
Computing H-Partitions in ASP and Datalog

Chloé Capon, Nicolas Lecomte and Jef Wijsen

University of Mons, Belgium

ASPOCP 2022
15th Workshop on Answer Set Programming and Other Computing Paradigms

July 31, 2022

Motivations

Initial question

Can a theoretically faster algorithm replace efficiently another theoretically
slower one?

ASP can be used to solve efficiently a lot of problems with a
guess-and-check approach;
What if a problem that was in NP, has been proved to be in P? Can
the associated new approach be used to get better results than the
older one?

Let’s investigate on a problem: finding H-Partitions of a graph.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 2 / 17

Motivations

Initial question

Can a theoretically faster algorithm replace efficiently another theoretically
slower one?

ASP can be used to solve efficiently a lot of problems with a
guess-and-check approach;

What if a problem that was in NP, has been proved to be in P? Can
the associated new approach be used to get better results than the
older one?

Let’s investigate on a problem: finding H-Partitions of a graph.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 2 / 17

Motivations

Initial question

Can a theoretically faster algorithm replace efficiently another theoretically
slower one?

ASP can be used to solve efficiently a lot of problems with a
guess-and-check approach;
What if a problem that was in NP, has been proved to be in P? Can
the associated new approach be used to get better results than the
older one?

Let’s investigate on a problem: finding H-Partitions of a graph.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 2 / 17

Motivations

Initial question

Can a theoretically faster algorithm replace efficiently another theoretically
slower one?

ASP can be used to solve efficiently a lot of problems with a
guess-and-check approach;
What if a problem that was in NP, has been proved to be in P? Can
the associated new approach be used to get better results than the
older one?

Let’s investigate on a problem: finding H-Partitions of a graph.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 2 / 17

Table of contents

1 The H-Partition problem

2 Computing H-Partitions

3 Experimentations

4 Conclusion

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 3 / 17

H-Partition

Given an undirected simple graph G:

Is there a labeling of G’s vertices that respects some constraints en-
coded in a model graph H ?

A model graph H is an undirected graph with four vertices, called A, B, C
and D. Every edge is of exactly one of two types: full or dotted.

Constraints

full edge between A and B in H each vertex labeled by A must be
adjacent to each vertex labeled by B in G;
dotted edge between A and B in H each vertex labeled by A must
be nonadjacent to each vertex labeled by B in G.

If there exists such a labeling, (H,G) is called a yes-instance; otherwise
(H,G) is a no-instance.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 4 / 17

H-Partition

Given an undirected simple graph G:

Is there a labeling of G’s vertices that respects some constraints en-
coded in a model graph H ?

A model graph H is an undirected graph with four vertices, called A, B, C
and D. Every edge is of exactly one of two types: full or dotted.

Constraints

full edge between A and B in H each vertex labeled by A must be
adjacent to each vertex labeled by B in G;
dotted edge between A and B in H each vertex labeled by A must
be nonadjacent to each vertex labeled by B in G.

If there exists such a labeling, (H,G) is called a yes-instance; otherwise
(H,G) is a no-instance.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 4 / 17

H-Partition

Given an undirected simple graph G:

Is there a labeling of G’s vertices that respects some constraints en-
coded in a model graph H ?

A model graph H is an undirected graph with four vertices, called A, B, C
and D. Every edge is of exactly one of two types: full or dotted.

Constraints

full edge between A and B in H each vertex labeled by A must be
adjacent to each vertex labeled by B in G;
dotted edge between A and B in H each vertex labeled by A must
be nonadjacent to each vertex labeled by B in G.

If there exists such a labeling, (H,G) is called a yes-instance; otherwise
(H,G) is a no-instance.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 4 / 17

H-Partition

Given an undirected simple graph G:

Is there a labeling of G’s vertices that respects some constraints en-
coded in a model graph H ?

A model graph H is an undirected graph with four vertices, called A, B, C
and D. Every edge is of exactly one of two types: full or dotted.

Constraints

full edge between A and B in H each vertex labeled by A must be
adjacent to each vertex labeled by B in G;
dotted edge between A and B in H each vertex labeled by A must
be nonadjacent to each vertex labeled by B in G.

If there exists such a labeling, (H,G) is called a yes-instance; otherwise
(H,G) is a no-instance.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 4 / 17

H-Partitions
Example

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 5 / 17

H-Partitions
Example

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 5 / 17

Model graphs

All possible model graphs (up to isomorphism):

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 6 / 17

Finding H-Partitions

The H-partitioning problem for K2 + S2, is in polynomial
time [dFKKR00, KR07];
The H-partitioning problem for 2K2 is NP-complete [CDFG05];

For the other model graphs, Dantas et al. [DdFGK05] provide a
polynomial-time algorithm, of low polynomial degree, for the
H-partitioning problem;

 We experimentally compare a Datalog with stratified negation program
with a guess-and-check ASP program.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 7 / 17

Finding H-Partitions

The H-partitioning problem for K2 + S2, is in polynomial
time [dFKKR00, KR07];
The H-partitioning problem for 2K2 is NP-complete [CDFG05];
For the other model graphs, Dantas et al. [DdFGK05] provide a
polynomial-time algorithm, of low polynomial degree, for the
H-partitioning problem;

 We experimentally compare a Datalog with stratified negation program
with a guess-and-check ASP program.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 7 / 17

Finding H-Partitions

The H-partitioning problem for K2 + S2, is in polynomial
time [dFKKR00, KR07];
The H-partitioning problem for 2K2 is NP-complete [CDFG05];
For the other model graphs, Dantas et al. [DdFGK05] provide a
polynomial-time algorithm, of low polynomial degree, for the
H-partitioning problem;

 We experimentally compare a Datalog with stratified negation program
with a guess-and-check ASP program.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 7 / 17

ASP program

Guess and check
% Every vertex goes in exactly one partition.
1 { placedIn(X,P) : partition(P) } 1 :- vertex(X).

% No partition is empty.
filled(P) :- placedIn(X,P).
:- partition(P), not filled(P).

% Constraints of the model graph.
:- placedIn(X,P), placedIn(Y,Q), full(P,Q), not e(X,Y).
:- placedIn(X,P), placedIn(Y,Q), dotted(P,Q), e(X,Y).

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 8 / 17

ASP program

Guess and check
% Every vertex goes in exactly one partition.
1 { placedIn(X,P) : partition(P) } 1 :- vertex(X).

% No partition is empty.
filled(P) :- placedIn(X,P).
:- partition(P), not filled(P).

% Constraints of the model graph.
:- placedIn(X,P), placedIn(Y,Q), full(P,Q), not e(X,Y).
:- placedIn(X,P), placedIn(Y,Q), dotted(P,Q), e(X,Y).

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 8 / 17

ASP program

Guess and check
% Every vertex goes in exactly one partition.
1 { placedIn(X,P) : partition(P) } 1 :- vertex(X).

% No partition is empty.
filled(P) :- placedIn(X,P).
:- partition(P), not filled(P).

% Constraints of the model graph.
:- placedIn(X,P), placedIn(Y,Q), full(P,Q), not e(X,Y).
:- placedIn(X,P), placedIn(Y,Q), dotted(P,Q), e(X,Y).

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 8 / 17

Datalog approach: Bases

Base
We say that the quadruplet (xA, xB, xC , xD) is a base for H if the
subgraph of G induced by these vertices is a yes-instance of
H-PARTITION(H) for a labeling where xA, xB, xC , and xD are
respectively labeled by A, B, C, and D.

AA

BB

D D

C C

1

2

4

3

5

(4, 2, 5, 1) is a base for H.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 9 / 17

Datalog approach: Bases

Base
We say that the quadruplet (xA, xB, xC , xD) is a base for H if the
subgraph of G induced by these vertices is a yes-instance of
H-PARTITION(H) for a labeling where xA, xB, xC , and xD are
respectively labeled by A, B, C, and D.

AA

BB

D D

C C

1D

2B

4 A

3 ?

5 C

(4, 2, 5, 1) is a base for H.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 9 / 17

Datalog program

Algorithm:

For each base until we find a solution:

1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Datalog program

Algorithm:

For each base until we find a solution:
1 Pick a base;

2 Check if this base can be extended to a complete labeling of all
vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Datalog program

Algorithm:

For each base until we find a solution:
1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Datalog program

Algorithm:

For each base until we find a solution:
1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;

if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Datalog program

Algorithm:

For each base until we find a solution:
1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Datalog program

Algorithm:

For each base until we find a solution:
1 Pick a base;
2 Check if this base can be extended to a complete labeling of all

vertices; repeatedly pick an unlabeled vertex, and compute its possible
labels:

if only one label is possible =⇒ label that vertex with it;
if no label is possible =⇒ cannot be extended to a complete labeling.

3 If for every unlabeled vertex at least two labels remain possible then G
is a yes-instance 1.

1for model graphs (7), (10) and (11) some additional tests are required.
C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 10 / 17

Generating instances

To compare the efficiency of our programs, we need to generate
yes-instances and no-instances of arbitrary size.

 We need to distinguishing between yes-instances and no-instances.

Motivation:
on a yes-instance, an algorithm can stop as soon as a labeling is
found;
on no-instances no such early stopping is possible.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 11 / 17

Generating instances

To compare the efficiency of our programs, we need to generate
yes-instances and no-instances of arbitrary size.

 We need to distinguishing between yes-instances and no-instances.

Motivation:
on a yes-instance, an algorithm can stop as soon as a labeling is
found;
on no-instances no such early stopping is possible.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 11 / 17

Generation of no-instances

model graph # yes # no model graph # yes # no
(1) 1000 0 (18) 999 1

(2) 1000 0 (19) 185 815

(3) 1000 0 (20) 15 985

(4) 998 2 (21) 35 965

(5) 15 985 (22) 1000 0

(6) 175 825 (23) 15 985

(7) 13 987 (24) 15 985

(8) 15 985 (25) 14 986

(9) 13 987 (26) 56 944

(10) 9 991 (27) 15 985

(11) 0 1000 (28) 5 995

(12) 0 1000 (29) 1000 0

(13) 0 1000 (30) 0 1000

(14) 2 998 (31) 0 1000

(15) 4 996 (32) 6 994

(16) 4 996 (33) 15 985

(17) 183 817 (34) 12 988

For most cases: repeatedly generating random graphs will quickly lead to a
no-instance.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 12 / 17

Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 13 / 17

Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C

Here, n = 5 with a = c = d = 1 and b = 2.

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 13 / 17

Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;
Gmax is the complete graph without the edges following the dotted
constraints from H.

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C

Here, n = 5 with a = c = d = 1 and b = 2.

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 13 / 17

Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;
Gmax is the complete graph without the edges following the dotted
constraints from H.

AA

BB

D D

C C

1D

2B

4 A

3 B

5
C

Here, n = 5 with a = c = d = 1 and b = 2.

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 13 / 17

Generation of yes-instances

Let a, b, c, d ∈ N0 such that a+ b+ c+ d = n. One can wonder if there
exists a yes-instance with m edges where the numbers of vertices labeled
by A, B, C, and D are, respectively, a, b, c, and d.

Gmin is the graph where the only edges are the ones following the full
constraints from H;
Gmax is the complete graph without the edges following the dotted
constraints from H.

Theorem
Let H be a model graph. Let a, b, c, d ∈ N0 and n = a+ b+ c+ d. Every
graph G such that Gmin ⊆ G ⊆ Gmax has a solution with a vertices
labeled by A, b labeled by B, etc.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 13 / 17

Experimentations
Time of resolution with Clingo

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 14 / 17

Experimentations
Number of ground rules with Clingo

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 15 / 17

Conclusion

We have given two programs:
1 a program in Datalog with stratified negation;
2 a guess-and-check ASP program.

We have generated yes and no-instances to compare the programs.
 The Datalog approach is slower than the guess-and-check because it
leads to too many ground rules.

Future work

• Automatic generation of no-instances;
• Test on a datalog engine.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 16 / 17

Thank you for your attention!

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 17 / 17

Bibliography I

C. N. Campos, Simone Dantas, Luérbio Faria, and Sylvain Gravier.
2K2-partition problem.
Electron. Notes Discret. Math., 22:217–221, 2005.

Simone Dantas, Celina M. H. de Figueiredo, Sylvain Gravier, and
Sulamita Klein.
Finding H-partitions efficiently.
RAIRO Theor. Informatics Appl., 39(1):133–144, 2005.

Celina M. H. de Figueiredo, Sulamita Klein, Yoshiharu Kohayakawa,
and Bruce A. Reed.
Finding skew partitions efficiently.
J. Algorithms, 37(2):505–521, 2000.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 1 / 2

Bibliography II

William S. Kennedy and Bruce A. Reed.
Fast skew partition recognition.
In Hiro Ito, Mikio Kano, Naoki Katoh, and Yushi Uno, editors,
Computational Geometry and Graph Theory - International
Conference, KyotoCGGT 2007, Kyoto, Japan, June 11-15, 2007.
Revised Selected Papers, volume 4535 of Lecture Notes in Computer
Science, pages 101–107. Springer, 2007.

C. Capon, N. Lecomte, J. Wijsen Computing H-Partitions in ASP and Datalog July 31, 2022 2 / 2

	The H-Partition problem
	Computing H-Partitions
	Experimentations
	Conclusion
	Appendix
	References

