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Quantitative reachability game

v0

v1

v2

v3

v4

v5

v6

v7 (G, v0) = (⇧,V ,E , (Vi )i2⇧, (Costi )i2⇧, (Fi )i2⇧)

Quantitative reachability objective

For all i 2 ⇧, Fi : the target set of

player i ;
Ex: F� = {v4} and F⇤ = {v4, v7}

For all ⇢ 2 V !
, ⇢ = ⇢0⇢1 . . ., for all

i 2 ⇧:

Costi (⇢) =

8
><

>:
k

if k is the least index

st. ⇢k 2 Fi

+1 otherwise

Play (resp. history): infinite (resp. finite) path in the graph from v0;

Strategy: choice of a player when it is his turn to play;

Ex: �� is a strategy for P� and �⇤ is a strategy for P⇤;

Strategy profile: (��,�⇤) is a strategy profile;

Outcome: given (��,�⇤), h��,�⇤iv0 = (v0v1v2v3v4)! is the unique consistent play.
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Subgame

v0

v1

v2

v3

v4

v5

v6

v7

v0

v0v1 v0v6

v0v1v5 v0v1v2 v0v6v6 v0v6v0 v0v6v7

v0v1v5v0 v0v1v2v3

. . . . . . . . . . . . . . .

. . . . . .

v0v1v2v3v4

v0v1v2v3v4v0

. . . . . .

v0v6v7v6

. . . . . . . . .

Unfolding

Let hv be an history  (G�h, v): !4Don’t forget the past!

(G�h, v) = (⇧,V ,E , (Vi )i2⇧, (Costi�h)i2⇧, (Fi )i2⇧)

Costi�h(⇢) = Costi (h⇢);

�i�h(h0v) = �i (hh
0v).

Ex: (G�v0v6v7 , v6)
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Nash Equilibrium and Subgame Perfect Equilibrium

Nash equilibrium (NE)

A strategy profile (�i )i2⇧ is a Nash equilibrium in (G, v0) if and only if for all i 2 ⇧ and

all �0
i :

Costi (h�iv0)  Costi (h�
0
i , (�j)j2⇧\{i}iv0).

 No incentive to deviate unilateraly.

Subgame perfect equilibrium (SPE)

A strategy profile (�i )i2⇧ is a subgame perfect equilibrium in (G, v0) if and only for all

history hv : (�i�h)i2⇧ is a Nash equilibrium in (G�h, v).

Counter-example:

v0

v1

v2

v3

v4

v5

v6

v7

if #v6 along

hv is odd

if #v6 along

hv is even

NE with outcome (v0v6v7v6)!  Cost = (+1, 2).

In (G�v0 , v1), outcome: v1v5(v0v6v7v6)!  
Cost�v0 = Cost(v0 · v1v5(v0v6v7v6)!) = (+1, 5)

Profitable deviation, outcome: v1v2v3v4 (v0v6v7v6)!  
Cost�v0 = Cost(v0 · v1v2v3v4 (v0v6v7v6)!) = (4, 4)
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Extended game

v0

v1

v2

v3

v4

v5

v6

v7

v0, ; v1, ; v2, ; v3, ;

v5, ;

v6, ;

v7, {2} v6, {2} v0, {2} v1, {2} v2, {2} v3, {2}

v5, {2}

v4, {1, 2}

v0, {1, 2} v1, {1, 2} v2, {1, 2} v3, {1, 2}

v5, {1, 2}

v6, {1, 2}v7, {1, 2}

Regions (denoted by I )  ;, {2} and {1, 2};

Total order on regions (I 0 � I i↵ I 2 Succ
⇤
(I 0))  ; � {2} � {1, 2};

Decomposition of plays region by region  
(v0, ;)(v1, ;)(v2, ;)(v3, ;)| {z }

region ;

[(v4, {1, 2})(v0, {1, 2})(v1, {1, 2})(v2, {1, 2})(v3, {1, 2})| {z }
region {1,2}

]
!
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Constrained existence problem

Constrained existence problem

Let (G, v0) be a quantitative reachability game and x 2 (N [ {+1})
|⇧|

be a threshold,

we want to decide if there exists an SPE (�i )i2⇧ such that for all i 2 ⇧:

Costi (h(�i )i2⇧iv0)  xi .

Result

The constrained existence problem is PSPACE-complete.

PSPACE-hardness: polynomial reduction from the QBF problem;

PSPACE-easyness: subject of this talk.
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PSPACE algorithm

Overview
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-consistent plays

Complexity of the computation



Overview

�-consistent plays�-consistent plays Characterization of

the outcomes of SPEs

Counter graph:

represents outcomes

of SPEs

Labeling function � : V X
! N [ {+1}

,! gives constraints on the cost of a play

If ⇢ satisfies these constraints, ⇢ is ��consistent.

Definition of �⇤
such that

{⇢ 2 Plays | ⇢ is �⇤
consistent} , {⇢ 2 Plays | ⇢ is the outcome of an SPE }.

C(�⇤
): the extended game extended with counters keeping track of the

constraints given by �⇤
.

,! an infinite path in C(�⇤
) , the outcome of an SPE.

|C(�⇤
)|: depends on mR(�⇤

) = max{�⇤
(v) | v 2 V X

and �⇤
(v) 6= +1}

mR(�⇤
)  O(|V |

(|⇧|+1)·(|⇧|+|V |)
)

,! we don’t know the exact size of the counter graph.
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Overview

PSPACE algorithm

PSPACE = NPSPACE

Intuition: guessing an infinite path node by node in C(�⇤
) which satisfies the constraints

given by the constrained existence problem.

!4 need to know:

the exact size of C(�⇤
).

�⇤
: V X

! N [ {+1}  an exponential number of values.

C(�⇤
)
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Overview

PSPACE algorithm

PSPACE = NPSPACE

Intuition: guessing an infinite path node by node in C(�⇤
) which satisfies the constraints

given by the constrained existence problem.

!4 need to know:

the exact size of C(�⇤
).

�⇤
: V X

! N [ {+1}  an exponential number of values.

 decomposition region by region.

Computation of �⇤
region by region

For all region I ,
{�⇤

(v) | v a vertex in the region I} and

mR(�⇤
�I ) can be computed in PSPACE.
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�⇤
-consistent plays and characterization

�-consistent play

Let � : V X
! N [ {+1} be a labeling function. Let ⇢ be a play, we say that

⇢ = ⇢0⇢1 . . . is �-consistent (⇢ |= �) if for all n 2 N and i 2 ⇧ such that ⇢n 2 Vi :

Costi (⇢�n)  �(⇢n).

v0, ;

4

v1, ;

3

v2, ;

2

v3, ;

1

v5, ; +1

v6, ;

+1

v7, {2}

+1

v6, {2}

+1

v0, {2}

0

v1, {2}

3

v2, {2}

2

v3, {2}

1

v5, {2} +1

v4, {1, 2} 0

v0, {1, 2}

0

v1, {1, 2}

0

v2, {1, 2}

0

v3, {1, 2}

0

v5, {1, 2}

0

v6, {1, 2}

0

v7, {1, 2}

0

⇢ = [(v0, ;)(v1, ;)(v5, ;)]! 6|= �. Cost(⇢) = (+1,+1)  Cost⇤(⇢) > 4.
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v0, ;

4

v1, ;

3

v2, ;

2

v3, ;

1

v5, ; +1

v6, ;

+1

v7, {2}

+1

v6, {2}

+1

v0, {2}

0

v1, {2}

3

v2, {2}

2

v3, {2}

1

v5, {2} +1

v4, {1, 2} 0

v0, {1, 2}

0

v1, {1, 2}

0

v2, {1, 2}

0

v3, {1, 2}

0

v5, {1, 2}

0

v6, {1, 2}

0

v7, {1, 2}

0

(v0, ;)(v1, ;)(v2, ;)(v3;)[(v4, {1, 2})(v0, {1, 2})(v1, {1, 2})(v2, {1, 2})(v3, {1, 2})]!

|= �.
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�⇤
-consistent plays

How to compute �⇤

Iteratively: �0  �1  . . . �k  �k+1  . . . �⇤

Initialization: for all (v , I ) 2 V X
, if v 2 Vi , �

0
(v , I ) =

(
0 if i 2 I

+1 otherwise
.

Region by region:
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�⇤
-consistent plays

How to compute �⇤

A region I is fixed:

I (v,I )

(v,I )

(v,I )

. . . . . .

2 Vi

For all (v , I ), assuming v 2 Vi ,

�k+1
(v , I ) =

8
<

:
0 if i 2 I

1 + min
(v0,I 0)2Succ(v,I )

max{Costi (⇢) | ⇢0 = (v 0, I 0) and ⇢ |= �k
} otherwise

.

For all (v 0, I 0) with I 0 6= I , �k+1
(v 0, I 0) = �k

(v 0, I 0)
 Until a local fixpoint has been reached.
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v0, ;

+1

v1, ;

+1

v2, ;

+1

v3, ;

+1

v5, ; +1

v6, ;

+1

v7, {2}

+1

v6, {2}

+1

v0, {2}

0

v1, {2}

+1

v2, {2}
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v3, {2}
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0

v2, {1, 2}

0

v3, {1, 2}

0

v5, {1, 2}

0

v6, {1, 2}

0

v7, {1, 2}

0
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Complexity of the computation

Iterative Computation of �⇤
region by region

For all k 2 N, for all region I ,{�k
(v , I ) | (v , I ) a vertex in the region I} and mR(�k

�I )

can be computed in PSPACE.

I

. . . . . .

We know {�k
(v , I ) | (v , I ) is a node of region I}.

For all I 0 > I , we can compute

{�k
(v , I 0) | (v , I 0) is a node of region I 0}

and mR(�k
�I ) in PSPACE.

Most di�cult case :

�k+1
(v , i) = 1 + min

(v0,I 0)2Succ(v,I )
max{Costi (⇢) | ⇢0 = (v 0, I 0) and ⇢ |= �k

}.
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Complexity of the computation

Computation of the max cost

max{Costi (⇢) | ⇢0 = (v 0, I 0) and ⇢ |= �k
}

 Counter graph C(�k
) with mR(�k

) and max at most exponential in the input.

M  Guess the max

•

Guess an infinite path ⇢ in

C(�k
) with Costi = +1

Verify that player i does not

reach his target set along ⇢.

Guess an infinite path ⇢ in C(�k
) with Costi � 0 X

Guess an infinite path ⇢ in C(�k
) with Costi � 1 X

. . .

Guess an infinite path ⇢ in C(�k
) with Costi � d X

Guess an infinite path ⇢ in C(�k
) with Costi � d + 1 7

Verify M = d .

M = +1 M < +1

Main idea: guessing paths in C(�k
)
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Complexity of the computation

Computation of the max cost

max{Costi (⇢) | ⇢0 = (v 0, I 0) and ⇢ |= �k
}

I I2 I3

. . .(v0,I 0) (v0,I 0)

{�k
(v , I ) | (v , I ) a node of I} is known

(v0,I 0) (v0,I 0)

{�k
(v , I2) | (v , I2) a node of I2}

can be computed in PSPACE

(v0,I 0) (v0,I 0)

{�k
(v , I3) | (v , I3) a node of I3}

can be computed in PSPACE
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