PSPACE algorithm for SPEs in quantitative reachability games

Thomas Brihaye — Véronique Bruyère — Aline Goeminne — Jean-François Raskin — Marie van den Bogaard

1 Background

- Quantitative reachability game
- Subgame
- Nash Equilibrium and Subgame Perfect Equilibrium
- Extended game
- Constrained existence problem

2 PSPACE algorithm

- Overview
- λ^* -consistent plays and characterization
- Complexity of the computation

Background

- Quantitative reachability game
- Subgame
- Nash Equilibrium and Subgame Perfect Equilibrium
- Extended game
- Constrained existence problem

Quantitative reachability game

Play (resp. history): infinite (resp. finite) path in the graph from v_0 ;

- Strategy: choice of a player when it is his turn to play; Ex: σ_○ is a strategy for P_○ and σ_□ is a strategy for P_□;
- Strategy profile: $(\sigma_{\bigcirc}, \sigma_{\square})$ is a strategy profile;
- Outcome: given $(\sigma_{\bigcirc}, \sigma_{\square})$, $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = (v_0 v_1 v_2 v_3 v_4)^{\omega}$ is the unique consistent play.

Subgame

Let hv be an history $\rightsquigarrow (\mathcal{G}_{\restriction h}, v)$: \triangle Don't forget the past! $(\mathcal{G}_{\restriction h}, v) = (\Pi, V, E, (V_i)_{i \in \Pi}, (Cost_{i \restriction h})_{i \in \Pi}, (F_i)_{i \in \Pi})$

- $\operatorname{Cost}_{i \upharpoonright h}(\rho) = \operatorname{Cost}_i(h\rho);$
- $\sigma_{i \upharpoonright h}(h'v) = \sigma_i(hh'v).$
- *Ex:* $(\mathcal{G}_{|v_0v_6v_7}, v_6)$

Nash Equilibrium and Subgame Perfect Equilibrium

Nash equilibrium (NE)

A strategy profile $(\sigma_i)_{i\in\Pi}$ is a Nash equilibrium in (\mathcal{G}, v_0) if and only if for all $i \in \Pi$ and all σ'_i :

```
\operatorname{Cost}_i(\langle \sigma \rangle_{v_0}) \leq \operatorname{Cost}_i(\langle \sigma'_i, (\sigma_j)_{j \in \Pi \setminus \{i\}} \rangle_{v_0}).
```

 \rightsquigarrow No incentive to deviate unilateraly.

Nash Equilibrium and Subgame Perfect Equilibrium

Subgame perfect equilibrium (SPE)

A strategy profile $(\sigma_i)_{i\in\Pi}$ is a subgame perfect equilibrium in (\mathcal{G}, v_0) if and only for all history $hv : (\sigma_{i\uparrow h})_{i\in\Pi}$ is a Nash equilibrium in $(\mathcal{G}_{\uparrow h}, v)$.

- NE with outcome $(v_0 v_6 v_7 v_6)^{\omega} \rightsquigarrow \text{Cost} = (+\infty, 2).$
- In $(\mathcal{G}_{\uparrow v_0}, v_1)$, outcome: $v_1 v_5 (v_0 v_6 v_7 v_6)^{\omega} \rightsquigarrow$ $\text{Cost}_{\uparrow v_0} = \text{Cost}(v_0 \cdot v_1 v_5 (v_0 v_6 v_7 v_6)^{\omega}) = (+\infty, 5)$
- Profitable deviation, outcome: $v_1 v_2 v_3 v_4 (v_0 v_6 v_7 v_6)^{\omega} \rightsquigarrow$ $\text{Cost}_{|v_0|} = \text{Cost}(v_0 \cdot v_1 v_2 v_3 v_4 (v_0 v_6 v_7 v_6)^{\omega}) = (4, 4)$

Extended game

- Regions (denoted by I) $\rightsquigarrow \emptyset, \{2\}$ and $\{1, 2\}$;
- Total order on regions $(I' \preceq I \text{ iff } I \in \text{Succ}^*(I')) \rightsquigarrow \emptyset \preceq \{2\} \preceq \{1,2\};$
- Decomposition of plays region by region $\rightsquigarrow (v_0, \emptyset)(v_1, \emptyset)(v_2, \emptyset)(v_3, \emptyset)[(v_4, \{1,2\})(v_0, \{1,2\})(v_1, \{1,2\})(v_2, \{1,2\})(v_3, \{1,2\})]^{\omega}$

region \emptyset

region $\{1,2\}$

Constrained existence problem

Constrained existence problem

Let (\mathcal{G}, v_0) be a quantitative reachability game and $x \in (\mathbb{N} \cup \{+\infty\})^{|\Pi|}$ be a threshold, we want to decide if there exists an SPE $(\sigma_i)_{i \in \Pi}$ such that for all $i \in \Pi$:

 $\operatorname{Cost}_i(\langle (\sigma_i)_{i\in\Pi}\rangle_{v_0}) \leq x_i.$

Result

The constrained existence problem is PSPACE-complete.

- PSPACE-hardness: polynomial reduction from the QBF problem;
- PSPACE-easyness: subject of this talk.

PSPACE algorithm

- Overview
- λ^* -consistent plays
- Complexity of the computation

Overview

Overview

Overview

PSPACE = NPSPACE

Intuition: guessing an infinite path **node by node** in $C(\lambda^*)$ which satisfies the constraints given by the constrained existence problem.

▲ need to know:

- the exact size of C(λ*).
- $\lambda^*: V^X \to \mathbb{N} \cup \{+\infty\} \rightsquigarrow$ an exponential number of values.

PSPACE = NPSPACE

Intuition: guessing an infinite path node by node in $C(\lambda^*)$ which satisfies the constraints given by the constrained existence problem.

 \triangle need to know:

- the exact size of $C(\lambda^*)$.
- $\lambda^*: V^X \to \mathbb{N} \cup \{+\infty\} \rightsquigarrow$ an exponential number of values.

 \rightsquigarrow decomposition region by region.

Computation of λ^* region by region

For all region *I*, $\{\lambda^*(v) \mid v \text{ a vertex in the region } I\}$ and $mR(\lambda^*_{>I})$ can be computed in PSPACE.

$\lambda^*\text{-}\mathrm{consistent}$ plays and characterization

λ -consistent play

Let $\lambda : V^X \to \mathbb{N} \cup \{+\infty\}$ be a labeling function. Let ρ be a play, we say that $\rho = \rho_0 \rho_1 \dots$ is λ -consistent ($\rho \models \lambda$) if for all $n \in \mathbb{N}$ and $i \in \Pi$ such that $\rho_n \in V_i$:

 $\operatorname{Cost}_i(\rho_{\geq n}) \leq \lambda(\rho_n).$

$\lambda^*\text{-}\mathrm{consistent}$ plays and characterization

λ -consistent play

Let $\lambda : V^{X} \to \mathbb{N} \cup \{+\infty\}$ be a labeling function. Let ρ be a play, we say that $\rho = \rho_{0}\rho_{1} \dots$ is λ -consistent ($\rho \models \lambda$) if for all $n \in \mathbb{N}$ and $i \in \Pi$ such that $\rho_{n} \in V_{i}$:

 $\operatorname{Cost}_i(\rho_{\geq n}) \leq \lambda(\rho_n).$

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

Iteratively:
$$\lambda^0 \rightsquigarrow \lambda^1 \rightsquigarrow \ldots \rightsquigarrow \lambda^k \rightsquigarrow \lambda^{k+1} \rightsquigarrow \ldots \rightsquigarrow \lambda^*$$

Initialization: for all $(v, I) \in V^X$, if $v \in V_i$, $\lambda^0(v, I) = \begin{cases} 0 & \text{if } i \in I \\ +\infty & \text{otherwise} \end{cases}$
Region by region:

 λ^* -consistent plays How to compute λ^*

A region / is fixed:

For all (v, I), assuming $v \in V_i$,

$$\lambda^{k+1}(v, I) = \begin{cases} 0 & \text{if } i \in I \\ 1 + \min_{(v', I') \in \mathsf{Succ}(v, I)} \max\{\mathsf{Cost}_i(\rho) \mid \rho_0 = (v', I') \text{ and } \rho \models \lambda^k \} & \text{otherwise } I \end{cases}$$

For all (v', I') with $I' \neq I$, $\lambda^{k+1}(v', I') = \lambda^k(v', I')$ \rightsquigarrow Until a local fixpoint has been reached.

Iterative Computation of λ^* region by region

For all $k \in \mathbb{N}$, for all region $I, \{\lambda^k(v, l) \mid (v, l) \text{ a vertex in the region } l\}$ and $mR(\lambda_{\geq l}^k)$ can be computed in PSPACE.

We know $\{\lambda^k(v, I) \mid (v, I) \text{ is a node of region } I\}.$

 $\begin{array}{ll} \mbox{For all } l' > l, \mbox{ we can compute} \\ \{\lambda^k(v,l') \mid (v,l') \mbox{ is a node of region } l'\} \\ \mbox{ and } \mathrm{mR}(\lambda^k_{\geq l}) \mbox{ in PSPACE}. \end{array}$

Most difficult case : $\lambda^{k+1}(v, i) = 1 + \min_{(v', l') \in \text{Succ}(v, l)} \max\{\text{Cost}_i(\rho) \mid \rho_0 = (v', l') \text{ and } \rho \models \lambda^k\}.$

Complexity of the computation Computation of the max cost

 $\max{\{\text{Cost}_i(\rho) \mid \rho_0 = (v', I') \text{ and } \rho \models \lambda^k\}}$

 \rightsquigarrow Counter graph $C(\lambda^k)$ with $mR(\lambda^k)$ and max at most exponential in the input.

Main idea: guessing paths in $C(\lambda^k)$

Computation of the max cost

 $\max{\{\text{Cost}_i(\rho) \mid \rho_0 = (v', I') \text{ and } \rho \models \lambda^k\}}$

 $\{\lambda^{k}(v, I) \mid (v, I) \text{ a node of } I\}$ is known

Computation of the max cost

 $\max\{\mathsf{Cost}_i(\rho) \mid \rho_0 = (v', I') \text{ and } \rho \models \lambda^k\}$

 $\{\lambda^k(v, I) \mid (v, I) \text{ a node of } I\}$ is known

Computation of the max cost

 $\max{\{\text{Cost}_i(\rho) \mid \rho_0 = (v', I') \text{ and } \rho \models \lambda^k\}}$

 $\{\lambda^k(v, I) \mid (v, I) \text{ a node of } I\}$ is known

