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Quantitative reachability game

(G,w) = (M, V, E,(Vi)ien, (Costi)ien, (Fi)icn)

Quantitative reachability objective

m For all i € T, F;: the target set of
player i;
Ex: Fo, = {vs} and Fq = {wvs, w7}
m Forall pe V¥, p=pop1..., for all
i€l
if k is the least index
Costi(p) = st. px € F;
+o0o  otherwise

m Play (resp. history): infinite (resp. finite) path in the graph from vo;

m Strategy: choice of a player when it is his turn to play;
Ex: o0 is a strategy for P and o is a strategy for Pg;

m Strategy profile: (6, 00) is a strategy profile;

m Outcome: given (00, 0n0), (00, 00)y, = (Vovivavzva)® is the unique consistent play.
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Subgame

Unfolding

h

VoV1 V2 V3Va Vo

Let hv be an history ~ (G, v): /A Don't forget the past!
(Gn,v) = (M, V, E, (Vi)ien, (Costin )icn, (Fi)ien)

m Costijn(p) = Costi(hp);

| O’,‘[h(hlv) = U;(hhlv).

Ex: (g Vo V6 V7 ) VO)
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Nash Equilibrium and Subgame Perfect Equilibrium

Nash equilibrium (NE)

A strategy profile (oj)icn is a Nash equilibrium in (G, vo) if and only if for all / € I and
all o/:

Cost;({o)v,) < Costi({o7, (o7)jem (i} v )-

~> No incentive to deviate unilateraly.
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Nash Equilibrium and Subgame Perfect Equilibrium

Subgame perfect equilibrium (SPE)

A strategy profile (o/)icn is a subgame perfect equilibrium in (G, w) if and only for all
history hv : (oi)ien is a Nash equilibrium in (G, v).

Counter-example:

if #vs along
hv is odd

m NE with outcome (vovsv7vs)® ~» Cost = (400, 2).
if #ve along
hv is even

m In (Gjyy, v1), outcome: vivs(vovsvrve)®” ~
Costyy, = Cost(vo - vivs(vovevrve)®) = (400, 5)

m Profitable deviation, outcome: vivavava (Vovevrve)” ~
Cost}y, = Cost(vy - vivavavs (vovsvrve)®”) = (4,4)
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Extended game

v, {1,2} ve, {1,2}

m Regions (denoted by /) ~ 0, {2} and {1,2};
m Total order on regions (I < I iff I € Succ*(I')) ~ 0 = {2} < {1,2};
m Decomposition of plays region by region ~~

(Vo, @)(Vl, 0)(‘/2’ 0)(‘/37 (Z))[(V47 {1’ 2})(‘/0’ {17 2})(\/1’ {17 2})(‘/2’ {17 2})(‘/37 {17 2})]“)

region ) region {1,2}
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Constrained existence problem

Constrained existence problem

Let (G, vo) be a quantitative reachability game and x € (NU {+o0})™ be a threshold,
we want to decide if there exists an SPE (o/)iecn such that for all i € I:

Costi({(ci)ien)v,) < xi-

The constrained existence problem is PSPACE-complete. I

m PSPACE-hardness: polynomial reduction from the QBF problem;
m PSPACE-easyness: subject of this talk.
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PSPACE algorithm

m Overview
m \"-consistent plays

m Complexity of the computation



Overview

. Counter graph:
| - |—> Characterization of represents outcomes
the outcomes of SPEs P of SPEs

m Labeling function A : VX — NU {+o0}
< gives constraints on the cost of a play

m If p satisfies these constraints, p is A—consistent.
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Counter graph:
| A-consistent plays ' represents outcomes
of SPEs

' m Labeling function A : VX — NU {400} 1
: < gives constraints on the cost of a play |
| |
| |

m If p satisfies these constraints, p is A—consistent.

m Definition of A* such that
{p € Plays | p is A*consistent} < {p € Plays | p is the outcome of an SPE }.
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Overview

Counter graph:

- Characterization of
A-consistent plays }—) the outcomes of SPEs represel;t;Fc))Etcomes
o s

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m Labeling function A : VX — NU {+o0}
< gives constraints on the cost of a play

m If p satisfies these constraints, p is A—consistent.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m Definition of A* such that |
{p € Plays | p is X*consistent} < {p € Plays | p is the outcome of an SPE }. 1
m C(A\*): the extended game extended with counters keeping track of the
constraints given by \*.
— an infinite path in C(A\*) < the outcome of an SPE.

m | C(\*)|: depends on mR(A\*) = max{\*(v) | v € VX and \*(v) # +oco} 1
= mR(A\*) < O v|(MHD-+VDY |
— we don't know the exact size of the counter graph. 1
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Overview
PSPACE algorithm

[ PSPACE = NPSPACE ]

Intuition: guessing an infinite path node by node in C(\*) which satisfies the constraints
given by the constrained existence problem.
A\ need to know:

m the exact size of C(\").

m )\ VX 5 NU{+oo} ~ an exponential number of values.

c(\)
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Overview
PSPACE algorithm

[ PSPACE = NPSPACE ]

Intuition: guessing an infinite path node by node in C(\*) which satisfies the constraints
given by the constrained existence problem.
A\ need to know:

m the exact size of C(\¥).
m )\ VX = NU{+oo} ~ an exponential number of values.

~~ decomposition region by region.

Computation of A* region by region

For all region /,
{A*(v) | v a vertex in the region /} and
mR(A%)) can be computed in PSPACE.
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A*-consistent plays and characterization

A-consistent play

Let A : VX — NU {+oo} be a labeling function. Let p be a play, we say that
p = pop1 - .. is A-consistent (p = ) if for all n € N and i € I such that p, € V;:

Costi(p=n) < A(pn)-
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A*-consistent plays and characterization

A-consistent play

Let A: V¥ 5 NU {+o0} be a labeling function. Let p be a play, we say that
p = pop1 - .. is A\-consistent (p = A) if for all n € N and i € N such that p, € Vi:

Costi(p=n) < A(pn)-

fo
Bl D) ) — gD |
va.\'LZbi

Y
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A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ,if ve Vi, \°(v, 1) = { ,
+o00  otherwise

Region by region:

®
oBOomo

PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
O Be
®

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
O Be
®

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
® @
®

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
® @
®

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
® @@
@

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

Iteratively: A% ~s Al ~o oo ao Ao NFL s
0 ifiel

Initialization: for all (v,/) € VX ifve Vi, X(v,I) = { o
400 otherwise

Region by region:

®
® @@
@

Aline GOEMINNE PSPACE algorithm for SPEs in quantitative reachability games



A*-consistent plays

How to compute \*

A region |/ is fixed:

For all (v, 1), assuming v € V;,

ifiel

14+ min  max{Costi(p) | po = (v',/') and p |= A} otherwise -
(v/,1")E€Succ(v, 1)

)\k+1(v7 I) —

For all (v/,1") with I’ # I, X*TY(v/, 1I') = AK(vV/, I')
~» Until a local fixpoint has been reached.
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Complexity of the computation

Iterative Computation of A* region by region

For all k € N, for all region I,{\(v, /) | (v, ) a vertex in the region /} and mR(\%,)
can be computed in PSPACE.

We know {A\*(v,1) | (v, /) is a node of region /}.

Forall I’ > [, we can compute

{X(v, I") | (v,!") is a node of region I’}
and mR(\Y) in PSPACE.

Most difficult case :
N (v, i)y =1+ min max{Cost;(p) | po = (v, I') and p = \*}.
(v/,1")€Succ(v,I)
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Complexity of the computation

Computation of the max cost

max{Cost;(p) | po = (v, I') and p = A}

~~ Counter graph C(\¥) with mR(A\¥) and max at most exponential in the input.

M < Guess the max B
= Guess an infinite path p in C(A") with Cost; > 0 v

u Guess an infinite path p in = Guess an infinite path p in C(AK) with Cost; > 1 v/
(2K with Cost; = +00 M = +oo M < +oo .

a Verify that player i does not = Guess an infinite path p in C(AK) with Cost; > d v
reach his target set along p.

= Guess an infinite path p in C(AK) with Cost; > d + 1 x
u Verify M = d.

Main idea: guessing paths in C(\¥)
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Complexity of the computation
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Complexity of the computation

Computation of the max cost

max{Cost;(p) | po = (V/,I') and p = \*}

-
{M(v,b) | (v, ) a node of h}
can be computed in PSPACE
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Complexity of the computation

Computation of the max cost

max{Cost;(p) | po = (V/,I') and p = \*}

-
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