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Motivations

Initial question

Can a theoretically faster algorithm replace efficiently another theoretically
slower one?

ASP can be used to solve efficiently a lot of problems with a
guess-and-check approach;
What if a problem that was in NP, has been proved to be in P? Can
the associated new approach be used to get better results than the
older one?

Let’s investigate on a problem: finding H-Partitions of a graph.
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H-Partition

Given an undirected simple graph G:

Is there a labeling of G’s vertices that respects some constraints en-
coded in a model graph H ?

A model graph H is an undirected graph with four vertices, called A, B, C
and D. Every edge is of exactly one of two types: full or dotted.

Constraints

full edge between A and B in H  each vertex labeled by A must be
adjacent to each vertex labeled by B in G;
dotted edge between A and B in H  each vertex labeled by A must
be nonadjacent to each vertex labeled by B in G.

If there exists such a labeling, (H,G) is called a yes-instance; otherwise
(H,G) is a no-instance.
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H-Partitions
Example

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C
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Model graphs

All possible model graphs (up to isomorphism):
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Finding H-Partitions

The H-partitioning problem for K2 + S2, is in polynomial
time [dFKKR00, KR07];
The H-partitioning problem for 2K2 is NP-complete [CDFG05];

For the other model graphs, Dantas et al. [DdFGK05] provide a
polynomial-time algorithm, of low polynomial degree, for the
H-partitioning problem;

 We experimentally compare a Datalog with stratified negation program
with a guess-and-check ASP program.
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ASP program

Guess and check
% Every vertex goes in exactly one partition.
1 { placedIn(X,P) : partition(P) } 1 :- vertex(X).

% No partition is empty.
filled(P) :- placedIn(X,P).
:- partition(P), not filled(P).

% Constraints of the model graph.
:- placedIn(X,P), placedIn(Y,Q), full(P,Q), not e(X,Y).
:- placedIn(X,P), placedIn(Y,Q), dotted(P,Q), e(X,Y).
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Datalog approach: Bases

Base
We say that the quadruplet (xA, xB, xC , xD) is a base for H if the
subgraph of G induced by these vertices is a yes-instance of
H-PARTITION(H) for a labeling where xA, xB, xC , and xD are
respectively labeled by A, B, C, and D.

AA

BB

D D

C C

1

2

4

3

5

(4, 2, 5, 1) is a base for H.
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Datalog program

Algorithm:

For each base until we find a solution:

1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
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Generating instances

To compare the efficiency of our programs, we need to generate
yes-instances and no-instances of arbitrary size.

 We need to distinguishing between yes-instances and no-instances.

Motivation:
on a yes-instance, an algorithm can stop as soon as a labeling is
found;
on no-instances no such early stopping is possible.
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Generation of no-instances

model graph # yes # no model graph # yes # no
(1) 1000 0 (18) 999 1

(2) 1000 0 (19) 185 815

(3) 1000 0 (20) 15 985

(4) 998 2 (21) 35 965

(5) 15 985 (22) 1000 0

(6) 175 825 (23) 15 985

(7) 13 987 (24) 15 985

(8) 15 985 (25) 14 986

(9) 13 987 (26) 56 944

(10) 9 991 (27) 15 985

(11) 0 1000 (28) 5 995

(12) 0 1000 (29) 1000 0

(13) 0 1000 (30) 0 1000

(14) 2 998 (31) 0 1000

(15) 4 996 (32) 6 994

(16) 4 996 (33) 15 985

(17) 183 817 (34) 12 988

For most cases: repeatedly generating random graphs will quickly lead to a
no-instance.
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Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.
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Experimentations
Time of resolution with Clingo
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Experimentations
Number of ground rules with Clingo
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Conclusion

We have given two programs:
1 a program in Datalog with stratified negation;
2 a guess-and-check ASP program.

We have generated yes and no-instances to compare the programs.
 The Datalog approach is slower than the guess-and-check because it
leads to too many ground rules.

Future work

• Automatic generation of no-instances;
• Test on a datalog engine.
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Thank you for your attention!
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