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The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.

Good? Performance evaluated through payoff functions.

Usual problem is to optimize the expected performance or the
probability of achieving a given performance level .

Not sufficient for many practical applications.

� Several extensions, more expressive but also more complex. . .

Aim of this survey talk

Give a flavor of classical questions and extensions (rich behavioral
models), illustrated on the stochastic shortest path (SSP).
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Multi-criteria quantitative synthesis

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Model of the (discrete) interaction?

� Antagonistic environment: 2-player game on graph.
� Stochastic environment: MDP.

Quantitative specifications. Examples:

� Reach a state s before x time units ; shortest path.
� Minimize the average response-time ; mean-payoff.

Focus on multi-criteria quantitative models
� to reason about trade-offs and interplays.
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Strategy (policy) synthesis for MDPs

system
description

environment
description

informal
specification

model as a
Markov Decision
Process (MDP)

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy
=

controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?
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Markov decision processes

s1 s2
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s4
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a2,−1
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b3, 3

a4, 1
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MDP D = (S , sinit,A, δ,w).

� Finite sets of states S and actions A,
� probabilistic transition δ : S ×A→ D(S),
� weight function w : A→ Z.

Run (or play): ρ = s1a1 . . . an−1sn . . .
such that δ(si , ai , si+1) > 0 for all i ≥ 1.

� Set of runs R(D).
� Set of histories (finite runs) H(D).

Strategy σ : H(D)→ D(A).

� ∀ h ending in s, Supp(σ(h)) ∈ A(s).
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Markov decision processes
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Sample pure memoryless strategy σ.

Sample run ρ = s1a1s2a2s1a1s2a2(s3a3s4a4)ω.

Other possible run ρ′ = s1a1s2a2(s3a3s4a4)ω.

Strategies may use

� finite or infinite memory,

� randomness.

Payoff functions map runs to numerical
values:

� truncated sum up to T = {s3}:
TST (ρ) = 2, TST (ρ′) = 1,

� mean-payoff: MP(ρ) = MP(ρ′) = 1/2,

� many more.
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Markov chains
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Once strategy σ fixed, fully stochastic process:

; Markov chain (MC) M.

State space = product of the MDP and the
memory of σ.

Event E ⊆ R(M)

� probability PM(E)

Measurable f : R(M)→ R ∪ {∞},
� expected value EM(f )
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Aim of this survey

Compare different types of quantitative specifications for MDPs

� w.r.t. the complexity of the decision problem,

� w.r.t. the complexity of winning strategies.

Recent extensions share a common philosophy: framework for the
synthesis of strategies with richer performance guarantees.

� Our work deals with many different payoff functions.

Focus on the shortest path problem in this talk.

� Not the most involved technically, natural applications.

; Useful to understand the practical interest of each variant.

Joint work with R. Berthon, V. Bruyère, E. Filiot, J.-F. Raskin,
O. Sankur [BFRR17, RRS17, RRS15, BCH+16, Ran16, BRR17].

Rich Behavioral Models Mickael Randour 8 / 41



Context SSP-E/SSP-P SSP-WE SSP-PQ Conclusion

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

Rich Behavioral Models Mickael Randour 9 / 41



Context SSP-E/SSP-P SSP-WE SSP-PQ Conclusion

Stochastic shortest path

Shortest path problem for weighted graphs

Given state s ∈ S and target set T ⊆ S , find a path from s to a
state t ∈ T that minimizes the sum of weights along edges.

� PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96].

We focus on MDPs with strictly positive weights for the SSP.

� Truncated sum payoff function for ρ = s1a1s2a2 . . . and
target set T :

TST (ρ) =

{∑n−1
j=1 w(aj) if sn first visit of T ,

∞ if T is never reached.
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Planning a journey in an uncertain environment

home

waiting
room

train
light

traffic
medium
traffic

heavy
traffic

work

railway, 2 car, 1

wait, 3

relax, 35

go back, 2

bike, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
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Each action takes time, target = work.

� What kind of strategies are we looking for when the
environment is stochastic?
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SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP D = (S , sinit,A, δ,w), target set T and threshold
` ∈ Q, decide if there exists σ such that EσD(TST ) ≤ `.

Theorem [BT91]

The SSP-E problem can be decided in polynomial time. Optimal
pure memoryless strategies always exist and can be constructed in
polynomial time.
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SSP-E: illustration
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� Pure memoryless strategies suffice.

� Taking the car is optimal: EσD(TST ) = 33.
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SSP-E: PTIME algorithm

1 Graph analysis (linear time):

� s not connected to T ⇒ ∞ and remove,
� s ∈ T ⇒ 0.

2 Linear programming (LP, polynomial time).

For each s ∈ S \ T , one variable xs ,

max
∑

s∈S\T

xs

under the constraints

xs ≤ w(a)+
∑

s′∈S\T

δ(s, a, s ′)·xs′ for all s ∈ S \ T , for all a ∈ A(s).
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SSP-E: PTIME algorithm

1 Graph analysis (linear time):

� s not connected to T ⇒ ∞ and remove,
� s ∈ T ⇒ 0.

2 Linear programming (LP, polynomial time).

Optimal solution v:

; vs = expectation from s to T under an optimal strategy.

Optimal pure memoryless strategy σv:

σv(s) = arg min
a∈A(s)

w(a) +
∑

s′∈S\T

δ(s, a, s ′) · vs′

 .
; Playing optimally = locally optimizing present + future.
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SSP-E: PTIME algorithm

1 Graph analysis (linear time):

� s not connected to T ⇒ ∞ and remove,
� s ∈ T ⇒ 0.

2 Linear programming (LP, polynomial time).

In practice, value and strategy iteration algorithms often used:

� best performance in most cases but exponential in the
worst-case,

� fixed point algorithms, successive solution
improvements [BT91, dA99, HM14].

Rich Behavioral Models Mickael Randour 14 / 41



Context SSP-E/SSP-P SSP-WE SSP-PQ Conclusion

Traveling without taking too many risks
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Minimizing the expected time to destination makes sense if we travel
often and it is not a problem to be late.

With car, in 10% of the cases, the journey takes 71 minutes.
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Most bosses will not be happy if we are late too often. . .

; what if we are risk-averse and want to avoid that?
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SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP D = (S , sinit,A, δ,w), target set T , threshold ` ∈ N,
and probability threshold α ∈ [0, 1] ∩Q, decide if there exists a
strategy σ such that PσD

[
{ρ ∈ Rsinit(D) | TST (ρ) ≤ `}

]
≥ α.

Theorem

The SSP-P problem can be decided in pseudo-polynomial time,
and it is PSPACE-hard. Optimal pure strategies with
pseudo-polynomial memory always exist and can be constructed in
pseudo-polynomial time.

See [HK15] for hardness and for example [RRS17] for algorithm.
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SSP-P: illustration
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Specification: reach work within 40 minutes with 0.95 probability

Sample strategy: take the train ; PσD
[
TSwork ≤ 40

]
= 0.99

Bad choices: car (0.9) and bike (0.0)
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SSP-P: pseudo-PTIME algorithm (1/2)
Key idea: pseudo-PTIME reduction to the stochastic reachability
problem (SR)

SR problem

Given unweighted MDP D = (S , sinit,A, δ), target set T and
probability threshold α ∈ [0, 1]∩Q, decide if there exists a strategy
σ such that PσD

[
♦T

]
≥ α.

Theorem

The SR problem can be decided in polynomial time. Optimal pure
memoryless strategies always exist and can be constructed in
polynomial time.

� Linear programming (similar to SSP-E).
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SSP-P: pseudo-PTIME algorithm (2/2)

s1

s2

a, 2

b, 5
0.5

0.5

Sketch of the reduction:

1 Start from D, T = {s2}, and ` = 7.

2 Build D` by unfolding D, tracking the current sum up to the
threshold `, and integrating it in the states of the expanded
MDP.
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SSP-P: pseudo-PTIME algorithm (2/2)
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SSP-P: pseudo-PTIME algorithm (2/2)

3 Relation between runs of D and D`:

TST (ρ) ≤ ` ⇔ ρ′ |= ♦T ′, T ′ = T × {0, 1, . . . , `}.

4 Solve the SR problem on D`.

� Memoryless strategy in D` ; pseudo-polynomial memory in D
in general.
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s1, 2
a, 2

s1, 4
a, 2

s1, 6
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s1,⊥

s2, 2
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b, 5 s2, 6
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b, 5 b, 5
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SSP-P: pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding ` = 7,

� an obvious possibility is to play b directly,

� playing a only once is also acceptable.

For the SSP-P problem, both strategies are equivalent.

; We need richer models to discriminate them!
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s1, 2
a, 2

s1, 4
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s1, 6
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b, 5 s2, 6

s2,⊥

b, 5 b, 5
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Related work (non-exhaustive)

SSP-P problem with relaxed hypotheses [Oht04, SO13].

SSP-E problem with relaxed hypotheses [BBD+18].

Quantile queries [UB13]: minimizing the value ` of an SSP-P
problem for some fixed α. Extended to cost
problems [HK15, HKL17].

SSP-E problem in multi-dimensional MDPs [FKN+11].
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SP-G: strict worst-case guarantees
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Specification: guarantee that work is reached within 60 minutes
(to avoid missing an important meeting).

Sample strategy: take the bike ; ∀ ρ ∈ OutσD : TSwork(ρ) ≤ 60.

Bad choices: train (wc = ∞) and car (wc = 71).
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Winning surely (worst-case) 6= almost-surely (proba. 1).

� Train ensures reaching work with probability one, but does not
prevent runs where work is never reached.
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Worst-case analysis ; two-player game against an antagonistic
adversary.

� Forget about probabilities and give the choice of transitions to
the adversary.
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SP-G: shortest path game problem

SP-G problem

Given MDP D = (S , sinit,A, δ,w), target set T and threshold
` ∈ N, decide if there exists a strategy σ such that for all
ρ ∈ OutσD , we have that TST (ρ) ≤ `.

Theorem [KBB+08]

The SP-G problem can be decided in polynomial time. Optimal
pure memoryless strategies always exist and can be constructed in
polynomial time.

� Dynamic programming.
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Related work (non-exhaustive)

Pseudo-PTIME for arbitrary weights [BGHM17, FGR15].

Arbitrary weights + multiple dimensions ; undecidable (by
adapting the proof of [CDRR15] for total-payoff).
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SSP-WE = SP-G ∩ SSP-E - illustration
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SSP-E: car ; E = 33 but wc = 71 > 60

SP-G: bike ; wc = 45 < 60 but E = 45 >>> 33
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Can we do better?

� Beyond worst-case synthesis [BFRR17]: minimize the
expected time under the worst-case constraint.
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SSP-WE = SP-G ∩ SSP-E - illustration
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Sample strategy: try train up to 3 delays then switch to bike.

; wc = 58 < 60 and E ≈ 37.34 << 45

; pure finite-memory strategy
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SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP D = (S , sinit,A, δ,w), target set T , and thresholds
`1 ∈ N, `2 ∈ Q, decide if there exists a strategy σ such that:

1 ∀ ρ ∈ OutσD : TST (ρ) ≤ `1,

2 EσD(TST ) ≤ `2.

Theorem [BFRR17]

The SSP-WE problem can be decided in pseudo-polynomial time
and is NP-hard. Pure pseudo-polynomial-memory strategies are
always sufficient and in general necessary, and satisfying strategies
can be constructed in pseudo-polynomial time.
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SSP-WE: pseudo-PTIME algorithm
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Consider SSP-WE problem for `1 = 7 (wc), `2 = 4.8 (E).

� Reduction to the SSP-E problem on a pseudo-polynomial-size
expanded MDP.

1 Build unfolding as for SSP-P problem w.r.t. worst-case
threshold `1.
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SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of T ′ = T × {0, 1, . . . , `1}.
3 Restrict MDP to D ′ = D`1 � R, the safe part w.r.t. SP-G.
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SSP-WE: pseudo-PTIME algorithm

4 Compute memoryless optimal strategy σ in D ′ for SSP-E.

5 Answer is Yes iff EσD′(TST ′
) ≤ `2.
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SSP-WE: wrap-up

SSP complexity strategy

SSP-E PTIME pure memoryless

SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.

SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.

� NP-hardness ⇒ inherently harder than SSP-E and SSP-G.
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Related work (non-exhaustive)

BWC synthesis problems for mean-payoff [BFRR17] and
parity [BRR17] belong to NP ∩ coNP. Much more involved
technically.

=⇒ Additional modeling power for free w.r.t. worst-case
problems.

Multi-dimensional extension for mean-payoff [CR15].

Integration of BWC concepts in Uppaal [DJL+14].

Optimizing the expected mean-payoff under energy
constraints [BKN16] or Boolean constraints [AKV16].

Recent extensions to POMDPs [CNP+17, KPR18, CENR18].

� Stay tuned for the amazing Guillermo Alberto Pérez!

Conditional value-at-risk [KM18].
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Multiple objectives =⇒ trade-offs

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Two-dimensional weights on actions: time and cost.

Often necessary to consider trade-offs: e.g., between the probability
to reach work in due time and the risks of an expensive journey.
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SSP-P problem considers a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.

Taxi 6|= C2, bus 6|= C1. What if we want C1 ∧ C2?
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C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries [RRS17].

� Sample strategy: bus once, then taxi. Requires memory .

� Another strategy: bus with probability 3/5, taxi with
probability 2/5. Requires randomness.
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C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries [RRS17].

In general, both memory and randomness are required.

6= Previous problems.
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SSP-PQ: multi-constraint percentile queries (1/2)

SSP-PQ problem

Given d-dimensional MDP D = (S , sinit,A, δ,w), and q ∈ N
percentile constraints described by target sets Ti ⊆ S , dimensions
ki ∈ {1, . . . , d}, value thresholds `i ∈ N and probability thresholds
αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q}, decide if there exists a
strategy σ such that query Q holds, with

Q :=

q∧
i=1

PσD
[
TSTi

ki
≤ `i

]
≥ αi ,

where TSTi
ki

denotes the truncated sum on dimension ki and
w.r.t. target set Ti .

Very general framework: multiple constraints related to 6=
dimensions, and 6= target sets =⇒ great flexibility in modeling.
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SSP-PQ: multi-constraint percentile queries (2/2)

Theorem [RRS17]

The SSP-PQ problem can be decided in

exponential time in general,

pseudo-polynomial time for single-dimension single-target
multi-contraint queries.

It is PSPACE-hard even for single-constraint queries. Randomized
exponential-memory strategies are always sufficient and in general
necessary, and satisfying strategies can be constructed in
exponential time.

� Unfolding + multiple reachability problem [EKVY08, RRS17].

� PSPACE-hardness already true for SSP-P [HK15].

; SSP-PQ = wide extension for basically no price in complexity.
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SSP-PQ: wrap-up

SSP complexity strategy

SSP-E PTIME pure memoryless

SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.

SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.

SSP-PQ EXPTIME (p.-PTIME) / PSPACE-h. randomized exponential

� SSP-PQ is undecidable for arbitrary weights in
multi-dimensional MDPs, even with a unique target
set [RRS17].

� Clever unfolding technique in [HJKQ18].
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Percentile queries: overview (1/2)

Wide range of payoff functions

� multiple reachability,

� mean-payoff (MP, MP),

� discounted sum (DS).

� inf, sup, lim inf, lim sup,

� shortest path (SP),

Several variants:

� multi-dim. multi-constraint,

� single-constraint.

� single-dim. multi-constraint,

For each one:

� algorithms,

� memory requirements.

� lower bounds,

; Complete picture for this new framework.
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Percentile queries: overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(D)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(D)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(D)·E(Q) P(D)·E(Q)

SP
P(D)·Pps(Q) [HK15] P(D)·Pps(Q) (one target) P(D)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(D,Q, ε) Pps(D, ε)·E(Q) Pps(D, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� D = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

All results without reference are established in [RRS17].
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Percentile queries: overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(D)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(D)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(D)·E(Q) P(D)·E(Q)

SP
P(D)·Pps(Q) [HK15] P(D)·Pps(Q) (one target) P(D)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(D,Q, ε) Pps(D, ε)·E(Q) Pps(D, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

In most cases, only polynomial in the model size.

� In practice, the query size can often be bounded while the
model can be very large.
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Related work (non-exhaustive)

Percentile + expected value for shortest path [BGMR18].

Multi-dimensional quantiles [HKL17].
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Summary: stochastic shortest path problem

SSP-E: minimize the expected sum to target.
� Actual outcomes may vary greatly.

SSP-P: maximize the probability of acceptable performance.
� No control over the quality of bad runs, no average-case

performance.

SP-G: maximize the worst-case performance, extreme
risk-aversion.
� Strict worst-case guarantees, no average-case performance.

SSP-WE: SSP-E ∩ SP-G.
� Based on beyond worst-case synthesis [BFRR17].

SSP-PQ: extends SSP-P to multi-constraint percentile
queries [RRS17].
� Multi-dimensional, flexible, trade-offs.
� Complexity usually acceptable w.r.t. model size.
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Rich behavioral models: challenges

1 Plethora of theoretical models.
� Fundamental question: identify and understand the common

core, advance toward unification.
� Can be an obstacle to adoption by practitioners.

2 Practical applicability.
� Efficiency must be increased (e.g., by using learning

techniques).
� Tool support is key.
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If you are interested. . .

. . . consider attending MoRe 2019, the 2nd International
Workshop on Multi-objective Reasoning in Verification and
Synthesis, to be held in Vancouver (LICS 2019), on June 22.

Thank you! Any question?
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SP-G: PTIME algorithm

1 Cycles are bad =⇒ must reach target within n = |S | steps.

2 ∀ s ∈ S , ∀ i , 0 ≤ i ≤ n, compute C(s, i).

� Lowest bound on cost to T from s that we can ensure in i
steps.

� Dynamic programming (polynomial time).

Initialize

∀ s ∈ T , C(s, 0) = 0, ∀ s ∈ S \ T , C(s, 0) =∞.

Then, ∀ s ∈ S , ∀ i , 1 ≤ i ≤ n,

C(s, i) = min
[
C(s, i−1), min

a∈A(s)
max

s′∈Supp(δ(s,a))
w(a)+C(s ′, i−1)

]
.

3 Winning strategy iff C(sinit, n) ≤ `.
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SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D` similar to SSP-P case:

� stop unfolding when all dimensions reach sum ` = maxi `i .

2 Maintain single-exponential size by defining an equivalence
relation between states of D`:

� S` ⊆ S × ({0, . . . , `} ∪ {⊥})d ,
� pseudo-poly. if d = 1.

3 For each constraint i , compute a target set Ri in D`:

� ρ |= constraint i in D ⇐⇒ ρ′ |= ♦Ri in D`.

4 Solve a multiple reachability problem on D`.

� Generalizes the SR problem [EKVY08, RRS17].
� Time polynomial in |D`| but exponential in q.
� Single-dim. single target queries ⇒ absorbing targets
⇒ polynomial-time algorithm.
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