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Two-player turn-based zero-sum games on graphs
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Two-player turn-based zero-sum games on graphs

We consider finite arenas with vertex colors in C . Two players:
circle (P1) and square (P2). Strategies C

∗ × Vi → V .

v1 v2 v3

v4 v5 v6
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We consider finite arenas with vertex colors in C . Two players:
circle (P1) and square (P2). Strategies C

∗ × Vi → V .

v1 v2 v3

v4 v5 v6

From where can P1 ensure to reach v6?
How complex is his strategy?
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Two-player turn-based zero-sum games on graphs

We consider finite arenas with vertex colors in C . Two players:
circle (P1) and square (P2). Strategies C

∗ × Vi → V .

v1 v2 v3

v4 v5 v6

From where can P1 ensure to reach v6?
How complex is his strategy?

Memoryless strategies (Vi → V ) always suffice for
reachability (for both players).
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When are memoryless strategies sufficient to play
optimally?
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When are memoryless strategies sufficient to play
optimally?

Virtually always for simple winning conditions!

Examples: reachability, safety, Büchi, parity, mean-payoff, energy,
total-payoff, average-energy, etc.
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Examples: reachability, safety, Büchi, parity, mean-payoff, energy,
total-payoff, average-energy, etc.

Can we characterize when they are?
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When are memoryless strategies sufficient to play
optimally?

Virtually always for simple winning conditions!

Examples: reachability, safety, Büchi, parity, mean-payoff, energy,
total-payoff, average-energy, etc.

Can we characterize when they are?

Yes, thanks to Gimbert and Zielonka [GZ05].
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Gimbert and Zielonka’s characterization

Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,

2 it is selective.
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Gimbert and Zielonka’s characterization

Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.
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Gimbert and Zielonka’s characterization

Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.
� Intuitively, stable under cycle mixing.
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Gimbert and Zielonka’s characterization

Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.
� Intuitively, stable under cycle mixing.

Example: reachability.
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Gimbert and Zielonka’s corollary

If � is such that
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If � is such that

in all P1-arenas, P1 has an optimal memoryless strategy,
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Gimbert and Zielonka’s corollary

If � is such that

in all P1-arenas, P1 has an optimal memoryless strategy,

in all P2-arenas, P2 has an optimal memoryless strategy (i.e.,
for �−1),
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Gimbert and Zielonka’s corollary

If � is such that

in all P1-arenas, P1 has an optimal memoryless strategy,

in all P2-arenas, P2 has an optimal memoryless strategy (i.e.,
for �−1),

then both players have optimal memoryless strategies in all
two-player arenas.
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Going further: finite memory

Memoryless strategies do not always suffice!
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Going further: finite memory

Memoryless strategies do not always suffice!

v1 v2 v3

(−1, 1)(1,−1) (−1,−1)

Examples:

Büchi for v1 and v3 → finite (1 bit) memory.
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Going further: finite memory

Memoryless strategies do not always suffice!

v1 v2 v3

(−1, 1)(1,−1) (−1,−1)

Examples:

Büchi for v1 and v3 → finite (1 bit) memory.

Mean-payoff (average weight per transition) ≥ 0 on all
dimensions → infinite memory!
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Going further: finite memory

Memoryless strategies do not always suffice!

v1 v2 v3

(−1, 1)(1,−1) (−1,−1)

Examples:

Büchi for v1 and v3 → finite (1 bit) memory.

Mean-payoff (average weight per transition) ≥ 0 on all
dimensions → infinite memory!

We need a GZ equivalent for finite memory!

� For combinations, see [LPR18].
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A partial counter-example (lifting corollary)

Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0
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A partial counter-example (lifting corollary)

Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.
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A partial counter-example (lifting corollary)

Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.

v1 v2

1 −1

But the two-player one is not!
=⇒ P1 needs infinite memory to win.
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Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.

v1 v2

1 −1

But the two-player one is not!
=⇒ P1 needs infinite memory to win.

Hint: non-monotony is a bigger threat in two-player games.
In one-player games, finite memory may help.
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A new frontier

Arena-independent finite memory

The memory skeleton M only depends on the preference relation,
not on the (size of the) graph.

Complete characterization via
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Complete characterization via

1 M-monotony and M-selectivity

=⇒ Intuitively, modulo a memory skeleton.
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Complete characterization via

1 M-monotony and M-selectivity

=⇒ Intuitively, modulo a memory skeleton.

2 and the concept covered arenas.
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A new frontier

Arena-independent finite memory

The memory skeleton M only depends on the preference relation,
not on the (size of the) graph.

Complete characterization via

1 M-monotony and M-selectivity

=⇒ Intuitively, modulo a memory skeleton.

2 and the concept covered arenas.

We obtain a natural GZ-equivalent for (AI)FM determinacy,
including the lifting corollary (1-p. to 2-p.)!

With Bouyer, Le Roux, Oualhadj and Vandenhove, CONCUR’20 [BLO+20].
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=⇒ Intuitively, modulo a memory skeleton.

2 and the concept covered arenas.

We obtain a natural GZ-equivalent for (AI)FM determinacy,
including the lifting corollary (1-p. to 2-p.)!

With Bouyer, Le Roux, Oualhadj and Vandenhove, CONCUR’20 [BLO+20].

�→ Follow-up: extension to stochastic games with Bouyer,
Oualhadj and Vandenhove [BORV21].

Games where you can play optimally with finite memory Mickael Randour 7 / 8



A new frontier

Arena-independent finite memory

The memory skeleton M only depends on the preference relation,
not on the (size of the) graph.

Complete characterization via

1 M-monotony and M-selectivity

=⇒ Intuitively, modulo a memory skeleton.

2 and the concept covered arenas.

We obtain a natural GZ-equivalent for (AI)FM determinacy,
including the lifting corollary (1-p. to 2-p.)!

With Bouyer, Le Roux, Oualhadj and Vandenhove, CONCUR’20 [BLO+20].

�→ Follow-up: extension to stochastic games with Bouyer,
Oualhadj and Vandenhove [BORV21].

Games where you can play optimally with finite memory Mickael Randour 7 / 8



Thank you! Any question?
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