Constrained Existence Problem for Weak Subgame Perfect Equilibria with ω -regular Boolean Objectives

Thomas Brihaye Véronique Bruyère Aline Goeminne Jean-François Raskin

GandALE 2018

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Table of contents

1 Theoretical background and studied problem

2 Characterization

- (Good) Symbolic witness
- Folk theorem
- 3 Reachability and safety
- 4 Conclusion and future works

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Theoretical background and studied problem

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Boolean games

- G = (V, E): a finite directed graph;
- Π: a finite set of players;
- (V_i)_{i∈Π}: a partition of V between the players;
- for each $i \in \Pi$, Gain_i : $V^{\omega} \rightarrow \{0, 1\}$: gain function;
- initialized game (\mathcal{G}, v_0) .

Theoretical b	ackground	and sti	udied p	problem	(
					E

Characterization

Reachability and safety

Conclusion and future works

Plays and histories

- play ρ: infinite path in G from v₀;
 Ex : v₀v₁v₂v₃^ω
- history h: finite path in G from v₀; Ex: v₀v₁

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Objectives (1/2)

Given a play, how to define the gain of a player ?

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Objectives (1/2)

Given a play, how to define the gain of a player ?

- Each player $i \in \Pi$ has an ω -regular objective charaterized by Win_i $\subseteq V^{\omega}$.
- Gain_i(ρ) = 1 if and only if $\rho \in Win_i$.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Objectives (1/2)

Given a play, how to define the gain of a player ?

- Each player $i \in \Pi$ has an ω -regular objective charaterized by Win_i $\subseteq V^{\omega}$.
- Gain_i(ρ) = 1 if and only if $\rho \in Win_i$.

Classical ω -regular objectives: Büchi, co-Büchi, Explicit Muller, Muller, Parity, Streett and Rabin.

Rem:

- prefix-independent objectives;
- all players have the same type of objective (ex: each player has a Büchi objective).

Theoretical	background	and	studied	problem

Characterization

Reachability and safety

Conclusion and future works

Objectives (2/2)

Example

Game with Büchi objectives:

•
$$P_{\bigcirc}$$
: { v_1 };
• P_{\square} : { v_3, v_5 };

Theoretical	background	and	studied	problem

Characterization

Reachability and safety

Conclusion and future works

Objectives (2/2)

Example

Game with Büchi objectives:

- *P*_O: {*v*₁};
- P_{\Box} : { v_3, v_5 };

Play
$$\rho = v_0 v_1 v_2 v_3^{\omega}$$
:
Gain<sub>(ρ) = 0
Gain_{(ρ) = 1.}</sub>

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Strategies (1/2)

A strategy can be associated with each player $i \in \Pi$: σ_i : Hist_i(v_0) $\rightarrow V$.

σ_○: memoryless strategy of player P_○;
 σ_□: memoryless strategy of player P_□;

The sustional he also used and attudied much laws	Chavesteringtion	Deschahility, and sofety	Conclusion and future works
Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Strategies (1/2)

A strategy can be associated with each player $i \in \Pi$: σ_i : Hist_i(v_0) $\rightarrow V$.

- σ_○: memoryless strategy of player P_○;
 σ_□: memoryless strategy of player P_□;
 (σ_○,σ_□) is a *strategy profile*, denoted by σ;
- outcome: $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$.

Theoretical ba	ckground	and	studied	problem

Characterization

Reachability and safety

Conclusion and future works

Strategies (2/2)

Finitely deviating strategy

Finitely deviating strategy

Let σ_i and σ'_i be two strategies, σ'_i is *finitely deviating* from σ_i if σ'_i and σ_i differ only on a finite number of histories.

Theoretical	background	and	studied	problem

Characterization

Reachability and safety

Conclusion and future works

Strategies (2/2)

Finitely deviating strategy

Finitely deviating strategy

Let σ_i and σ'_i be two strategies, σ'_i is *finitely deviating* from σ_i if σ'_i and σ_i differ only on a **finite number of histories**.

Finitely deviating

Not finitely deviating

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Strategies (2/2)

Finitely deviating strategy

Example: σ'_{\Box} differs from σ_{\Box} only on the history v_0 : $\sigma'_{\Box}(v_0) = v_4$ and $\sigma_{\Box}(v_0) = v_1.$ v_0 v_1 V4 V6 V_2

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Strategies (2/2)

Finitely deviating strategy

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Subgame

Let $hv \in \text{Hist}(v_0)$ be a history, the game $(\mathcal{G}_{|h}, v)$ called *subgame* of (\mathcal{G}, v_0) is the same game played after hv:

Gain_{\[h}(\rho) = Gain(h\rho);
if
$$\overline{\sigma} \to \overline{\sigma}_{\[h]h}$$
 such that
 $h' \in \operatorname{Hist}(v): \overline{\sigma}_{\[h]h}(h') = \overline{\sigma}(hh')$

Nash Equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a (\mathcal{G}, v_0) , if for all $i \in \Pi$ and σ'_i

Nash equilibrium (NE) in

$$\mathsf{Gain}_i(\langle \overline{\sigma}
angle_{\mathsf{v}_0}) \geq \mathsf{Gain}_i(\langle \sigma'_i, \sigma_{-i}
angle_{\mathsf{v}_0}).$$

Rem: no

profitable deviation

(Weak) Nash Equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak Nash equilibrium (weak NE) in (\mathcal{G}, v_0) , if for all $i \in \Pi$ and σ'_i finitely deviating from σ_i :

$$\operatorname{Gain}_{i}(\langle \overline{\sigma} \rangle_{v_{0}}) \geq \operatorname{Gain}_{i}(\langle \sigma'_{i}, \sigma_{-i} \rangle_{v_{0}}).$$

Rem: no finitely deviating profitable deviation

(Weak) Nash Equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak Nash equilibrium (weak NE) in (\mathcal{G}, v_0) , if for all $i \in \Pi$ and σ'_i finitely deviating from σ_i :

$$\operatorname{Gain}_{i}(\langle \overline{\sigma} \rangle_{v_{0}}) \geq \operatorname{Gain}_{i}(\langle \sigma'_{i}, \sigma_{-i} \rangle_{v_{0}}).$$

Rem: no finitely deviating profitable deviation

subgame perfect equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a subgame perfect equilibrium (SPE) in (\mathcal{G}, v_0) , if for all $hv \in \text{Hist}(v_0)$: $\overline{\sigma}_{\restriction h}$ is a NE in $(\mathcal{G}_{\restriction h}, v)$.

(Weak) Nash Equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak Nash equilibrium (weak NE) in (\mathcal{G}, v_0) , if for all $i \in \Pi$ and σ'_i finitely deviating from σ_i :

$$\operatorname{Gain}_{i}(\langle \overline{\sigma} \rangle_{v_{0}}) \geq \operatorname{Gain}_{i}(\langle \sigma'_{i}, \sigma_{-i} \rangle_{v_{0}}).$$

Rem: no finitely deviating profitable deviation

(Weak) subgame perfect equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak subgame perfect equilibrium (weak SPE) in (\mathcal{G}, v_0) , if for all $hv \in \text{Hist}(v_0)$: $\overline{\sigma}_{\upharpoonright h}$ is a weak NE in $(\mathcal{G}_{\upharpoonright h}, v)$.

(Weak) Nash Equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak Nash equilibrium (weak NE) in (\mathcal{G}, v_0) , if for all $i \in \Pi$ and σ'_i finitely deviating from σ_i :

$$\operatorname{Gain}_{i}(\langle \overline{\sigma} \rangle_{v_{0}}) \geq \operatorname{Gain}_{i}(\langle \sigma'_{i}, \sigma_{-i} \rangle_{v_{0}}).$$

Rem: no finitely deviating profitable deviation

(Weak) subgame perfect equilibrium

Let $\overline{\sigma}$ be a strategy profile, $\overline{\sigma}$ is a weak subgame perfect equilibrium (weak SPE) in (\mathcal{G}, v_0) , if for all $hv \in \text{Hist}(v_0)$: $\overline{\sigma}_{\upharpoonright h}$ is a weak NE in $(\mathcal{G}_{\upharpoonright h}, v)$.

Notions of weak NE/SPE already introduced and studied in [BBMR15] and [BRPR17].

Theoretical	background	and	studied	problem
	-			

Reachability and safety □

Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) Example

•
$$\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$$
: Gain = (0, 1);

Theoretical	background	and	studied	problem
	-			

Reachability and safety □ Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) $_{\rm Example}$

• $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$: Gain = (0, 1); • profitable deviation σ'_{\bigcirc} for P_{\bigcirc} , $\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 (v_1 v_2)^{\omega}$, Gain = (1, 0)

Theoretical	background	and	studied	problem

Reachability and safety □ Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) $_{\mbox{\sc Example}}$

• $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$: Gain = (0, 1); • profitable deviation σ'_{\bigcirc} for P_{\bigcirc} , $\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 (v_1 v_2)^{\omega}$, Gain = (1, 0) \rightarrow not an NE;

Theoretical	background	and	studied	problem

Reachability and safety □ Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) $_{\mbox{\sc Example}}$

• $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$: Gain = (0, 1); • profitable deviation σ'_{\bigcirc} for P_{\bigcirc} , $\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 (v_1 v_2)^{\omega}$, Gain = (1, 0) \rightarrow not an NE;

only one way to improve his gain;

Theoretical	background	and	studied	problem

Reachability and safety

Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) $_{\mbox{\sc Example}}$

- $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$: Gain = (0, 1); • profitable deviation σ'_{\bigcirc} for P_{\bigcirc} , $\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 (v_1 v_2)^{\omega}$, Gain = (1, 0) \rightarrow not an NE;
- only one way to improve his gain;
- σ'_{\bigcirc} not finitely deviating

Theoretical	background	and	studied	problem

Reachability and safety

Conclusion and future works

NE, SPE, weak NE and weak SPE (2/2) $_{\mbox{\sc Example}}$

- $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_2 v_3^{\omega}$: Gain = (0, 1); • profitable deviation σ'_{\bigcirc} for P_{\bigcirc} , $\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 (v_1 v_2)^{\omega}$, Gain = (1, 0) \rightarrow not an NE;
- only one way to improve his gain;
- σ'_{\bigcirc} not finitely deviating \rightarrow weak NE.

Theoretical background and studied problem	Characterization	Reachability and cafety	Conclusion and future works
Theoretical background and studied problem	Characterization		Conclusion and future works

Studied problem

Constraint problem

Let $x, y \in \{0, 1\}^{|\Pi|}$ be two thresholds, decide if there exists a weak SPE $\overline{\sigma}$ in (\mathcal{G}, v_0) such that $x \leq \text{Gain}(\langle \overline{\sigma} \rangle_{v_0}) \leq y$.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Studied problem

Constraint problem

Let $x, y \in \{0, 1\}^{|\Pi|}$ be two thresholds, decide if there exists a weak SPE $\overline{\sigma}$ in (\mathcal{G}, v_0) such that $x \leq \text{Gain}(\langle \overline{\sigma} \rangle_{v_0}) \leq y$.

	exp. Muller	Muller	co-Büchi	Parity	Streett	Rabin
P-complete	×					
NP-complete		×	×	×	×	×

Rem : Büchi is NP-easy.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Characterization

(Good) Symbolic witness (1/2)

Symbolic witness \mathcal{P}

- A symbolic witness \mathcal{P} is:
 - a set of lassoes with a polynomial size representation,
 - there is a polynomial number of lassoes in *P*,

(Good) Symbolic witness (1/2)

$\textbf{Good} \text{ Symbolic witness } \mathcal{P}$

A **good** symbolic witness \mathcal{P} is:

- a set of lassoes with a polynomial size representation,
- there is a polynomial number of lassoes in *P*,
- these lassoes have some "good" properties.

(Good) Symbolic witness (2/2)

Theorem

Let (\mathcal{G}, v_0) be a Boolean game with prefix-independent gain functions. Are equivalent:

- **1** there exists a weak SPE in (\mathcal{G}, v_0) with payoff p;
- **2** there exists a symbolic witness \mathcal{P} that contains a lasso with payoff p;
- 3 there exists a weak SPE in (\mathcal{G}, v_0) with payoff p and finite memory in $\mathcal{O}(|\Pi| \times |V|^3)$.

(Good) Symbolic witness (2/2)

Theorem

Let (\mathcal{G}, v_0) be a Boolean game with prefix-independent gain functions. Are equivalent:

- **1** there exists a weak SPE in (\mathcal{G}, v_0) with payoff p;
- **2** there exists a symbolic witness \mathcal{P} that contains a lasso with payoff p;
- 3 there exists a weak SPE in (\mathcal{G}, v_0) with payoff p and finite memory in $\mathcal{O}(|\Pi| \times |V|^3)$.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

```
Folk theorem (1/2)
```

Main idea: computation of the set of all possible payoffs of a weak SPE from a given vertex v: $\mathbf{P}_{k^*}(v)$.

Folk theorem

Let (\mathcal{G}, v_0) be a Boolean game with prefix-independent gain functions, there exists a weak SPE $\overline{\sigma}$ with payoff p in (\mathcal{G}, v_0) if and only if $\mathbf{P}_{k^*}(v) \neq \emptyset$ for all $v \in \text{Succ}^*(v_0)$ and $p \in \mathbf{P}_{k^*}(v_0)$.
Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Folk theorem (2/2)

How to compute the sets $\mathbf{P}_{k^*}(v)$?

Folk theorem (2/2)

How to compute the sets $\mathbf{P}_{k^*}(v)$?

- <u>step 0</u>:begin with all the realizable payoffs from v, *i.e.*, $p \in \mathbf{P}_0(v)$ iff $\exists \rho$ beginning in v such that $Gain(\rho) = p$;
- step k: remove some payoffs, from $\mathbf{P}_k(v)$, which can't be payoffs of a weak SPE and **adjust** the set $\mathbf{P}_k(v')$ of the other vertices v';
- final step: reach a fixpoint $\mathbf{P}_{k^*}(v)$.

Folk theorem (2/2)

How to compute the sets $\mathbf{P}_{k^*}(v)$?

Game with Büchi objectives:

Player \bigcirc : { v_1 };

• Player \Box : { v_3 , v_5 };

	v ₀	<i>v</i> ₁	<i>v</i> ₂	V ₃	<i>v</i> ₄	<i>V</i> 5	v ₆
P ₀	$\{(0,0),(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	{(0,1)}	$\{(0,0),(0,1)\}$	{(0,1)}	{(0,0)}
P ₁	{ (0,0) , (1,0), (0,1)}	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,0)\}$
P ₂	{ (1,0) , (0, 1)}	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,0)\}$
\mathbf{P}_{k^*}	$\{(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,0)\}$

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Reachability and safety

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		Image: 1 minute of the second seco	

not prefix-independent objectives;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		 Image: A set of the set of the	

- not prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- **not** prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;
 SPEs:

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		•	

- **not** prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;
 SPEs:
 - **Reachability:** weak SPE \leftrightarrow SPE,

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		•	

- **not** prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;
 SPEs:
 - **Reachability:** weak SPE \leftrightarrow SPE, PSPACE-complete;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		•	

- **not** prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;
 SPEs:
 - Reachability: weak SPE ↔ SPE, PSPACE-complete;
 - Safety: thanks to previous results [Umm05] and the structure of our proof,

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
		•	

- **not** prefix-independent objectives;
- weak SPEs: PSPACE-complete for Reachability and Safety;
 SPEs:
 - Reachability: weak SPE ↔ SPE, PSPACE-complete;
 - Safety: thanks to previous results [Umm05] and the structure of our proof, PSPACE-complete.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Conclusion and future works

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

■ Existence of a good symbolic witness ↔ existence of a weak SPE;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results:

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

	Explicit Muller	Co-Büchi	Parity	Muller	Rabin	Streett	Reachability	Safety
P-complete	×							
NP-complete		×	×	×	×	×		
PSPACE-complete							×	×

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness ↔ existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

	Explicit Muller	Co-Büchi	Parity	Muller	Rabin	Streett	Reachability	Safety
P-complete	×							
NP-complete		×	×	×	×	×		
PSPACE-complete							×	×

open for Büchi, NP-easyness is known;

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness ↔ existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

	Explicit Muller	Co-Büchi	Parity	Muller	Rabin	Streett	Reachability	Safety
P-complete	×							
NP-complete		×	×	×	×	×		
PSPACE-complete							×	×

- open for Büchi, NP-easyness is known;
- FPT (fixed parameter tractable).

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness ↔ existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

	Explicit Muller	Co-Büchi	Parity	Muller	Rabin	Streett	Reachability	Safety
P-complete	×							
NP-complete		×	×	×	×	×		
PSPACE-complete							×	×

- open for Büchi, NP-easyness is known;
- FPT (fixed parameter tractable).

SPEs:

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

- Existence of a good symbolic witness \leftrightarrow existence of a weak SPE;
- Existence of weak SPEs which need "small" memory;
- Folk theorem;

Complexity results: weak SPEs :

	Explicit Muller	Co-Büchi	Parity	Muller	Rabin	Streett	Reachability	Safety
P-complete	×							
NP-complete		×	×	×	×	×		
PSPACE-complete							×	×

- open for Büchi, NP-easyness is known;
- FPT (fixed parameter tractable).

SPEs:

Reachability and Safety : PSPACE-complete.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works
Theoretical background and studied problem	Characterization	Reachability and safety	conclusion and future works

Future works

- Exact complexity class for Boolean games with Büchi objectives;
- Constraint problem for games with quantitative gain functions;
 Extension to SPE;

...

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Thomas Brihaye, Véronique Bruyère, Noémie Meunier, and Jean-François Raskin.

Weak subgame perfect equilibria and their application to quantitative reachability.

In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, pages 504–518, 2015.

Véronique Bruyère, Stéphane Le Roux, Arno Pauly, and Jean-François Raskin.

On the existence of weak subgame perfect equilibria.

In Foundations of Software Science and Computation Structures -20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 145–161, 2017.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Michael Ummels.

Rational Behaviour and Strategy Construction in Infinite Multiplayer Games.

Diploma thesis, RWTH Aachen, 2005.

Classical ω -regular winning condition

A play $\rho = \rho_0 \rho_1 \rho_2 \dots$ satisfies one of the following winning conditions iff Reachability given $F \subseteq V$, $Occ(\rho) \cap F \neq \emptyset$; Safety given $F \subseteq V$, $Occ(\rho) \cap F = \emptyset$; Büchi given $F \subseteq V$, $Inf(\rho) \cap F \neq \emptyset$; **Co-Büchi** given $F \subseteq V$, $Inf(\rho) \cap F = \emptyset$; Parity $\Omega: V \to \{1, \ldots, d\}$, max(lnf($\Omega(\rho)$)) is even; Explicit Muller given $\mathcal{F} \subseteq \mathcal{P}(V)$, $Inf(\rho) \in \mathcal{F}$; Muller given a coloring function $\Omega: V \to \{1, \ldots, d\}$, and $\mathcal{F} \subseteq \mathcal{P}(\Omega(V)), \operatorname{Inf}(\Omega(\rho)) \in \mathcal{F};$ Rabin given $(G_i, R_i)_{1 \le i \le k}$ a family of pair of sets $G_i, R_i \subseteq V$, there exists $j \in 1, \ldots, k$ such that $lnf(\rho) \cap G_i \neq \emptyset$ and $\operatorname{Inf}(\rho) \cap R_i = \emptyset;$

Streett given $(G_j, R_j)_{1 \le j \le k}$ a family of pair of sets $G_j, R_j \subseteq V$, for all $j \in 1, ..., k \ln f(\rho) \cap G_j = \emptyset$ or $\ln f(\rho) \cap R_j \ne \emptyset$.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Symbolic witness

Symbolic witness

Let (\mathcal{G}, v_0) be an initialized Boolean game with prefix-independent gain functions. Let $I \subseteq (\Pi \cup \{0\}) \times V$ be the set

$$I = \{(0, v_0)\} \cup \{(i, v') \mid \text{ there exists } (v, v') \in E\}$$

such that $v, v' \in \text{Succ}^*(v_0)$ and $v \in V_i$.

A symbolic witness is a set $\mathcal{P} = \{\rho_{i,v} \mid (i, v) \in I\}$ such that each $\rho_{i,v} \in \mathcal{P}$ is a lasso of G with First $(\rho_{i,v}) = v$ and with length bounded by $2 \cdot |V|^2$.

A symbolic witness has thus at most $|V| \cdot |\Pi| + 1$ lassoes (by definition of I) with polynomial length.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

FPT

Intuitively, a language is in FPT if there is an algorithm running in polynomial time with respect to the input size times some computable function on the parameter.

Let \mathcal{G} be a Boolean game. The constraint problem is in FPT for Reachability, Safety, Büchi, co-Büchi, Parity, Muller, Rabin, and Streett objectives. The parameters are

- the number |∏| of players for Reachability, Safety, Büchi, co-Büchi, and Parity objectives,
- the number $|\Pi|$ of players and the numbers k_i , $i \in \Pi$, of pairs $(G_j^i, R_j^i)_{1 \le j \le k_i}$, for Rabin and Streett objectives, and
- the number |Π| of players, the numbers d_i, i ∈ Π, of colors and the sizes |F_i|, i ∈ Π, of the families of subsets of colors for Muller objectives.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

Good symbolic witness

A symbolic witness \mathcal{P} is *good* if for all $\rho_{j,u}$, $\rho_{i,v'} \in \mathcal{P}$, for all vertices $v \in \rho_{j,u}$ such that $v \in V_i$ and $v' \in \text{Succ}(v)$, we have $\text{Gain}_i(\rho_{j,u}) \geq \text{Gain}_i(\rho_{i,v'})$.

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

${\small Symbolic\ witness}$

Example

)		$(0, v_0)$	(2, v ₄)	$(1, v_2)$	$(1, v_1)$	$(1, v_3)$	(2, v ₅)	(2, v ₆)	$(1, v_5)$	$(1, v_6)$
<i>'</i>	lasso	$v_0 v_1 v_2 v_3^{\omega}$	$v_4 v_5^{\omega}$	$v_2v_3^{\omega}$	$v_1v_2v_3^\omega$	v_3^{ω}	v_5^{ω}	v_6^{ω}	v_5^{ω}	v_6^{ω}
	payoff	(0, 1)	(0, 1)	(0,1)	(0,1)	(0, 1)	(0, 1)	(0,0)	(0, 1)	(0,0)

	v ₀	<i>v</i> ₁	<i>v</i> ₂	V3	<i>v</i> ₄	<i>V</i> 5	V ₆
P ₀	$\{(0,0),(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	{ (0,0) , (0,1)}	$\{(0,1)\}$	{(0,0)}
P ₁	{ (0,0) , (1,0), (0,1)}	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	{(0,1)}	$\{(0,1)\}$	{(0,0)}
P ₂	{ (1,0) , (0,1)}	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,1)\}$	$\{(0,0)\}$
\mathbf{P}_{k^*}	$\{(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(1,0),(0,1)\}$	$\{(0,1)\}$	{(0,1)}	$\{(0,1)\}$	{(0,0)}

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

(**Remove**) for all odd k: if there exists $v \in V_i$ and there exists $p \in \mathbf{P}_{k-1}(v)$ such that there exists $v' \in \operatorname{Succ}(v)$ such that for all $p' \in \mathbf{P}_{k-1}(v')$ we have: $p_i < p'_i$, then

$$\bullet \mathbf{P}_k(v) = \mathbf{P}_{k-1}(v) \setminus \{p\}$$

• for all
$$u \neq v \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u)$$
.

 ${}^1
ho =
ho_0
ho_1
ho_2\dots$ is (p,k)-labeled if for all $n\in\mathbb{N}$ $p\in\mathsf{P}_k(
ho_n)$

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

(**Remove**) for all odd k: if there exists $v \in V_i$ and there exists $p \in \mathbf{P}_{k-1}(v)$ such that there exists $v' \in \operatorname{Succ}(v)$ such that for all $p' \in \mathbf{P}_{k-1}(v')$ we have: $p_i < p'_i$, then

$$\bullet \mathbf{P}_k(v) = \mathbf{P}_{k-1}(v) \setminus \{p\}$$

• for all
$$u \neq v \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u)$$
.

 $\exists \quad \mathbf{v} \leftarrow \{ \stackrel{\exists}{p}, \ldots \}$

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

(**Remove**) for all odd k: if there exists $v \in V_i$ and there exists $p \in \mathbf{P}_{k-1}(v)$ such that there exists $v' \in \operatorname{Succ}(v)$ such that for all $p' \in \mathbf{P}_{k-1}(v')$ we have: $p_i < p'_i$, then

$$\bullet \mathbf{P}_k(v) = \mathbf{P}_{k-1}(v) \setminus \{p\}$$

• for all
$$u \neq v \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u)$$
.

 ${}^1
ho =
ho_0
ho_1
ho_2\dots$ is (p,k)-labeled if for all $n\in\mathbb{N}$ $p\in\mathsf{P}_k(
ho_n)$

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

(Remove) for all odd k: if there exists $v \in V_i$ and there exists $p \in \mathbf{P}_{k-1}(v)$ such that there exists $v' \in \operatorname{Succ}(v)$ such that for all $p' \in \mathbf{P}_{k-1}(v')$ we have: $p_i < p'_i$, then $\mathbf{P}_k(v) = \mathbf{P}_{k-1}(v) \setminus \{p\}$ for all $u \neq v \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u)$. (Adjust) for all even k: let p be the payoff removed from $\mathbf{P}_{k-1}(v)$ at the

Remove step for some v,

 ${}^{1}
ho =
ho_{0}
ho_{1}
ho_{2}\dots$ is (p,k)-labeled if for all $n \in \mathbb{N}$ $p \in \mathbf{P}_{k}(
ho_{n})$

Theoretical background and studied problem	Characterization	Reachability and safety	Conclusion and future works

(Remove) for all odd k: if there exists $v \in V_i$ and there exists $p \in \mathbf{P}_{k-1}(v)$ such that there exists $v' \in \operatorname{Succ}(v)$ such that for all $p' \in \mathbf{P}_{k-1}(v')$ we have: $p_i < p'_i$, then $\mathbf{P}_k(v) = \mathbf{P}_{k-1}(v) \setminus \{p\}$ for all $u \neq v \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u)$. (Adjust) for all even k: let p be the payoff removed from $\mathbf{P}_{k-1}(v)$ at the Remove step for some v, we check if for all $u \in V$ such that $p \in \mathbf{P}_{k-1}(u)$

there exists a play (p, k - 1)-labeled ¹ with payoff p from u.

yes:
$$\mathbf{P}_k(u) = \mathbf{P}_{k-1}(u) \setminus \{p\};$$

• no: $\mathbf{P}_k(u) = \mathbf{P}_{k-1}(u);$

• for all u such that $p \notin \mathbf{P}_{k-1}(u) : \mathbf{P}_k(u) = \mathbf{P}_{k-1}(u) \setminus \{p\}$.

 ${}^1
ho =
ho_0
ho_1
ho_2\dots$ is (p,k)-labeled if for all $n\in\mathbb{N}$ $p\in\mathsf{P}_k(
ho_n)$