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Talk overview

Window objectives reinforce long-term objectives (e.g., mean-payoff
objectives, parity objectives) with timing constraints.
We study window parity objectives in a continuous-time setting.

Intuition of bounded window parity objectives

A good window for the parity objective is a time frame of size less
than λ such that the smallest priority in this time frame is even.
The bounded timed window parity objective requires that there exists a
λ s. t., from all configurations of a run, there is a good window for λ.

Fixed timed window parity objectives were first studied in [MRS21]1.
We discuss the complexity of verification and realizability for bounded
objectives.

1Main, Randour, and Sproston, “Time Flies When Looking out of the Window:
Timed Games with Window Parity Objectives”, CONCUR 2021.
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Timed automata
Introduction

Timed automata [AD94]2 are used to model real-time systems.
A timed automaton consists of:

a finite set C of clocks
progressing at the same rate;
a finite set of locations L
constrained by invariants;
a finite set of edges E
labelled by actions, guards
and clock resets.

`0
x ≤ 2

`1
true

`2
x ≤ 2

(x > 1, a,∅) (x ≥ 3, a, {x})

(true, a, {x})

Guards and invariants are given by conjunctions of conditions of the
form x ≤ c, x < c, x ≥ c and x > c where x is a clock and c ∈ N.

2Alur and Dill, “A Theory of Timed Automata”, TCS 1994.
Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 5 / 26



Timed automata
Semantics

A timed automaton gives rise to an uncountable transition system.
The state space S of this transition system consists of pairs of
locations and clock valuations (mappings C → R≥0).
The initial state is (`init,0

C).
Moves are pairs (d, a) where d ∈ R≥0 is a delay and a is an action of
the timed automaton or a special standby action ⊥.
Transitions are constrained by the invariants and guards of the timed
automaton. We distinguish two types of transitions.

Delays transitions: for any δ ≥ 0, (`, v)
δ,⊥−−→ (`, v+ δ) if v+ δ |= Inv(`)

Edge transitions: for any δ ≥ 0 and action a, (`, v)
δ,a−−→ (`′, v′) if there

is an edge (`, g, a,D, `′) ∈ E, v + δ |= Inv(`) ∧ g, v′ = resetD(v + δ)
and v′ |= Inv(`′).

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 6 / 26



Clock-equivalence and regions

We assume that there is a clock γ that cannot be reset.
We use clock-equivalence and region-equivalence [AD94]3.

We have v ≡ v′ if
for all x ∈ C, v(x) > cx iff v′(x) > cx;
for all x ∈ {z ∈ C | v(z) ≤ cx},
bv(x)c = bv′(x)c;
for all x, y ∈ {z ∈ C | v(z) ≤ cx} ∪ {γ},
v(x) ∈ N iff v′(x) ∈ N, and
frac((v(x)) ≤ frac((v(y)) iff
frac((v′(x)) ≤ frac((v′(y)).

There are exponentially many clock regions.
We let Reg denote the set of clock regions.

3Alur and Dill, “A Theory of Timed Automata”, TCS 1994.
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Timed games

We consider two-player games played on timed automata [Alf+03]4.
A timed game is given by a timed automaton and a partition (Σ1,Σ2)
of the actions of the timed automaton in P1 actions and P2 actions.
These games are concurrent: at each round, both players present a
move and the play proceeds following a fastest move.

`1
true

`0
x ≤ 2

`2
x ≤ 2

(x ≥ 1, a2,∅)

(x ≥ 1, a1, {x})

(true, a1, {x})

Examples of the first round of a timed game:
(`0, 0) ((1, a1), (0.5, a2))

(`1, 0.5)
(`0, 0) ((1, a1), (1, a2))

(`2, 0)

(`0, 0) ((1, a1), (1, a2))

(`1, 0)

4Alfaro et al., “The Element of Surprise in Timed Games”, CONCUR 2003.
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Timed games

A play is an infinite sequence in (S((R≥0 × Σ1)× (R≥0 × Σ2)))
ω

constructed according to the rules of the game.
A history is a prefix of a play ending in a state.
A strategy for Pi is a function mapping histories to moves of Pi.

Finite-memory region strategies

A strategy of Pi is a finite-memory region strategy if it can be encoded by
a Mealy machineM = (M,minit, αup, αmov) where

M is a finite set of memory states, minit ∈M;
αup : M× L× Reg→M is a memory update function;
αmov : M× S → R≥0 × Σi is a next-move function such that for all
m ∈M and two region-equivalent states s, s′ ∈ S, the delays of the
moves αmov(m, s) and αmov(m, s

′) move to the same regions.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 9 / 26



Passage of time

It is possible to have a play in which a finite amount of time passes.
Example: (`0, 0)(( 1

2 ,⊥), ( 1
2 ,⊥))(`0,

1
2 )(( 1

4 ,⊥), ( 1
4 ,⊥))(`0,

3
4 ) . . .

`0
x ≤ 1

`2
true

(x = 1, a1, {x})

Plays in which the sum of delays converges are called time-convergent.
Otherwise, a play is referred to as time-divergent.
We use winning conditions that prevent a player from winning by
making time converge, following [Alf+03]5.

5Alfaro et al., “The Element of Surprise in Timed Games”, CONCUR 2003.
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Winning conditions

An objective is a set of plays that represents the specification to be
enforced.
Given an objective, we say a play belongs to its associated winning
condition for P1 if one of the two following conditions is fulfilled:

the play is time-divergent and satisfies the objective;
the play is time-convergent and from some point on, transitions in the
play cannot be achieved by P1’s moves.

We say a strategy of P1 is winning from some initial state if all plays
starting in this state consistent with the strategy satisfy the winning
condition of P1.

Realizability problem

Given an objective, check whether P1 has a winning strategy from the
initial state.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 11 / 26
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A motivation for windows

Parity objective: given a priority function p : L→ N, the objective
consists of plays along which the smallest priority appearing infinitely
often is even.
The parity objective imposes no timing constraints between odd
priorities and smaller even priorities.

`0
x ≤ 2

1

`1
true

2

`2
x ≤ 2

0

(true, a1,∅) (true, a2, {x})

(true, a1, {x})

Through the window mechanism, one can specify such timing
constraints.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 13 / 26



Good windows

The window objectives are based on the notion of good windows.
Fix a bound λ on the length of windows. A good window for the
parity objective is a window in which:

strictly less than λ time units elapse and
the smallest priority appearing in the window is even.

Good window Bad window

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 14 / 26



Window objectives

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

π satisfies the timed good window parity objective TGW(λ) if the
window at the start of π is good. Formally, π ∈ TGW(λ) if and only if

∃n,
(

min
0≤k≤n

p(`k)

)
mod 2 = 0 ∧

n−1∑
k=0

delay(m
(1)
k ,m

(2)
k ) < λ.

π satisfies the direct fixed timed window parity objective DFTW(λ) if
all suffixes of π satisfy TGW(λ).
π satisfies the direct bounded timed window parity objective DBTW if
there exists λ such that π ∈ DFTW(λ).
π satisfies the fixed timed window parity objective FTW(λ) if some
suffix of π satisfies π ∈ DFTW(λ).
π satisfies the bounded timed window parity objective BTW if some
suffix of π satisfies π ∈ DBTW.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 15 / 26



Window objectives

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

π satisfies the timed good window parity objective TGW(λ) if the
window at the start of π is good. Formally, π ∈ TGW(λ) if and only if

∃n,
(

min
0≤k≤n

p(`k)

)
mod 2 = 0 ∧

n−1∑
k=0

delay(m
(1)
k ,m

(2)
k ) < λ.

π satisfies the direct fixed timed window parity objective DFTW(λ) if
all suffixes of π satisfy TGW(λ).

π satisfies the direct bounded timed window parity objective DBTW if
there exists λ such that π ∈ DFTW(λ).
π satisfies the fixed timed window parity objective FTW(λ) if some
suffix of π satisfies π ∈ DFTW(λ).
π satisfies the bounded timed window parity objective BTW if some
suffix of π satisfies π ∈ DBTW.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 15 / 26



Window objectives

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

π satisfies the timed good window parity objective TGW(λ) if the
window at the start of π is good. Formally, π ∈ TGW(λ) if and only if

∃n,
(

min
0≤k≤n

p(`k)

)
mod 2 = 0 ∧

n−1∑
k=0

delay(m
(1)
k ,m

(2)
k ) < λ.

π satisfies the direct fixed timed window parity objective DFTW(λ) if
all suffixes of π satisfy TGW(λ).
π satisfies the direct bounded timed window parity objective DBTW if
there exists λ such that π ∈ DFTW(λ).

π satisfies the fixed timed window parity objective FTW(λ) if some
suffix of π satisfies π ∈ DFTW(λ).
π satisfies the bounded timed window parity objective BTW if some
suffix of π satisfies π ∈ DBTW.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 15 / 26



Window objectives

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

π satisfies the timed good window parity objective TGW(λ) if the
window at the start of π is good. Formally, π ∈ TGW(λ) if and only if

∃n,
(

min
0≤k≤n

p(`k)

)
mod 2 = 0 ∧

n−1∑
k=0

delay(m
(1)
k ,m

(2)
k ) < λ.

π satisfies the direct fixed timed window parity objective DFTW(λ) if
all suffixes of π satisfy TGW(λ).
π satisfies the direct bounded timed window parity objective DBTW if
there exists λ such that π ∈ DFTW(λ).
π satisfies the fixed timed window parity objective FTW(λ) if some
suffix of π satisfies π ∈ DFTW(λ).
π satisfies the bounded timed window parity objective BTW if some
suffix of π satisfies π ∈ DBTW.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 15 / 26



Table of contents

1 Timed automata and timed games

2 Window parity objectives

3 Games with direct bounded window parity objectives

4 Games with indirect bounded window parity objectives

5 Conclusion

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 16 / 26



Direct bounded window objective
Request-response objectives

We can reduce the realizability problem for DBTW to the realizability
problem for request-response objectives.

Request-response objective

Let R = ((Rqi,Rpi))
r
i=1 where for all i, Rqi,Rpi ⊆ L× Reg. A play

π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . satisfies the request-response objective

RR(R) if for all i ∈ {1, . . . , r} and for all j ∈ N, there exists k ≥ j such
that

(`j , [vj ]) ∈ Rqi =⇒ (`k, [vk]) ∈ Rpi.

Whenever P1 has a winning strategy for a request-response objective,
he also has a region finite-memory winning strategy using delays of at
most one.

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 17 / 26



Direct bounded window objective
Reduction

From a priority function p, we define a set of pairs of requests and
responses R(p).

For each odd priority q, we have the request p−1(q)× Reg.
The matching response set is

⋃
q′≤q,q even p

−1(q′)× Reg.

Theorem
Let D = max`∈L(p(`)) + 1 and λ = 8 · |L| · |Reg| · (bD2 c+ 1) + 3.

The sets of winning states for the objectives RR(R(p)), DFTW(λ)
and DBTW coincide.
There exists a finite-memory region strategy that is simultaneously
winning for these three objectives from any winning state.
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Direct bounded window objective
Correctness of the reduction

The chain of inclusions DFTW(λ) ⊆ DBTW ⊆ RR(R(p)) implies the
similar chain for the sets of winning states.

To show that if a state is winning for RR(R(p)), then it must be for
DFTW(λ), we proceed by contradiction.
We fix a finite-memory region winning strategy for RR(R(p)) with
4 · (bD2 c+ 1) states and assume by contradiction that it is not winning
for DFTW(λ).

Contradiction: we have
derived an outcome that
is not winning for
RR(R(p)).

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 19 / 26



Direct bounded window objective
Correctness of the reduction

The chain of inclusions DFTW(λ) ⊆ DBTW ⊆ RR(R(p)) implies the
similar chain for the sets of winning states.
To show that if a state is winning for RR(R(p)), then it must be for
DFTW(λ), we proceed by contradiction.
We fix a finite-memory region winning strategy for RR(R(p)) with
4 · (bD2 c+ 1) states and assume by contradiction that it is not winning
for DFTW(λ).

Contradiction: we have
derived an outcome that
is not winning for
RR(R(p)).

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 19 / 26



Direct bounded window objective
Correctness of the reduction

The chain of inclusions DFTW(λ) ⊆ DBTW ⊆ RR(R(p)) implies the
similar chain for the sets of winning states.
To show that if a state is winning for RR(R(p)), then it must be for
DFTW(λ), we proceed by contradiction.
We fix a finite-memory region winning strategy for RR(R(p)) with
4 · (bD2 c+ 1) states and assume by contradiction that it is not winning
for DFTW(λ).

Contradiction: we have
derived an outcome that
is not winning for
RR(R(p)).

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 19 / 26



Direct bounded window objective
Correctness of the reduction

The chain of inclusions DFTW(λ) ⊆ DBTW ⊆ RR(R(p)) implies the
similar chain for the sets of winning states.
To show that if a state is winning for RR(R(p)), then it must be for
DFTW(λ), we proceed by contradiction.
We fix a finite-memory region winning strategy for RR(R(p)) with
4 · (bD2 c+ 1) states and assume by contradiction that it is not winning
for DFTW(λ).

Contradiction: we have
derived an outcome that
is not winning for
RR(R(p)).

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 19 / 26



Table of contents

1 Timed automata and timed games

2 Window parity objectives

3 Games with direct bounded window parity objectives

4 Games with indirect bounded window parity objectives

5 Conclusion

Main, Randour, Sproston Timed Games with Bounded Window Parity Objectives FORMATS’22 20 / 26



Indirect bounded window objective
Algorithm

To solve timed games with the BTW objective, we repeatedly solve
games with request-response objectives, starting with RR(R(p)).
At each step, we add state regions that are declared winning to all
response sets. We stop whenever no new state is declared winning.

Illustration of the algorithm

From any computed state, there is a winning strategy of P1 for
FTW(8 · |L| · |Reg| · (bD2 c+ 1) + 3).
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Indirect bounded window objective
Correctness of the algorithm

There is no winning strategy of P1 for BTW from states outside the
output of the algorithm.

Theorem
Let D = max`∈L(p(`)) + 1 and λ = 8 · |L| · |Reg| · (bD2 c+ 1) + 3.

The sets of winning states for the objectives FTW(λ) and BTW
coincide.
There exists a finite-memory region strategy that is simultaneously
winning for these two objectives from any winning state.
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Multi-dimensional objectives and complexity

The algorithms for both variants of bounded window parity objectives
can be used to handle conjunctions of direct bounded objectives or
indirect bounded objectives.
The request-response objective used for a conjunction described from
priority functions p1, . . . , pk is RR(

⋃
1≤i≤kR(pi)).

The algorithms for multi-dimensional objectives run in time:
polynomial in the size of the region abstraction;
polynomial in the number of priorities;
exponential in the number of dimensions.

The realizability problem for BTW and DBTW can be shown
EXPTIME-hard by a reduction from the realizability problem for safety
objectives.

Theorem
The realizability problem for direct and indirect bounded timed window
parity objectives is EXPTIME-complete.
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Verification of timed automata

In addition to games, we have also studied the verification problem for
bounded timed window objectives.

Verification problem for timed automata

Given an objective, check whether all time-divergent paths of the timed
automata satisfy the objective.

We have shown the following.

Theorem
The verification problem for direct and indirect bounded timed window
parity objectives is PSPACE-complete.
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Complexity overview

Complexity summary for all variants of window parity objectives

Single dimension Multiple dimensions
Timed automata PSPACE-complete PSPACE-complete
Timed games EXPTIME-complete EXPTIME-complete

Games (untimed) [BHR16]6 P-complete EXPTIME-complete

6Bruyère, Hautem, and Randour, “Window parity games: an alternative approach
toward parity games with time bounds”, GandALF 2016.
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