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One-player quantitative reachability games



Setting

v0

v8

v1v3 v2

v4

v5

v6

v7

Quantitative reachability objective

Target set F� = {v2, v6, v7};

For every infinite path (called play) ⇢,
⇢ = ⇢0⇢1 . . .,

Cost�(⇢) =

8
><

>:
k

if k is the least index

st. ⇢k 2 Fi

+1 otherwise

Ex:

Cost�((v0v1v2)
!) = 2;

Cost�((v0v8)
!) = +1.

 Player � wants to reach F� as soon as possible!

Aline Goeminne The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games (m, n) 4



Constrained existence problem and shortest paths

v0

v8

v1v3 v2

v4

v5

v6

v7

Strategy: �� : V ⇤V� ! V ;
Ex: ��

Playing according to ��  h��iv0 = (v0v1v2)!

(h��iv0 : the outcome)

Constrained existence problem

Given k 2 N [ {+1}, does there exist a
strategy �� for Player � such that playing
according to �� ensures a cost less or equal
to k?
i.e., Cost�(h��iv0)  k.

Ex: with k = 3: YES with �� since Cost�(h��iv0) =
2

 studying shortest paths in the game graph.
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v5
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v7

2

3

012

1

0 1

0

How to find shortest paths ?

Dijkstra algorithm;

Bellman–Ford algorithm;

. . .

Main idea

X (v) = 0 for all v 2 F� and
X (v) = +1 otherwise.

Repeat: Xpre = X , for each v 2 V \F�:
X (v) = min

v02E(v)
{Xpre(v

0) + 1}.

 only computing some minimum.
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Two-player zero-sum quantitative reachability games



Setting

v0

v8

v1v3 v2

v4

v5

v6

v7

Two players: Player � (Min) and Player ⇤
(Max).
Objectives:

Player � wants to reach F� ASAP;
Player ⇤ wants to avoid that.
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Constrained existence problem, values and optimal strategies

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

2

0 1

0

Constrained existence problem

Given k 2 N [ {+1}, does there exist a
strategy �� such that for each strategy �⇤:
Cost�(h��,�⇤iv0)  k.

From v0, Player � can ensure a cost of +1;

From v3, Player � can ensure a cost of 3;

 value of a node
 optimal strategies
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v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

2

0 1

0

How to compute these values?

(Ex: [BGHM17])

 only computing some minimum if it is a node of
Player � or some maximum if it is a node of Player
⇤.
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Multiplayer (non zero-sum) quantitative reachability games



Setting

v0

v8

v1v3 v2

v4

v5

v6

v7

Two (or more) players;
Ex: Player � and Player ⇤.
Objectives:

Player � wants to reach F� = {v2, v6, v7}
(ASAP);
Player ⇤ wants to reach F⇤ = {v2} (ASAP).
 non antagonistic.
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Definition of Nash equilibrium
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/////////optimal////////////strategies  other solution concept:
Nash equilibrium.

Nash equilibrium

A strategy profile (��,�⇤) is a Nash equi-
librium (NE) if no player has an incentive to

deviate unilaterally.

Counter-ex: (��,�⇤):

(��,�⇤)  h��,�⇤iv0 = v0v1v3v4v5v!
6 ;

(Cost�(h��,�⇤iv0 ),Cost⇤(h��,�⇤iv0 )) =
(5,+1).

 not an NE.
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Definition of subgame perfect equilibrium

v0

v8

v1v3 v2

v4

v5
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v7

refined solution concept:
subgame perfect equilibrium.

Subgame perfect equilibrium

A strategy profile (��,�⇤) is a subgame per-
fect equilibrium (SPE) if it is an NE from
each history.

(��,�⇤) is an NE;

(��,�⇤) is not an SPE:
there is a profitable deviation from v0v1.
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Constrained existence problem

Constrained existence problem (with 2 players)

Given (k1, k2) 2 (N [ {+1})2, does there exist an equilibrium
(NE or SPE) (��,�⇤) such that:
i.e.,

Cost�(h��,�⇤iv0)  k1
and

Cost⇤(h��,�⇤iv0)  k2

For NEs, the constrained existence problem with n players is
NP-complete. [BBGT19]

For SPEs, the constrained existence problem with n players
is PSPACE-complete. (our contribution)
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Our approach

Outcome characterization of an equilibrium

Let ⇢ be a play,
there exists an equilibrium (��,�⇤) (an NE or an SPE) such

that h��,�⇤iv0 = ⇢
if and only if

⇢ satisfies a “good” property.

 Does there exist a play ⇢ such that:

Cost�(⇢)  k1 and Cost⇤(⇢)  k2;

⇢ satisfies a “good” property?
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Outcome characterization of equilibria

v0

v8

v1v3 v2

v4

v5

v6

v7

What is this good property (for NEs and SPEs)?

 being �-consistent.

�-consistent play

� : V ! N [ {+1};

⇢ = ⇢0⇢1 . . . ✏ � if and only if for all for
all player i and all k 2 N such that
i 62 Visit(⇢0 . . . ⇢k) and ⇢k 2 Vi :
Costi (⇢�k)  �(⇢k).
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Outcome characterization of equilibria

v0

v8

v1v3 v2

v4
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v6

v7

+1

+1

013

+1

0 1

0

� : V ! N [ {+1};

v0v1v3v4v5v!
6 6✏ �:

Cost⇤(v0v1v3v4v5v!
6 ) = +1  +1 X

Cost�(v1v3v4v5v!
6 ) = 4 6 1 7

(v0v8)! ✏ �: Cost = (+1,+1);
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How to find the good � ?

(one for NEs and one for SPEs)

Main idea: �(v): the maximal number of steps within which the player who owns this
vertex should reach his target set along ⇢, starting from v .

Aline Goeminne The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games (m, n) 19



For Nash equilibria:

Outcome characterization of NE [BBGT19]

A play ⇢ is the outcome of an NE
if and only if

⇢ is Val-consistent.

Val(v) =

(
Val�(v) if v 2 V�

Val⇤(v) if v 2 V⇤
.

Val

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

+1

0 1

0

Val�
MIN: �
MAX: ⇤

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

2

0 1

0

Val⇤
MIN: ⇤
MAX �

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

0+1+1

+1

+1 +1

+1

1

two player
(non zero-sum)

game

2

Two player
zero-sum
games
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For subgame perfect equilibria (our contribution):

1) NE from each history  extended game.

v0

v8

v1v3 v2

v4

v5

v6

v7

v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}
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2) Val/// : ((v0, ;)(v8, ;))! ✏ Val but can’t be the outcome of an SPE.

v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}

+1

1

3

+1 1+1

0 0

0 0 0 0

0

0

0

0

0
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v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}

We have to find � : V ! N [ {+1} such that:
� characterizes exactly the set of outcomes of SPEs;

the values of � can be computed in polynomial space.
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 �⇤: the fixpoint of this algorithm:

Computation of �⇤

2 Vi

�k  �k+1

 alternation of a minimum and a maximum whoever the player.

Aline Goeminne The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games (m, n) 24



 �⇤: the fixpoint of this algorithm:

Computation of �⇤

2 Vi

�k  �k+1

 alternation of a minimum and a maximum whoever the player.

Aline Goeminne The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games (m, n) 24



Example

v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}�0

+1

+1

+1

+1 +1+1

0 0

0 0 0 0

0

0

0

0

0
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Example
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v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}�1

+1

/////+1 1

/////+1 3

+1 /////+1 1+1

0 0

0 0 0 0

0

0

0

0

0
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1

3

+1 1+1
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0 0 0 0

0

0

0

0
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Example
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v7, {�,⇤}

v5, {�,⇤}
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2

1

3

+1 1/////+1 3

0 0

0 0 0 0

0

0

0

0

0
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Outcome characterization of SPEs

Outcome characterization of SPEs

A play ⇢ is the outcome of an SPE
if and only if

⇢ is �⇤-consistent.

v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}

2

1

3

+1 13

0 0

0 0 0 0

0

0

0

0

0

((v0, ;)(v8, ;))! 6✏ �⇤:
Cost = (+1,+1);

Cost⇤(((v0, ;)(v8, ;))!) = +1 6 2 7
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Conclusion



Conclusion

PSPACE-c of the constrained existence problem for SPEs in multiplayer

quantitative reachability games;

,! characterization of the outcomes of SPEs;

,! finding a “good” labeling function �⇤
(!!)

one which exactly characterizes the outcomes of SPEs;

and allows us to obtain the PSPACE easyness of our problem.
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