Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-memory Assumptions

James C. A. Main Mickael Randour

UMONS - Université de Mons and F.R.S.-FNRS, Belgium

Seminar - 31 May 2022

Introduction

- In general, one can define randomised strategies in different ways.
 - Mixed strategies randomise between pure strategies at the start.
 - Behavioural strategies randomly select an action at each step.
- In general, these two classes of strategies are not comparable.

¹Aumann, "28. Mixed and Behavior Strategies in Infinite Extensive Games".

Introduction

- In general, one can define randomised strategies in different ways.
 - Mixed strategies randomise between pure strategies at the start.
 - Behavioural strategies randomly select an action at each step.
- In general, these two classes of strategies are not comparable.

Kuhn's theorem [Aum64]¹

In games of perfect recall any mixed strategy has an equivalent behavioural strategy and vice-versa.

- There exist different definitions of randomised finite-memory strategies.
- However, they are not all equivalent.

Our contribution

An adaptation of Kuhn's theorem for finite-memory strategies.

¹Aumann, "28. Mixed and Behavior Strategies in Infinite Extensive Games".

Table of contents

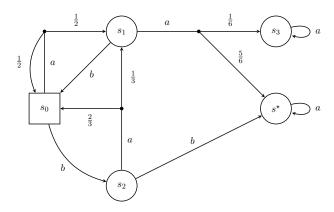
- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

Table of contents

- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

Stochastic games of perfect information

We consider two-player stochastic games of perfect information.



Definitions

Definition

A stochastic game of perfect information is a tuple $\mathcal{G} = (S_1, S_2, A, \delta)$ where

- $S = S_1 \uplus S_2$ is a finite set of states, S_i is the set of \mathcal{P}_i states;
- A is a finite set of actions;
- lacktriangleright $\delta\colon S\times A o \mathcal{D}(S)$ is a partial transition relation.

For all $s \in S$, let $A(s) = \{a \in A \mid \delta(s,a) \text{ is defined}\}$ denote the set of actions enabled in s. We assume that in each state $s \in S$, there is at least one enabled action.

- Play: sequence $s_0a_0s_1...$ where for all $k \in \mathbb{N}$, $a_k \in A(s_k)$ and $\delta(s_k, a_k)(s_{k+1}) > 0$.
- History: prefix of a play ending in a state. We write $Hist_i(\mathcal{G})$ for the set of histories ending in S_i .

Strategies

Definition

A strategy of \mathcal{P}_i is a function $\sigma_i \colon \mathsf{Hist}_i(\mathcal{G}) \to \mathcal{D}(A)$.

Given two strategies σ_1 and σ_2 , and an initial state $s_{\text{init}} \in S$, we define a probability distribution on the set of plays in the usual way: for any history $h = s_0 a_0 s_1 \dots s_n$ with $s_0 = s_{\text{init}}$, we set

$$\mathbb{P}_s^{\sigma_1,\sigma_2}(\mathsf{Cyl}(h)) = \prod_{k=0}^{n-1} \sigma_{i(k)}(s_0 a_0 \dots s_k) \cdot \delta(s_k, a_k, s_{k+1})$$

where $\operatorname{Cyl}(h)$ is the set of plays with h as a prefix, and i(k)=1 if $s_k\in S_1$ and 2 otherwise.

How to compare strategies ?

- We compare strategies independently of any objective or payoff.
- Equality is too restrictive: two different strategies may induce the same behaviour in practice.

Outcome-equivalence

Two strategies σ_1 and τ_1 of \mathcal{P}_1 are outcome-equivalent if for all strategies σ_2 of \mathcal{P}_2 and all initial states $s_{\mathsf{init}} \in S$, we have

$$\mathbb{P}_{s_{\mathsf{init}}}^{\sigma_1,\sigma_2} = \mathbb{P}_{s_{\mathsf{init}}}^{\tau_1,\sigma_2}.$$

■ Outcome-equivalence of strategies preserves optimality of strategies.

Table of contents

- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

Finite-memory strategies

- In general, strategies can use unlimited memory.
- We consider finite-memory strategies.

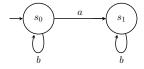
Definition

A strategy σ_i of \mathcal{P}_i is finite-memory if it is induced by a stochastic Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$ where

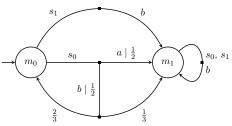
- lacksquare M is a finite set of memory states;
- \blacksquare $\mu_{\mathsf{init}} \in \mathcal{D}(M)$ is an initial distribution;
- lacktriangledown $lpha_{\sf up}\colon M imes S imes A o \mathcal{D}(M)$ is a stochastic memory update function;
- \bullet $\alpha_{\mathsf{next}} \colon M \times S_i \to \mathcal{D}(A)$ is a stochastic next-move function.

Playing with Mealy machines

■ Consider the following game.



■ An example of a Mealy machine encoding a \mathcal{P}_1 strategy in this game is given hereunder.



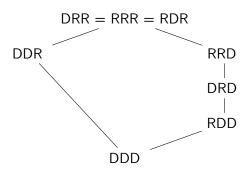
Classifying finite-memory strategies

- Given a Mealy machine $\mathcal{M} = (M, \mu_{\mathsf{init}}, \alpha_{\mathsf{up}}, \alpha_{\mathsf{next}})$, we can formally define the strategy it induces.
- We can classify finite-memory strategies depending on the form of Mealy machines that induce them.
- Depending on whether the initialisation, outputs or updates of Mealy machines are deterministic or randomised, the expressive power of the matching class of strategies varies.

Classifying finite-memory strategies

We use acronyms to define classes of Mealy machines: we use XYZ where X, Y, Z \in {D, R} where D stands for deterministic and R for random, and

- X characterises initialisation,
- Y characterises outputs (next-move function),
- Z characterises updates.



Illustrating a finite-memory strategy

In the sequel, we will illustrate fragments of Mealy machines for \mathcal{P}_i as follows.

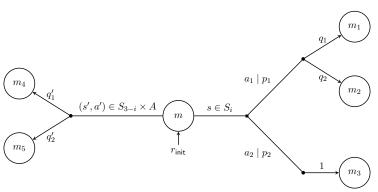


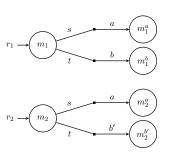
Table of contents

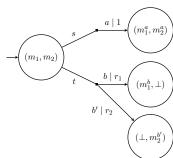
- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

$RDD \subseteq DRD$: trading random initialisation for outputs

We fix an RDD Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$.

- lacktriangle We use an adaptation of the subset construction to go from ${\mathcal M}$ to a DRD Mealy machine.
- State space of functions $f : \operatorname{supp}(\mu_{\operatorname{init}}) \to (M \cup \{\bot\})$:
 - We simulate the strategy from each initial state.
 - If an action is inconsistent with one of the simulations, we stop it (symbolised by \perp).

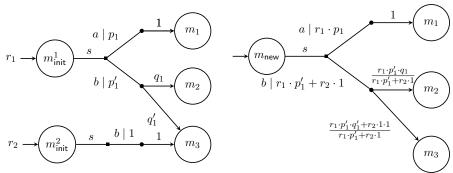




$RRR \subseteq DRR$: determinising initialisation

We fix an RRR Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}}).$

- To derive a DRR Mealy machine from \mathcal{M} , we add a new initial state m_{new} to the memory state space.
- We use stochastic updates to return to \mathcal{M} from m_{new} . Transition probabilities are chosen so the distribution over memory states is the same in \mathcal{M} and the DRR Mealy machine after the first step.



$RRR \subseteq RDR$: determinising outputs

We fix an RRR Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{up}}, \alpha_{\text{next}})$.

- To derive a RDR Mealy machine from \mathcal{M} , we expand the state space by augmenting memory states with pure memoryless strategies $\sigma_i \colon S_i \to A$.
- We use stochastic initialisation and updates to integrate the randomisation over actions in the transitions.

Naive construction \leadsto memory state space grows by a factor of $|A|^{|S_i|}$

 \hookrightarrow We can do better:

Theorem

There exists an RDR Mealy machine with $|M| \cdot |S_i| \cdot |A|$ states whose induced strategy is outcome-equivalent to \mathcal{M} .

- Consider a game such that $S_i = \{s_1, s_2, s_3\}$, and $A = \{a_1, a_2, a_3\}$. Assume that for a memory state $m \in M$, we have:
 - $\alpha_{\mathsf{next}}(m, s_1)(a_1) = \alpha_{\mathsf{next}}(m, s_1)(a_2) = \frac{1}{2};$

■ Consider a game such that $S_i = \{s_1, s_2, s_3\}$, and $A = \{a_1, a_2, a_3\}$. Assume that for a memory state $m \in M$, we have:

$$\begin{array}{l} \blacksquare \ \, \alpha_{\mathsf{next}}(m,s_1)(a_1) = \alpha_{\mathsf{next}}(m,s_1)(a_2) = \frac{1}{2}; \\ \blacksquare \ \, \alpha_{\mathsf{next}}(m,s_2)(a_1) = \alpha_{\mathsf{next}}(m,s_2)(a_2) = \alpha_{\mathsf{next}}(m,s_2)(a_3) = \frac{1}{3}; \\ \blacksquare \ \, \alpha_{\mathsf{next}}(m,s_3)(a_1) = \frac{1}{3}, \ \, \alpha_{\mathsf{next}}(m,s_3)(a_2) = \frac{1}{6} \ \, \text{and} \ \, \alpha_{\mathsf{next}}(m,s_3)(a_3) = \frac{1}{2}. \end{array}$$

■ We represent the actions in a table to derive the pure memoryless strategies and their probabilities.

s_1	a_1		a_2	
s_2	a_1	a_2		a_3
s_3	a_1	a_2	a_3	

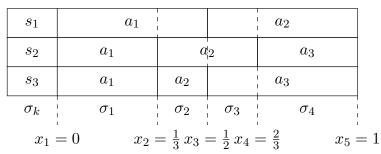
■ Consider a game such that $S_i = \{s_1, s_2, s_3\}$, and $A = \{a_1, a_2, a_3\}$. Assume that for a memory state $m \in M$, we have:

$$\begin{array}{ll} \blacksquare & \alpha_{\mathsf{next}}(m,s_1)(a_1) = \alpha_{\mathsf{next}}(m,s_1)(a_2) = \frac{1}{2}; \\ \blacksquare & \alpha_{\mathsf{next}}(m,s_2)(a_1) = \alpha_{\mathsf{next}}(m,s_2)(a_2) = \alpha_{\mathsf{next}}(m,s_2)(a_3) = \frac{1}{3}; \\ \blacksquare & \alpha_{\mathsf{next}}(m,s_3)(a_1) = \frac{1}{3}, \ \alpha_{\mathsf{next}}(m,s_3)(a_2) = \frac{1}{6} \ \mathsf{and} \ \alpha_{\mathsf{next}}(m,s_3)(a_3) = \frac{1}{2}. \end{array}$$

■ We represent the actions in a table to derive the pure memoryless strategies and their probabilities.

s_1	a_1	l I		a_2
s_2	a_1	a_2		a_3
s_3	a_1	a_2		a_3

- Consider a game such that $S_i = \{s_1, s_2, s_3\}$, and $A = \{a_1, a_2, a_3\}$. Assume that for a memory state $m \in M$, we have:
 - $\begin{array}{l} \blacksquare \quad \alpha_{\mathsf{next}}(m,s_1)(a_1) = \alpha_{\mathsf{next}}(m,s_1)(a_2) = \frac{1}{2}; \\ \blacksquare \quad \alpha_{\mathsf{next}}(m,s_2)(a_1) = \alpha_{\mathsf{next}}(m,s_2)(a_2) = \alpha_{\mathsf{next}}(m,s_2)(a_3) = \frac{1}{3}; \\ \blacksquare \quad \alpha_{\mathsf{next}}(m,s_3)(a_1) = \frac{1}{3}, \ \alpha_{\mathsf{next}}(m,s_3)(a_2) = \frac{1}{6} \ \text{and} \ \alpha_{\mathsf{next}}(m,s_3)(a_3) = \frac{1}{2}. \end{array}$
- We represent the actions in a table to derive the pure memoryless strategies and their probabilities.



$RRR \subseteq RDR$: exploiting the memoryless strategies

- For each memory state $m \in M$, we determine pure memoryless strategies $\sigma_1^m, \ldots, \sigma_{\ell(m)}^m$ and their respective probabilities $p_1^m, \ldots, p_{\ell(m)}^m$.
- We split transitions that enter m into transitions that go to the states (m, σ_j^m) : a transition of probability q into m yields a transition with probability $q \cdot p_j^m$ into (m, σ_j^m) .

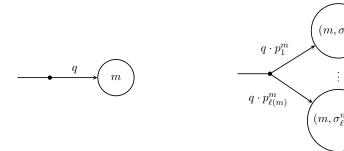


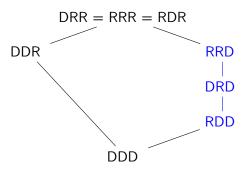
Table of contents

- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

Differences between classes

We discuss the following aspects:

- The chain of inclusions DDD \subsetneq RDD \subsetneq DRD \subsetneq RRD \subsetneq RRR is strict.
- It holds that DDR \nsubseteq RRD and RDD \nsubseteq DDR.



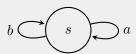
Strictness: $RDD \subseteq DRD$

In one-player deterministic games:

- lacktriangle there are finitely many outcomes for any \mathcal{P}_i RDD strategy;
- lacksquare there may be infinitely many outcomes for a \mathcal{P}_i DRD strategy.

Example

The memoryless strategy $\sigma_1\colon\{s\}\to\mathcal{D}(\{a,b\})$ such that $\sigma_1(s)$ is the uniform distribution over $\{a,b\}$ can be induced by a DRD Mealy machine, but not by a RDD one.



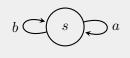
Strictness: $DRD \subseteq RRD$

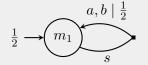
In one-player deterministic games:

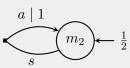
- an RRD strategy can be designed to ensure some action is taken at each step with positive probability but has a positive probability of never being taken;
- a DRD strategy that attempts a certain action with a positive probability at each step will almost surely play it.

Example

The following RRD Mealy machine has no equivalent DRD machine.







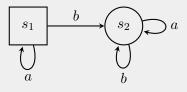
Strictness: RRD ⊊ RRR

In two-player deterministic games and Markov decision processes:

■ stochastic updates allow RRR Mealy machines to induce strategies that suggest actions with probabilities arbitrarily close to zero after histories controlled by \mathcal{P}_{3-i} ;

A DDR example

In memory state m_c , \mathcal{P}_i plays action c and does not change memory states \leadsto no matching RRD Mealy machine.



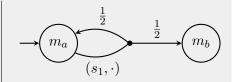


Table of contents

- 1 Stochastic games
- 2 Finite-memory strategies
- 3 Inclusions between classes
- 4 Differences between classes
- 5 Extending the classification

Taxonomy in settings of partial information

■ Up to now, we have discussed a classification of strategies in a setting of perfect information.

- It is not necessary to see the states themselves.
- For the inclusion RDD \subseteq DRD, we rely on the visibility of actions in our subset construction.
- For the inclusion RRR \subseteq DRR, we also use the visibility of actions in conditional probabilities.

Partial information

The classification holds in games where \mathcal{P}_i can see their actions and distinguish the owner of states from their observations.

References I

Aumann, Robert J. "28. Mixed and Behavior Strategies in Infinite Extensive Games". In: *Advances in Game Theory. (AM-52), Volume 52.* Princeton University Press, 2016, pp. 627–650. DOI:

doi:10.1515/9781400882014-029. URL:

https://doi.org/10.1515/9781400882014-029.

Main, James C. A. and Mickael Randour. "Different strokes in randomised strategies: Revisiting Kuhn's theorem under finite-memory assumptions".

In: CoRR abs/2201.10825 (2022). arXiv: 2201.10825. URL:

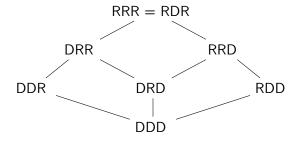
https://arxiv.org/abs/2201.10825.

Collapses – invisible actions

What happens to the lattice in full generality? If we assume nothing on the visibility of actions?

- Two inclusions of our lattice no longer hold. We have:
 - RDD⊈DRD;
 - RRR⊈DRR (we even have RDD⊈DRR).
- Intuitively, for a strategy with deterministic outputs (i.e., in a subclass of RDR), the output actions are encoded in the Mealy machine itself.
 → such strategies allow the same behaviours whether actions are
 - → such strategies allow the same behaviours whether actions are visible or not.

General lattice: no hypotheses on actions



Subgame perfect equilibria and Kuhn's theorem

- In the statement of Kuhn's theorem and our classification, the output of the strategies along inconsistent branches histories are completely disregarded.
- In other words, our classification approach is not relevant for the study of subgame perfect equilibria, for which these inconsistent histories are nonetheless taken in account.
- However, the output of a finite-memory strategy along an inconsistent history is not well-defined.