Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-memory Assumptions

James C. A. Main Mickael Randour

UMONS - Université de Mons and F.R.S.-FNRS

PhD Day - 13 May 2022

Table of contents

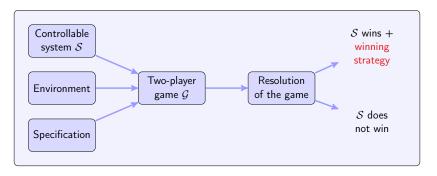
1 Context

2 Strategies and finite memory

3 Kuhn's theorem and finite memory

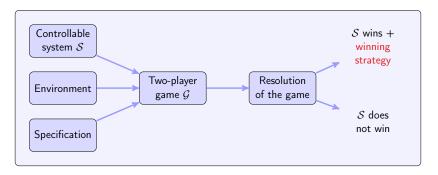
Reactive synthesis

Reactive synthesis: automated generation of a controller for a reactive system from a specification with formal guarantees on the behaviour of the system.



Reactive synthesis

Reactive synthesis: automated generation of a controller for a reactive system from a specification with formal guarantees on the behaviour of the system.



■ A strategy is a formal blueprint of the sought controller for the system → we need a finite implementation.

Kuhn's theorem

In this talk, we discuss randomised strategies. In general, one can define randomised strategies in different ways.

- Mixed strategies randomise between pure strategies at the start.
- Behavioural strategies randomly select an action at each step.
- In general, these two classes of strategies are not comparable.

Kuhn's theorem

In this talk, we discuss randomised strategies. In general, one can define randomised strategies in different ways.

- Mixed strategies randomise between pure strategies at the start.
- Behavioural strategies randomly select an action at each step.
- In general, these two classes of strategies are not comparable.

Kuhn's theorem

In games of perfect recall any mixed strategy has an equivalent behavioural strategy and vice-versa.

Kuhn's theorem

In this talk, we discuss randomised strategies. In general, one can define randomised strategies in different ways.

- Mixed strategies randomise between pure strategies at the start.
- Behavioural strategies randomly select an action at each step.
- In general, these two classes of strategies are not comparable.

Kuhn's theorem

In games of perfect recall any mixed strategy has an equivalent behavioural strategy and vice-versa.

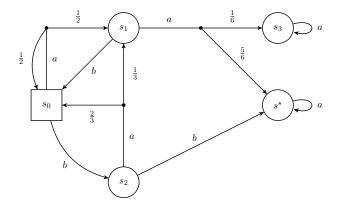
There exist different definitions of randomised finite-memory strategies.

Main contribution

An adaptation of Kuhn's theorem for finite-memory strategies.

Stochastic games on graphs Example

We consider two-player stochastic games of perfect information.



Stochastic games on graphs Definition

Definition

A stochastic game of perfect information is a tuple $\mathcal{G}=(S_1,S_2,A,\delta)$ where

- $S = S_1 \uplus S_2$ is a finite set of states, S_i is the set of \mathcal{P}_i states;
- A is a finite set of actions;

 $\blacksquare \ \delta \colon S \times A \to \mathcal{D}(S) \text{ is a partial transition relation}.$

For all $s \in S$, let $A(s) = \{a \in A \mid \delta(s, a) \text{ is defined}\}$ denote the set of actions enabled in s. We assume that in each state $s \in S$, there is at least one enabled action.

Stochastic games on graphs Definition

Definition

A stochastic game of perfect information is a tuple $\mathcal{G}=(S_1,S_2,A,\delta)$ where

- $S = S_1 \uplus S_2$ is a finite set of states, S_i is the set of \mathcal{P}_i states;
- A is a finite set of actions;

• $\delta \colon S \times A \to \mathcal{D}(S)$ is a partial transition relation.

For all $s \in S$, let $A(s) = \{a \in A \mid \delta(s, a) \text{ is defined}\}$ denote the set of actions enabled in s. We assume that in each state $s \in S$, there is at least one enabled action.

- Play: sequence $s_0a_0s_1...$ where for all $k \in \mathbb{N}$, $a_k \in A(s_k)$ and $\delta(s_k, a_k)(s_{k+1}) > 0$.
- History: prefix of a play ending in a state. We write Hist_i(G) for the set of histories ending in S_i.

Table of contents

1 Context

2 Strategies and finite memory

3 Kuhn's theorem and finite memory

In general, a strategy of \mathcal{P}_i provides a distribution over actions at each step of the play controlled by \mathcal{P}_i .

Definition

Let $i \in \{1,2\}$. A strategy of \mathcal{P}_i is a function $\sigma \colon \operatorname{Hist}_i(\mathcal{G}) \to \mathcal{D}(A)$ such that for all $h = s_0 a_1 s_1 \dots s_n \in \operatorname{Hist}_i(\mathcal{G})$, and all $a \in A$,

$$\sigma(h)(a) > 0 \implies a \in A(s_n).$$

Strategies as defined above are behavioural strategies.

Comparing strategies

Given an initial state $s_{\text{init}} \in S$, strategies σ_1 and σ_2 of \mathcal{P}_1 and \mathcal{P}_2 induce a probability distribution over plays, denoted $\mathbb{P}_{s_{\text{init}}}^{\sigma_1,\sigma_2}$, such that for any history $h = s_0 a_0 \dots a_{n-1} s_n$ with $s_0 = s_{\text{init}}$, we have

$$\mathbb{P}_{s_{\mathsf{init}}}^{\sigma_1,\sigma_2}(\mathsf{Cyl}(h)) = \prod_{k=0}^{n-1} \sigma_{i(k)}(s_0 a_0 \dots s_k)(a_k) \cdot \delta(s_k, a_k, s_{k+1}),$$

where i(k) = 1 if $s_k \in S_1$ and i(k) = 2 otherwise, and Cyl(h) denotes the set of plays that have h as a prefix.

Outcome-equivalence of strategies

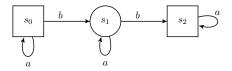
Two strategies σ_1 and τ_1 of \mathcal{P}_1 are outcome-equivalent if for all strategies σ_2 of \mathcal{P}_2 and all initial states $s_{\text{init}} \in S$, $\mathbb{P}_{s_{\text{init}}}^{\sigma_1,\sigma_2} = \mathbb{P}_{s_{\text{init}}}^{\tau_1,\sigma_2}$.

Some strategies may not be implemented

■ In some cases, strategies may require infinite memory to win.

Some strategies may not be implemented

■ In some cases, strategies may require infinite memory to win.



- Objective: $\{(s_0a)^{\omega}\} \cup \{(s_0a)^k s_0 b(s_1a)^k s_1 b(s_2a)^{\omega} \mid k \in \mathbb{N}\}.$
- A winning strategy needs to count the number of occurrences of s₀ at the start of the play: requires an unbounded counter.

Finite-memory strategies

The classical model of finite-memory strategies is based on automata.

Definition

- A \mathcal{P}_i strategy is finite-memory if there is a Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{act}})$ that encodes it, where:
 - $\blacksquare~M$ is a finite set of states;
 - $\mu_{\text{init}} \in \mathcal{D}(M)$ is an initial distribution;
 - $\alpha_{up} \colon M \times S \times A \to \mathcal{D}(M)$ is a memory-update function;
 - $\alpha_{\mathsf{act}} \colon M \times S_i \to \mathcal{D}(A)$ is a next-move function.

Finite-memory strategies

The classical model of finite-memory strategies is based on automata.

Definition

- A \mathcal{P}_i strategy is finite-memory if there is a Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{act}})$ that encodes it, where:
 - $\blacksquare~M$ is a finite set of states;
 - $\mu_{\text{init}} \in \mathcal{D}(M)$ is an initial distribution;
 - $\alpha_{up} \colon M \times S \times A \to \mathcal{D}(M)$ is a memory-update function;
 - $\alpha_{\mathsf{act}} \colon M \times S_i \to \mathcal{D}(A)$ is a next-move function.

The flow is as follows:

- An initial memory state m_0 is drawn following μ_{init} .
- If the state $s_n \in S_i$, the action a_n is drawn from $\alpha_{\text{next}}(m_n, s_n)$.
- The next memory state m_{n+1} is drawn from $\alpha_{up}(m_n, s_n, a_n)$.

Table of contents

1 Context

2 Strategies and finite memory

3 Kuhn's theorem and finite memory

Restricting randomisation in Mealy machines

- In the literature of formal methods, often the variant where only the output of the Mealy machines are randomised is considered.
- → Do we have an equivalent of Kuhn's theorem between this restricted class of Mealy machines and general ones ?

Restricting randomisation in Mealy machines

- In the literature of formal methods, often the variant where only the output of the Mealy machines are randomised is considered.
- → Do we have an equivalent of Kuhn's theorem between this restricted class of Mealy machines and general ones ?
- The answer is no: the smaller class is strictly less expressive.

Restricting randomisation in Mealy machines

- In the literature of formal methods, often the variant where only the output of the Mealy machines are randomised is considered.
- → Do we have an equivalent of Kuhn's theorem between this restricted class of Mealy machines and general ones ?
- The answer is no: the smaller class is strictly less expressive.

Only randomised outputs vs. only randomised initialisation

In the game depicted below:

- randomised outputs can induce infinitely many plays;
- randomised initialisation can only induce finitely many.

Classifying Mealy machines

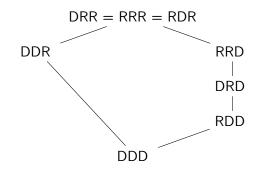
We use acronyms to define classes of Mealy machines: we use XYZ where X, Y, Z \in {D, R} where D stands for deterministic and R for random, and

- X characterises initialisation,
- Y characterises outputs (next-move function),
- Z characterises updates.

Classifying Mealy machines

We use acronyms to define classes of Mealy machines: we use XYZ where X, Y, Z \in {D, R} where D stands for deterministic and R for random, and

- X characterises initialisation,
- Y characterises outputs (next-move function),
- Z characterises updates.



References I

Aumann, Robert J. "28. Mixed and Behavior Strategies in Infinite Extensive Games". In: Advances in Game Theory. (AM-52), Volume 52. Princeton University Press, 2016, pp. 627–650. DOI: doi:10.1515/9781400882014-029. URL: https://doi.org/10.1515/9781400882014-029.