

1. Overview

In games, randomised strategies can be defined in different ways.

- Mixed strategies randomise over pure strategies at the start.
- Behavioural strategies select a random action at each step.

Kuhn's theorem [Aum16]

In games of perfect recall, behavioural and mixed strategies can induce the same outcomes.

Contribution on this poster

Adapting Kuhn's theorem to finite-memory strategies.

2. Stochastic games

- Two-player **turn-based games**: finite set of states *S* partitioned in S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\Box , for \mathcal{P}_2).
- Probabilistic transitions labelled by actions $a \in A$.

3. Strategies and outcome-equivalence

Strategy of \mathcal{P}_i : function $(SA)^*S_i \to \mathcal{D}(A)$.

Given an initial state $s_{init} \in S$, strategies σ_1 and σ_2 of \mathcal{P}_1 and \mathcal{P}_2 induce a probability distribution over infinite plays denoted $\mathbb{P}_{S_{\text{init}}}^{\sigma_1,\sigma_2}$.

How to **compare** strategies ? Via their induced distributions.

Outcome-equivalence of strategies

Two strategies σ_1 and τ_1 of \mathcal{P}_1 are **outcome-equivalent** if for all strategies σ_2 of \mathcal{P}_2 and all initial states $s_{init} \in S$, $\mathbb{P}_{s_{init}}^{\sigma_1,\sigma_2} = \mathbb{P}_{s_{init}}^{\tau_1,\sigma_2}$.

Outcome-equivalence is agnostic to specifications.

Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem with Finite-memory Assumptions

4. Finite-memory strategies

A strategy of \mathcal{P}_i is **finite-memory** (FM) if it can be induced by a stochastic Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$ where

- *M* is a finite set of memory states;
- $\mu_{init} \in \mathcal{D}(M)$ is an initial distribution;
- α_{up} : $M \times S \times A \rightarrow \mathcal{D}(M)$ is a stochastic memory update function;
- α_{next} : $M \times S_i \rightarrow \mathcal{D}(A)$ is a stochastic next-move function.

5. Kuhn-like equivalence for FM strategies?

Do we have a Kuhn-like equivalence if we require some aspects among μ_{init} , α_{next} or α_{up} to be deterministic ?

 \rightarrow Only in some limited cases.

Only randomised outputs vs. only randomised initialisation

In one-player deterministic game graphs:

- randomised outputs can induce infinitely many paths;
- randomised initialisation can only induce finitely many.

6. Classifying finite-memory strategies

We use **acronyms** to define classes of Mealy machines (hence of FM strategies): we use XYZ where X, Y, $Z \in \{D, R\}$ where D stands for deterministic and R for random, and

- X characterises initialisation,
- Y characterises outputs (next-move function),
- Z characterises updates.

We have the following hierarchy of FM strategies:

Kuhn-like strict classification of FM strategies [MR22]

[MR22] Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem with Finite-memory Assumptions,

RRD DRD RDD

7. RDD \subseteq DRD: trading random initialisation for outputs

For an RDD Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$. • We use an adaptation of the **subset construction**. • State space of functions $supp(\mu_{init}) \rightarrow (M \cup \{\bot\})$: - We simulate the strategy from each initial state. – We interrupt inconsistent simulations (symbolised by \perp).

8. RRR \subseteq DRR: determinising initialisation

For an RRR Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$. • To derive a DRR Mealy machine from \mathcal{M} , we add a **new initial state** m_{new} to the memory state space.

- first step.

9. RRR \subset RDR: determinising outputs

For an RRR Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$. • To derive an RDR Mealy machine from \mathcal{M} , we **augment memory states** with pure memoryless strategies $\sigma_i \colon S_i \to A$.

- domisation over actions in the transitions.

 \sim We can avoid a blow-up by $|A|^{|S_i|}$ as follows.

Example: choosing $|A| \cdot |S_i|$ pure memoryless strategies

For $m \in M$, we represent the probability intervals of actions in each state: we get the pure memoryless strategies as segments.

s_1	a_1		a_2	
s_2	a_1	a	a_3	
s_3	a_1	a_2	a_3	
σ_i	σ_1	σ_2	σ_3	σ_4
($\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$ 1

References

[Aum16] Robert J. Aumann. 28. Mixed and Behavior Strategies in Infinite Extensive Games, pages 627–650. Princeton University Press, 2016.

• Using stochastic updates, we return to \mathcal{M} from m_{new} after the

• Transition probabilities use conditional probabilities: some actions may be available only in some initial memory states of \mathcal{M} .

• We use stochastic initialisation and updates to integrate the ran-

Submitted