The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

Thomas Brihaye Véronique Bruyère Aline Goeminne Jean-François Raskin Marie van den Bogaard

August 27, 2019

1 One-player quantitative reachability games

2 Two-player zero-sum quantitative reachability games

3 Multiplayer (non zero-sum) quantitative reachability games

One-player quantitative reachability games

Setting

Quantitative reachability objective

- Target set $F_{\bigcirc} = \{v_2, v_6, v_7\};$
- For every infinite path (called **play**) ρ , $\rho = \rho_0 \rho_1 \dots$,
- $\mathsf{Cost}_{\bigcirc}(\rho) = egin{cases} \mathsf{k} & ext{if } k ext{ is the least index} \\ & ext{st. } \rho_k \in F_i \\ +\infty & ext{otherwise} \end{cases}$

Ex:

- $\operatorname{Cost}_{\bigcirc}((v_0v_1v_2)^{\omega})=2;$
- $\operatorname{Cost}_{\bigcirc}((v_0v_8)^{\omega}) = +\infty.$

 \rightsquigarrow Player \bigcirc wants to reach F_{\bigcirc} as soon as possible!

Constrained existence problem and shortest paths

- Strategy: $\sigma_{\bigcirc} : V^* V_{\bigcirc} \to V;$ <u>Ex:</u> σ_{\bigcirc}
- Playing according to $\sigma_{\bigcirc} \rightsquigarrow \langle \sigma_{\bigcirc} \rangle_{v_0} = (v_0 v_1 v_2)^{\omega}$ $(\langle \sigma_{\bigcirc} \rangle_{v_0}: \text{ the outcome})$

Constrained existence problem

Given $k \in \mathbb{N} \cup \{+\infty\}$, does there exist a strategy σ_{\bigcirc} for Player \bigcirc such that playing according to σ_{\bigcirc} ensures a cost less or equal to k? i.e., $\text{Cost}_{\bigcirc}(\langle \sigma_{\bigcirc} \rangle_{v_0}) \leq k$.

Ex: with k = 3: YES with σ_{\bigcirc} since $\text{Cost}_{\bigcirc}(\langle \sigma_{\bigcirc} \rangle_{\nu_0}) = 2$

 \rightsquigarrow studying **shortest paths** in the game graph.

How to find shortest paths ?

- Dijkstra algorithm;
- Bellman–Ford algorithm;

• • • •

Main idea

• X(v) = 0 for all $v \in F_{\bigcirc}$ and $X(v) = +\infty$ otherwise.

■ Repeat:
$$X_{pre} = X$$
, for each $v \in V \setminus F_{\bigcirc}$:
 $X(v) = \min_{v' \in E(v)} \{X_{pre}(v') + 1\}.$

 \rightsquigarrow only computing some minimum.

Two-player zero-sum quantitative reachability games

Setting

- **Two** players: Player (Min) and Player (Max).
- Objectives:
 - Player \bigcirc wants to reach F_{\bigcirc} ASAP;
 - Player □ wants to avoid that.

Constrained existence problem, values and optimal strategies

Constrained existence problem

Given $k \in \mathbb{N} \cup \{+\infty\}$, does there exist a strategy σ_{\bigcirc} such that for each strategy σ_{\square} : Cost $_{\bigcirc}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\nu_0}) \leq k$.

- From v_0 , Player \bigcirc can ensure a cost of $+\infty$;
- From v_3 , Player \bigcirc can ensure a cost of 3;

→ value of a node
 → optimal strategies

How to compute these values?

 \rightsquigarrow only computing some **minimum** if it is a node of Player \bigcirc or some **maximum** if it is a node of Player \square .

(O, 📕) 10

Multiplayer (non zero-sum) quantitative reachability games

Setting

- Two (or more) players;
 - <u>Ex</u>: Player \bigcirc and Player \Box .
- Objectives:
 - Player \bigcirc wants to reach $F_{\bigcirc} = \{v_2, v_6, v_7\}$ (ASAP);
 - Player \square wants to reach $F_{\square} = \{v_2\}$ (ASAP).
 - ~> non antagonistic.

(O, 📕) 12

Definition of Nash equilibrium

■ \u03c9

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\square})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

- <u>Counter-ex:</u> $(\sigma_{\bigcirc}, \sigma_{\square})$:

Definition of Nash equilibrium

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

- <u>Counter-ex:</u> $(\sigma_{\bigcirc}, \sigma_{\square})$:
 - $\begin{array}{l} \bullet \ (\sigma_{\bigcirc}, \sigma_{\square}) \rightsquigarrow \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_3 v_4 v_5 v_6^{\omega}; \\ \bullet \ (\operatorname{Cost}_{\bigcirc} (\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0}), \operatorname{Cost}_{\square} (\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0})) = \\ (5, +\infty). \end{array}$

 \rightsquigarrow not an NE.

Definition of subgame perfect equilibrium

refined solution concept:
 subgame perfect equilibrium.

Subgame perfect equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\square})$ is a subgame perfect equilibrium (SPE) if it is an NE from each history.

Definition of subgame perfect equilibrium

refined solution concept:
 subgame perfect equilibrium.

Subgame perfect equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ is a subgame perfect equilibrium (SPE) if it is an NE from each history.

• $(\sigma_{\bigcirc}, \sigma_{\square})$ is an NE;

(σ_○, σ_□) is not an SPE: there is a profitable deviation from v₀v₁.

Constrained existence problem

Constrained existence problem (with 2 players)

Given $(k_1, k_2) \in (\mathbb{N} \cup \{+\infty\})^2$, does there exist an equilibrium (NE or SPE) $(\sigma_{\bigcirc}, \sigma_{\Box})$ such that: i.e.,

 $egin{aligned} \mathsf{Cost}_{\bigcirc}(\langle \sigma_{\bigcirc}, \sigma_{\square}
angle_{v_0}) &\leq k_1 \ & ext{ and } \ & \mathsf{Cost}_{\square}(\langle \sigma_{\bigcirc}, \sigma_{\square}
angle_{v_0}) &\leq k_2 \end{aligned}$

- For **NEs**, the constrained existence problem with *n* players is **NP-complete**. [BBGT19]
- For SPEs, the constrained existence problem with n players is PSPACE-complete. (our contribution)

Our approach

Outcome characterization of an equilibrium

```
Let \rho be a play,
there exists an equilibrium (\sigma_{\bigcirc}, \sigma_{\Box}) (an NE or an SPE) such
that \langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{v_0} = \rho
if and only if
\rho satisfies a "good" property.
```

 \rightsquigarrow Does there exist a play ρ such that:

- $\operatorname{Cost}_{\bigcirc}(\rho) \leq k_1$ and $\operatorname{Cost}_{\square}(\rho) \leq k_2$;
- ρ satisfies a "good" property?

Outcome characterization of equilibria

What is this good property (for NEs and SPEs)?

λ-consistent play • λ : V → N ∪ {+∞}; • ρ = ρ₀ρ₁... ⊨ λ if and only if for all for all player *i* and all $k \in \mathbb{N}$ such that *i* ∉ Visit(ρ₀... ρ_k) and ρ_k ∈ V_i: Cost_i(ρ_{>k}) ≤ λ(ρ_k).

Outcome characterization of equilibria

• $\lambda: V \to \mathbb{N} \cup \{+\infty\};$

■
$$v_0 v_1 v_3 v_4 v_5 v_6^{\omega} \not\models \lambda$$
:
■ $Cost_{\Box}(v_0 v_1 v_3 v_4 v_5 v_6^{\omega}) = +\infty \le +\infty \checkmark$
■ $Cost_{\Box}(v_1 v_3 v_4 v_5 v_6^{\omega}) = 4 \le 1 \checkmark$

•
$$(v_0v_8)^{\omega} \vDash \lambda$$
: Cost = $(+\infty, +\infty)$;

How to find the good λ ? (one for NEs and one for SPEs)

Main idea: $\lambda(v)$: the maximal number of steps within which the player who owns this vertex should reach his target set along ρ , starting from v.

For Nash equilibria:

Outcome characterization of NE [BBGT19]

A play ρ is the outcome of an NE if and only if ρ is Val-consistent.

$$\mathsf{Val}(v) = \begin{cases} \mathsf{Val}_{\bigcirc}(v) & \text{if } v \in V_{\bigcirc} \\ \mathsf{Val}_{\square}(v) & \text{if } v \in V_{\square} \end{cases}$$

For subgame perfect equilibria (our contribution):

1) NE from each history \rightsquigarrow extended game.

ʻO, 📕) 21

2) $\forall [a] : ((v_0, \emptyset)(v_8, \emptyset))^{\omega} \vDash Val but can't be the outcome of an SPE.$

D, 📕) 22

- λ characterizes exactly the set of outcomes of SPEs;
- the values of λ can be computed in polynomial space.

 $\rightsquigarrow \lambda^*$: the fixpoint of this algorithm:

Computation of λ^*

```
k \leftarrow 0
foreach v \in V (with (v, I) \in V_i for some player i) do
     if i \in I then
          \lambda^0(v, I) = 0
     else
         \lambda^0(v,I) = +\infty
     end
end
repeat
     k \leftarrow k+1
     foreach v \in V (with (v, I) \in V_i for some player i) do
          if i \in I then
               \lambda^k(v, I) = 0
          else
                                         \min_{(v',I')\in E((v,I))} \max\{\operatorname{Cost}_i(\rho) \mid \rho_0 = (v',I') \text{ and } \rho \vDash \lambda^k\}
                \lambda^{k+1}(v,I) = 1 + [
          enu
     end
until \lambda^k = \lambda^{k-1}
return \lambda^k.
```


 \rightsquigarrow alternation of a $\ensuremath{\textit{minimum}}$ and a $\ensuremath{\textit{maximum}}$ whoever the player.

$$\lambda^{k+1}(v,I) = 1 + \min_{(v',I') \in E((v,I))} \max\{ \operatorname{Cost}_i(\rho) \mid \rho_0 = (v',I') \text{ and } \rho \vDash \lambda^k \}$$

$$\lambda^{k+1}(v,I) = 1 + \min_{(v',I') \in E((v,I))} \max\{ \operatorname{Cost}_i(\rho) \mid \rho_0 = (v',I') \text{ and } \rho \vDash \lambda^k \}$$

$$\lambda^{k+1}(v,I) = 1 + \min_{(v',I') \in E((v,I))} \max\{ \operatorname{Cost}_i(\rho) \mid \rho_0 = (v',I') \text{ and } \rho \vDash \lambda^k \}$$

(O, 📕) 25

Outcome characterization of SPEs

Outcome characterization of SPEs

A play ρ is the outcome of an SPE if and only if ρ is λ^* -consistent.

O, 📕) 26

Conclusion

PSPACE-c of the constrained existence problem for SPEs in multiplayer quantitative reachability games;

- \hookrightarrow characterization of the outcomes of SPEs;
 - \hookrightarrow finding a "good" labeling function λ^* (!!)
 - one which exactly characterizes the outcomes of SPEs;
 - and allows us to obtain the PSPACE easyness of our problem.

References

- Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset, <u>On</u> relevant equilibria in reachability games, CoRR **abs/1907.05481** (2019).
- Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege, <u>Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost</u> reachability games, Acta Informatica **54** (2017), no. 1, 85–125.