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Reactive synthesis

Reactive synthesis: automated generation of a controller for a reactive
system from a specification with formal guarantees on the behaviour
of the system.

Controllable
system S

Environment

Specification

Two-player
game G

Resolution
of the game

S wins +
winning
strategy

S does
not win

A strategy is a formal blueprint of the sought controller for the system
 we need a finite implementation.
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Kuhn’s theorem

In this talk, we discuss randomised strategies. In general, one can define
randomised strategies in different ways.

Mixed strategies randomise between pure strategies at the start.
Behavioural strategies randomly select an action at each step.

In general, these two classes of strategies are not comparable.

Kuhn’s theorem
In games of perfect recall any mixed strategy has an equivalent behavioural
strategy and vice-versa.

There exist different definitions of randomised finite-memory strategies.

Main contribution
An adaptation of Kuhn’s theorem for finite-memory strategies.
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Stochastic games on graphs
Example

We consider two-player stochastic games of perfect information.
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Stochastic games on graphs
Definition

Definition
A stochastic game of perfect information is a tuple G = (S1, S2, A, δ)
where

S = S1 ] S2 is a finite set of states, Si is the set of Pi states;
A is a finite set of actions;
δ : S ×A→ D(S) is a partial transition relation.

For all s ∈ S, let A(s) = {a ∈ A | δ(s, a) is defined} denote the set of
actions enabled in s. We assume that in each state s ∈ S, there is at least
one enabled action.

Play: sequence s0a0s1 . . . where for all k ∈ N, ak ∈ A(sk) and
δ(sk, ak)(sk+1) > 0.
History: prefix of a play ending in a state. We write Histi(G) for the
set of histories ending in Si.
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Strategies: a formal definition

In general, a strategy of Pi provides a distribution over actions at each step
of the play controlled by Pi.

Definition
Let i ∈ {1, 2}. A strategy of Pi is a function σ : Histi(G)→ D(A) such
that for all h = s0a1s1 . . . sn ∈ Histi(G), and all a ∈ A,

σ(h)(a) > 0 =⇒ a ∈ A(sn).

Strategies as defined above are behavioural strategies.
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Comparing strategies

Given an initial state sinit ∈ S, strategies σ1 and σ2 of P1 and P2 induce a
probability distribution over plays, denoted Pσ1,σ2sinit , such that for any history
h = s0a0 . . . an−1sn with s0 = sinit, we have

Pσ1,σ2sinit
(Cyl(h)) =

n−1∏
k=0

σi(k)(s0a0 . . . sk)(ak) · δ(sk, ak, sk+1),

where i(k) = 1 if sk ∈ S1 and i(k) = 2 otherwise, and Cyl(h) denotes the
set of plays that have h as a prefix.

Outcome-equivalence of strategies

Two strategies σ1 and τ1 of P1 are outcome-equivalent if for all strategies
σ2 of P2 and all initial states sinit ∈ S, Pσ1,σ2sinit = Pτ1,σ2sinit .
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Some strategies may not be implemented

In some cases, strategies may require infinite memory to win.

s0 s1 s2

a

b

a

b a

Objective: {(s0a)ω} ∪ {(s0a)ks0b(s1a)ks1b(s2a)ω | k ∈ N}.
A winning strategy needs to count the number of occurrences of s0 at
the start of the play: requires an unbounded counter.
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Finite-memory strategies

The classical model of finite-memory strategies is based on automata.

Definition
A Pi strategy is finite-memory if there is a Mealy machine
M = (M,µinit, αup, αact) that encodes it, where:

M is a finite set of states;
µinit ∈ D(M) is an initial distribution;
αup : M × S ×A→ D(M) is a memory-update function;
αact : M × Si → D(A) is a next-move function.

The flow is as follows:
An initial memory state m0 is drawn following µinit.
If the state sn ∈ Si, the action an is drawn from αnext(mn, sn).
The next memory state mn+1 is drawn from αup(mn, sn, an).
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Restricting randomisation in Mealy machines

In the literature of formal methods, often the variant where only the
output of the Mealy machines are randomised is considered.

 Do we have an equivalent of Kuhn’s theorem between this restricted
class of Mealy machines and general ones ?

The answer is no: the smaller class is strictly less expressive.

Only randomised outputs vs. only randomised initialisation

In the game depicted below:
randomised outputs can induce infinitely many plays;
randomised initialisation can only induce finitely many.

s0a b
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Classifying Mealy machines

We use acronyms to define classes of Mealy machines: we use XYZ where
X, Y, Z∈ {D, R} where D stands for deterministic and R for random, and

X characterises initialisation,
Y characterises outputs (next-move function),
Z characterises updates.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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