Rich Behavioral Models: Illustration on Journey Planning

Mickael Randour
F.R.S.-FNRS \& UMONS - Université de Mons, Belgium

March 14, 2019

Workshop - Theory and Algorithms in Graph and Stochastic Games

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Several extensions, more expressive but also more complex...

Aim of this survey talk

Give a flavor of classical questions and extensions (rich behavioral models), illustrated on the stochastic shortest path (SSP).

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

Multi-criteria quantitative synthesis

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.

- Quantitative specifications. Examples:
\triangleright Reach a state s before x time units \sim shortest path.
\triangleright Minimize the average response-time \leadsto mean-payoff.
- Focus on multi-criteria quantitative models
\triangleright to reason about trade-offs and interplays.

Strategy (policy) synthesis for MDPs

Markov decision processes

■ MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$.

\triangleright Finite sets of states S and actions A,
\triangleright probabilistic transition $\delta: S \times A \rightarrow \mathcal{D}(S)$,
\triangleright weight function $w: A \rightarrow \mathbb{Z}$.
■ Run (or play): $\rho=s_{1} a_{1} \ldots a_{n-1} s_{n} \ldots$ such that $\delta\left(s_{i}, a_{i}, s_{i+1}\right)>0$ for all $i \geq 1$.
\triangleright Set of runs $\mathcal{R}(D)$.
\triangleright Set of histories (finite runs) $\mathcal{H}(D)$.
■ Strategy $\sigma: \mathcal{H}(D) \rightarrow \mathcal{D}(A)$.
$\triangleright \forall h$ ending in $s, \operatorname{Supp}(\sigma(h)) \in A(s)$.

Markov decision processes

Sample pure memoryless strategy σ.
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$. Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$.

- Strategies may use
\triangleright finite or infinite memory,
\triangleright randomness.
- Payoff functions map runs to numerical values:
\triangleright truncated sum up to $T=\left\{s_{3}\right\}$: $\operatorname{TS}^{T}(\rho)=2, \operatorname{TS}^{T}\left(\rho^{\prime}\right)=1$,
\triangleright mean-payoff: $\underline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}\left(\rho^{\prime}\right)=1 / 2$,
\triangleright many more.

Markov chains

Once strategy σ fixed, fully stochastic process: \leadsto Markov chain (MC) M.

State space $=$ product of the MDP and the memory of σ.

- Event $\mathcal{E} \subseteq \mathcal{R}(M)$
\triangleright probability $\mathbb{P}_{M}(\mathcal{E})$
■ Measurable $f: \mathcal{R}(M) \rightarrow \mathbb{R} \cup\{\infty\}$, \triangleright expected value $\mathbb{E}_{M}(f)$

Aim of this survey

Compare different types of quantitative specifications for MDPs
\triangleright w.r.t. the complexity of the decision problem,
\triangleright w.r.t. the complexity of winning strategies.
Recent extensions share a common philosophy: framework for the synthesis of strategies with richer performance guarantees.
\triangleright Our work deals with many different payoff functions.
Focus on the shortest path problem in this talk.
\triangleright Not the most involved technically, natural applications.
\leadsto Useful to understand the practical interest of each variant.
Joint work with R. Berthon, V. Bruyère, E. Filiot, J.-F. Raskin, O. Sankur [BFRR17, RRS17, RRS15, BCH ${ }^{+}$16, Ran16, BRR17].

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

Stochastic shortest path

Shortest path problem for weighted graphs

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.
\triangleright PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96].
We focus on MDPs with strictly positive weights for the SSP.
\triangleright Truncated sum payoff function for $\rho=s_{1} a_{1} s_{2} a_{2} \ldots$ and target set T :

$$
\operatorname{TS}^{T}(\rho)=\left\{\begin{array}{l}
\sum_{j=1}^{n-1} w\left(a_{j}\right) \text { if } s_{n} \text { first visit of } T \\
\infty \text { if } T \text { is never reached. }
\end{array}\right.
$$

Planning a journey in an uncertain environment

Each action takes time, target $=$ work.
\triangleright What kind of strategies are we looking for when the environment is stochastic?

SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T and threshold $\ell \in \mathbb{Q}$, decide if there exists σ such that $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right) \leq \ell$.

Theorem [BT91]

The SSP-E problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

SSP-E: illustration

\triangleright Pure memoryless strategies suffice.
\triangleright Taking the car is optimal: $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right)=33$.

SSP-E: PTIME algorithm

1 Graph analysis (linear time):
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove,
$\triangleright s \in T \Rightarrow 0$.
2 Linear programming (LP, polynomial time).
For each $s \in S \backslash T$, one variable x_{s},

$$
\max \sum_{s \in S \backslash T} x_{s}
$$

under the constraints
$x_{s} \leq w(a)+\sum_{s^{\prime} \in S \backslash T} \delta\left(s, a, s^{\prime}\right) \cdot x_{s^{\prime}} \quad$ for all $s \in S \backslash T$, for all $a \in A(s)$.

SSP-E: PTIME algorithm

1 Graph analysis (linear time):
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove,
$\triangleright s \in T \Rightarrow 0$.
2 Linear programming (LP, polynomial time).
Optimal solution v:
$\sim \mathbf{v}_{s}=$ expectation from s to T under an optimal strategy.
Optimal pure memoryless strategy $\sigma^{\mathbf{v}}$:

$$
\sigma^{\vee}(s)=\arg \min _{a \in A(s)}\left[w(a)+\sum_{s^{\prime} \in S \backslash T} \delta\left(s, a, s^{\prime}\right) \cdot \mathbf{v}_{s^{\prime}}\right] .
$$

\leadsto Playing optimally $=$ locally optimizing present + future.

SSP-E: PTIME algorithm

1 Graph analysis (linear time):
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove, $\triangleright s \in T \Rightarrow 0$.
2 Linear programming (LP, polynomial time).
In practice, value and strategy iteration algorithms often used:
\triangleright best performance in most cases but exponential in the worst-case,
\triangleright fixed point algorithms, successive solution improvements [BT91, dA99, HM14].

Traveling without taking too many risks

Minimizing the expected time to destination makes sense if we travel often and it is not a problem to be late.
With car, in 10% of the cases, the journey takes 71 minutes.

Traveling without taking too many risks

Most bosses will not be happy if we are late too often. . .
\sim what if we are risk-averse and want to avoid that?

SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T, threshold $\ell \in \mathbb{N}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{D}^{\sigma}\left[\left\{\rho \in \mathcal{R}_{s_{\text {init }}}(D) \mid \operatorname{TS}^{T}(\rho) \leq \ell\right\}\right] \geq \alpha$.

Theorem

The SSP-P problem can be decided in pseudo-polynomial time, and it is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory always exist and can be constructed in pseudo-polynomial time.

See [HK15] for hardness and for example [RRS17] for algorithm.

SSP-P: illustration

Specification: reach work within 40 minutes with 0.95 probability Sample strategy: take the train $\sim \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{\text {work }} \leq 40\right]=0.99$ Bad choices: car (0.9) and bike (0.0)

SSP-P: pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability problem (SR)

SR problem

Given unweighted MDP $D=\left(S, s_{\text {init }}, A, \delta\right)$, target set T and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{D}^{\sigma}[\diamond T] \geq \alpha$.

Theorem

The SR problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.
\triangleright Linear programming (similar to SSP-E).

SSP-P: pseudo-PTIME algorithm (2/2)

Sketch of the reduction:
1 Start from $D, T=\left\{s_{2}\right\}$, and $\ell=7$.
2 Build D_{ℓ} by unfolding D, tracking the current sum up to the threshold ℓ, and integrating it in the states of the expanded MDP.

SSP-P: pseudo-PTIME algorithm (2/2)

SSP-P: pseudo-PTIME algorithm (2/2)

3 Relation between runs of D and D_{ℓ} :

$$
\operatorname{TS}^{T}(\rho) \leq \ell \quad \Leftrightarrow \quad \rho^{\prime} \vDash \diamond T^{\prime}, T^{\prime}=T \times\{0,1, \ldots, \ell\} .
$$

4 Solve the SR problem on D_{ℓ}.
\triangleright Memoryless strategy in $D_{\ell} \leadsto$ pseudo-polynomial memory in D in general.

SSP-P: pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding $\ell=7$,
\triangleright an obvious possibility is to play b directly,
\triangleright playing a only once is also acceptable.
For the SSP-P problem, both strategies are equivalent.
\leadsto We need richer models to discriminate them!

Related work (non-exhaustive)

■ SSP-P problem with relaxed hypotheses [Oht04, SO13].

- SSP-E problem with relaxed hypotheses $\left[\mathrm{BBD}^{+} 18\right]$.
- Quantile queries [UB13]: minimizing the value ℓ of an SSP-P problem for some fixed α. Extended to cost problems [HK15, HKL17].
- SSP-E problem in multi-dimensional MDPs $\left[\mathrm{FKN}^{+} 11\right]$.

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

SP-G: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting).
Sample strategy: take the bike $\leadsto \forall \rho \in \operatorname{Out}_{D}^{\sigma}: \operatorname{TS}^{\text {work }}(\rho) \leq 60$.
Bad choices: train $(w c=\infty)$ and car $(w c=71)$.

SP-G: strict worst-case guarantees

Winning surely (worst-case) \neq almost-surely (proba. 1).
\triangleright Train ensures reaching work with probability one, but does not prevent runs where work is never reached.

SP-G: strict worst-case guarantees

Worst-case analysis \sim two-player game against an antagonistic adversary.
\triangleright Forget about probabilities and give the choice of transitions to the adversary.

SP-G: shortest path game problem

SP-G problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T and threshold $\ell \in \mathbb{N}$, decide if there exists a strategy σ such that for all $\rho \in \mathrm{Out}_{D}^{\sigma}$, we have that $\operatorname{TS}^{T}(\rho) \leq \ell$.

Theorem $\left[\mathrm{KBB}^{+}\right.$08]

The SP-G problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.
\triangleright Dynamic programming.

Related work (non-exhaustive)

■ Pseudo-PTIME for arbitrary weights [BGHM17, FGR15].

- Arbitrary weights + multiple dimensions \sim undecidable (by adapting the proof of [CDRR15] for total-payoff).

SSP-WE = SP-G \cap SSP-E - illustration

- SSP-E: car $\sim \mathbb{E}=33$ but $w c=71>60$

■ SP-G: bike $\sim w c=45<60$ but $\mathbb{E}=45 \ggg 33$

SSP-WE = SP-G \cap SSP-E - illustration

Can we do better?
\triangleright Beyond worst-case synthesis [BFRR17]: minimize the expected time under the worst-case constraint.

SSP-WE $=$ SP-G \cap SSP-E - illustration

Sample strategy: try train up to 3 delays then switch to bike.
$\sim w c=58<60$ and $\mathbb{E} \approx 37.34 \ll 45$
\sim pure finite-memory strategy

SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T, and thresholds $\ell_{1} \in \mathbb{N}, \ell_{2} \in \mathbb{Q}$, decide if there exists a strategy σ such that:
I $\forall \rho \in \mathrm{Out}_{D}^{\sigma}: \operatorname{TS}^{\top}(\rho) \leq \ell_{1}$,
[$\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right) \leq \ell_{2}$.

Theorem [BFRR17]

The SSP-WE problem can be decided in pseudo-polynomial time and is NP-hard. Pure pseudo-polynomial-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in pseudo-polynomial time.

SSP-WE: pseudo-PTIME algorithm

Consider SSP-WE problem for $\ell_{1}=7(w c), \ell_{2}=4.8(\mathbb{E})$.
\triangleright Reduction to the SSP-E problem on a pseudo-polynomial-size expanded MDP.

1 Build unfolding as for SSP-P problem w.r.t. worst-case threshold ℓ_{1}.

SSP-WE: pseudo-PTIME algorithm

SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of $T^{\prime}=T \times\left\{0,1, \ldots, \ell_{1}\right\}$.
3 Restrict MDP to $D^{\prime}=D_{\ell_{1}} \downharpoonright R$, the safe part w.r.t. SP-G.

SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of $T^{\prime}=T \times\left\{0,1, \ldots, \ell_{1}\right\}$.
3 Restrict MDP to $D^{\prime}=D_{\ell_{1}} \downharpoonright R$, the safe part w.r.t. SP-G.

SSP-WE: pseudo-PTIME algorithm

4 Compute memoryless optimal strategy σ in D^{\prime} for SSP-E.
5 Answer is YES iff $\mathbb{E}_{D^{\prime}}^{\sigma}\left(\mathrm{TS}^{T^{\prime}}\right) \leq \ell_{2}$.

$$
\begin{gathered}
\text { Here, } \\
\mathbb{E}_{D^{\prime}}^{\sigma}\left(\mathrm{TS}^{T^{\prime}}\right)=9 / 2 .
\end{gathered}
$$

SSP-WE: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.

\triangleright NP-hardness \Rightarrow inherently harder than SSP-E and SSP-G.

Related work (non-exhaustive)

■ BWC synthesis problems for mean-payoff [BFRR17] and parity [BRR17] belong to NP \cap coNP. Much more involved technically.
\Longrightarrow Additional modeling power for free w.r.t. worst-case problems.

- Multi-dimensional extension for mean-payoff [CR15].
- Integration of BWC concepts in UppaAL [DJL+14].
- Optimizing the expected mean-payoff under energy constraints [BKN16] or Boolean constraints [AKV16].
■ Recent extensions to POMDPs [CNP ${ }^{+} 17$, KPR18, CENR18].
\triangleright Stay tuned for the amazing Guillermo Alberto Pérez!
■ Conditional value-at-risk [KM18].

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

Multiple objectives \Longrightarrow trade-offs

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Multiple objectives \Longrightarrow trade-offs

SSP-P problem considers a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \vDash \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Multiple objectives \Longrightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS17].
\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Multiple objectives \Longrightarrow trade-offs

■ C1: 80% of runs reach work in at most 40 minutes.
■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS17].
In general, both memory and randomness are required.

SSP-PQ: multi-constraint percentile queries $(1 / 2)$

SSP-PQ problem

Given d-dimensional MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, and $q \in \mathbb{N}$ percentile constraints described by target sets $T_{i} \subseteq S$, dimensions $k_{i} \in\{1, \ldots, d\}$, value thresholds $\ell_{i} \in \mathbb{N}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that query \mathcal{Q} holds, with

$$
\mathcal{Q}:=\bigwedge_{i=1}^{q} \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}_{k_{i}}^{T_{i}} \leq \ell_{i}\right] \geq \alpha_{i}
$$

where $\mathrm{TS}_{k_{i}}^{T_{i}}$ denotes the truncated sum on dimension k_{i} and w.r.t. target set T_{i}.

Very general framework: multiple constraints related to \neq dimensions, and \neq target sets \Longrightarrow great flexibility in modeling.

SSP-PQ: multi-constraint percentile queries $(2 / 2)$

Theorem [RRS17]

The SSP-PQ problem can be decided in

- exponential time in general,
- pseudo-polynomial time for single-dimension single-target multi-contraint queries.
It is PSPACE-hard even for single-constraint queries. Randomized exponential-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in exponential time.
\triangleright Unfolding + multiple reachability problem [EKVY08, RRS17].
\triangleright PSPACE-hardness already true for SSP-P [HK15].
\sim SSP-PQ $=$ wide extension for basically no price in complexity.

SSP-PQ: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.
SSP-PQ	EXPTIME (p.-PTIME) / PSPACE-h.	randomized exponential

\triangleright SSP-PQ is undecidable for arbitrary weights in multi-dimensional MDPs, even with a unique target set [RRS17].
\triangleright Clever unfolding technique in [HJKQ18].

Percentile queries: overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \mathrm{MP}$),
\triangleright inf, sup, lim inf, lim sup,
\triangleright shortest path (SP),
\triangleright discounted sum (DS).
■ Several variants:
\triangleright multi-dim. multi-constraint,
\triangleright single-dim. multi-constraint,
\triangleright single-constraint.
- For each one:
\triangleright algorithms,
\triangleright lower bounds,
\triangleright memory requirements.
\sim Complete picture for this new framework.

Percentile queries: overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(D) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ & \text { PSPACE-h. [HK15] } \end{aligned}$	$\begin{gathered} \mathrm{P}(D) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15] } \end{gathered}$	$\begin{gathered} \mathrm{P}(D) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(D, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(D, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(D, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. } \end{gathered}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright D=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.
All results without reference are established in [RRS17].

Percentile queries: overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(D) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{D}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(D) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$P(D) \cdot P_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(D) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(D, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(D, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(D, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

In most cases, only polynomial in the model size.
\triangleright In practice, the query size can often be bounded while the model can be very large.

Related work (non-exhaustive)

- Percentile + expected value for shortest path [BGMR18].
- Multi-dimensional quantiles [HKL17].

1 Context, MDPs, strategies

2 Classical stochastic shortest path problems

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Conclusion

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

- SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

- SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.
- SSP-WE: SSP-E \cap SP-G.
\triangleright Based on beyond worst-case synthesis [BFRR17].

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

- SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.
■ SSP-WE: SSP-E \cap SP-G.
\triangleright Based on beyond worst-case synthesis [BFRR17].
■ SSP-PQ: extends SSP-P to multi-constraint percentile queries [RRS17].
\triangleright Multi-dimensional, flexible, trade-offs.
\triangleright Complexity usually acceptable w.r.t. model size.

Rich behavioral models: challenges

1 Plethora of theoretical models.
\triangleright Fundamental question: identify and understand the common core, advance toward unification.
\triangleright Can be an obstacle to adoption by practitioners.
2 Practical applicability.
\triangleright Efficiency must be increased (e.g., by using learning techniques).
\triangleright Tool support is key.

If you are interested...

... consider attending MoRe 2019, the 2nd International
Workshop on Multi-objective Reasoning in Verification and Synthesis, to be held in Vancouver (LICS 2019), on June 22.

Thank you! Any question?

References I

Shaull Almagor, Orna Kupferman, and Yaron Velner.
Minimizing expected cost under hard boolean constraints, with applications to quantitative synthesis.
In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 9:1-9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

Christel Baier, Nathalie Bertrand, Clemens Dubslaff, Daniel Gburek, and Ocan Sankur. Stochastic shortest paths and weight-bounded properties in Markov decision processes. In Dawar and Grädel [DG18], pages 86-94.

Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour, Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas.
Non-zero sum games for reactive synthesis.
In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications - 10th International Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture Notes in Computer Science, pages 3-23. Springer, 2016.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
Inf. Comput., 254:259-295, 2017.
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games.
Acta Inf., 54(1):85-125, 2017.

References II

Patricia Bouyer, Mauricio González, Nicolas Markey, and Mickael Randour.
Multi-weighted markov decision processes with reachability objectives.
In Andrea Orlandini and Martin Zimmermann, editors, Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September 2018., volume 277 of EPTCS, pages 250-264, 2018.

Tomás Brázdil, Antonín Kucera, and Petr Novotný.
Optimizing the expected mean payoff in energy Markov decision processes.
In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer Science, pages 32-49, 2016.

Raphaël Berthon, Mickael Randour, and Jean-François Raskin.
Threshold constraints with guarantees for parity objectives in Markov decision processes.
In loannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,

Dimitri P. Bertsekas and John N. Tsitsiklis.
An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580-595, 1991.
Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows.
Inf. Comput., 242:25-52, 2015.

References III

Krishnendu Chatterjee, Adrián Elgyütt, Petr Novotný, and Owen Rouillé.
Expectation optimization with probabilistic guarantees in POMDPs with discounted-sum objectives.
In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 4692-4699. ijcai.org, 2018.

Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.

Krishnendu Chatterjee and Thomas A. Henzinger.
Probabilistic systems with limsup and liminf objectives.
In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Löwe, editors, Infinity in Logic and Computation, volume 5489 of Lecture Notes in Computer Science, pages 32-45. Springer Berlin Heidelberg, 2009.

Krishnendu Chatterjee, Petr Novotný, Guillermo A. Pérez, Jean-François Raskin, and Dorde Zikelic.
Optimizing expectation with guarantees in POMDPs.
In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages 3725-3732. AAAI Press, 2017.

Lorenzo Clemente and Jean-François Raskin.
Multidimensional beyond worst-case and almost-sure problems for mean-payoff objectives.
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 257-268. IEEE Computer Society, 2015.

References IV

Luca de Alfaro.
Computing minimum and maximum reachability times in probabilistic systems.
In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR '99: Concurrency Theory, 10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings, volume 1664 of Lecture Notes in Computer Science, pages 66-81. Springer, 1999.

Anuj Dawar and Erich Grädel, editors.
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. ACM, 2018.

Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime, Mathias Grund Sørensen, and Jakob Haahr Taankvist.
On time with minimal expected cost!
In Franck Cassez and Jean-François Raskin, editors, Automated Technology for Verification and Analysis 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 129-145. Springer, 2014.

Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
Multi-objective model checking of Markov decision processes. Logical Methods in Computer Science, 4(4), 2008.

Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin.
Quantitative languages defined by functional automata.
Logical Methods in Computer Science, 11(3), 2015.

References V

Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Quantitative multi-objective verification for probabilistic systems.
In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms for the Construction and Analysis of Systems - 17th International Conference, TACAS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6605 of Lecture Notes in Computer Science, pages 112-127. Springer, 2011.

Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann.
Multi-cost bounded reachability in MDP.
In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer Science, pages 320-339. Springer, 2018.

Christoph Haase and Stefan Kiefer.
The odds of staying on budget.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 234-246. Springer, 2015.

Christoph Haase, Stefan Kiefer, and Markus Lohrey.
Computing quantiles in Markov chains with multi-dimensional costs.
In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-12. IEEE Computer Society, 2017.

References VI

Serge Haddad and Benjamin Monmege.
Reachability in MDPs: Refining convergence of value iteration.
In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture Notes in Computer Science, pages 125-137. Springer, 2014.

Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, Gábor Rudolf, and Jihui Zhao.
On short paths interdiction problems: Total and node-wise limited interdiction.
Theory Comput. Syst., 43(2):204-233, 2008.
Jan Kretínský and Tobias Meggendorfer.
Conditional value-at-risk for reachability and mean payoff in Markov decision processes.
In Dawar and Grädel [DG18], pages 609-618.
Jan Kretínský, Guillermo A. Pérez, and Jean-François Raskin.
Learning-based mean-payoff optimization in an unknown MDP under omega-regular constraints.
In Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 8:1-8:18. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2018.

Yoshio Ohtsubo.
Optimal threshold probability in undiscounted Markov decision processes with a target set.
Applied Math. and Computation, 149(2):519-532, 2004.

References VII

Martin L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley \& Sons, Inc., New York, NY, USA, 1st edition, 1994.
Mickael Randour.
Reconciling rationality and stochasticity: Rich behavioral models in two-player games.
CoRR, abs/1603.05072, 2016.
GAMES 2016, the 5th World Congress of the Game Theory Society, Maastricht, Netherlands.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
In Deepak D'Souza, Akash Lal, and Kim Guldstrand Larsen, editors, Verification, Model Checking, and Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, volume 8931 of Lecture Notes in Computer Science, pages 1-18. Springer, 2015.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
Formal Methods in System Design, 50(2-3):207-248, 2017.
Masahiko Sakaguchi and Yoshio Ohtsubo.
Markov decision processes associated with two threshold probability criteria.
Journal of Control Theory and Applications, 11(4):548-557, 2013.

References VIII

Michael Ummels and Christel Baier.

Computing quantiles in Markov reward models.

In Frank Pfenning, editor, Foundations of Software Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7794 of Lecture Notes in Computer Science, pages 353-368. Springer, 2013.

SP-G: PTIME algorithm

1 Cycles are bad \Longrightarrow must reach target within $n=|S|$ steps.
$2 \forall s \in S, \forall i, 0 \leq i \leq n$, compute $\mathbb{C}(s, i)$.
\triangleright Lowest bound on cost to T from s that we can ensure in i steps.
\triangleright Dynamic programming (polynomial time).
Initialize

$$
\forall s \in T, \mathbb{C}(s, 0)=0, \quad \forall s \in S \backslash T, \mathbb{C}(s, 0)=\infty
$$

Then, $\forall s \in S, \forall i, 1 \leq i \leq n$,
$\mathbb{C}(s, i)=\min \left[\mathbb{C}(s, i-1), \min _{a \in A(s)} \max _{s^{\prime} \in \operatorname{Supp}(\delta(s, a))} w(a)+\mathbb{C}\left(s^{\prime}, i-1\right)\right]$.
3 Winning strategy iff $\mathbb{C}\left(s_{\text {init }}, n\right) \leq \ell$.

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:
\triangleright stop unfolding when all dimensions reach sum $\ell=\max _{i} \ell_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of D_{ℓ} :
$\triangleright S_{\ell} \subseteq S \times(\{0, \ldots, \ell\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.
3 For each constraint i, compute a target set R_{i} in D_{ℓ} :
$\triangleright \rho \models$ constraint i in $D \Longleftrightarrow \rho^{\prime} \models \diamond R_{i}$ in D_{ℓ}.
4 Solve a multiple reachability problem on D_{ℓ}.
\triangleright Generalizes the SR problem [EKVY08, RRS17].
\triangleright Time polynomial in $\left|D_{\ell}\right|$ but exponential in q.
\triangleright Single-dim. single target queries \Rightarrow absorbing targets \Rightarrow polynomial-time algorithm.

