algorithms and Discrete Applied Mathematics. Ed. by Sathish Govindarajan and Anil Maheshwari. Cham: Springer International Publishing, 2016, pp. 139-151. ISBN: 978-3-319-29221-2.
目 Wolfgang Mulzer. "Minimum dilation triangulations for the regular n-gon". MA thesis. 2004. URL:
https://page.mi.fu-berlin.de/mulzer/pubs/diplom.pdf.
目 Sattar Sattari and Mohammad Izadi. "An improved upper bound on dilation of regular polygons". In: Computational Geometry 80 (2019), pp. 53-68. ISSN: 0925-7721. DOI:
https://doi.org/10.1016/j.comgeo.2019.01.009.

