Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer¹, Antonio Casares², *Mickael Randour*³, Pierre Vandenhove^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²LaBRI, Université de Bordeaux, France ³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

August 24, 2023

IJCAI 2023 — Best Papers from Sister Conferences Track Originally published in CONCUR 2022

Université de Mons

Controller synthesis: a game-theoretic approach

Controller synthesis: a game-theoretic approach

Controller synthesis: a game-theoretic approach

Half-Positional Objectives Recognized by DBA

¹Sutton and Barto, <u>Reinforcement Learning</u>: <u>An Introduction</u>, 2018; Hahn et al., "An Impossibility Result in Automata-Theoretic Reinforcement Learning", 2022.

•
$$C = \{a, b, c\}, A = (V_1, V_2, E).$$

• Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box)

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

■ Two players P₁ (○) and P₂ (□) generate an infinite word w = b

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

■ Two players P₁ (○) and P₂ (□) generate an infinite word w = ba

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

■ Two players P₁ (○) and P₂ (□) generate an infinite word w = bab

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

■ Two players P₁ (○) and P₂ (□) generate an infinite word w = babb

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

• Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box) generate an infinite word $w = babbc \dots \in C^{\omega}$.

• $C = \{a, b, c\}, A = (V_1, V_2, E).$

• Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box) generate an infinite word $w = babbc \dots \in C^{\omega}$.

• **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.

•
$$C = \{a, b, c\}, A = (V_1, V_2, E).$$

• Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box) generate an infinite word $w = babbc \dots \in C^{\omega}$.

• **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.

Motivation

Understand the **objectives** for which **positional** strategies suffice to win (in all arenas).

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is **positional** if the choices only depend on the **current** vertex, i.e., if $\sigma \colon V_1 \to E$.

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is **positional** if the choices only depend on the **current** vertex, i.e., if $\sigma \colon V_1 \to E$.

Half-positional objectives

In all games with objective W, if \mathcal{P}_1 can win with some strategy, can \mathcal{P}_1 also win with a **positional** strategy?

 \sim If yes, W is half-positional.

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is **positional** if the choices only depend on the **current** vertex, i.e., if $\sigma \colon V_1 \to E$.

Half-positional objectives

In all games with objective W, if \mathcal{P}_1 can win with some strategy, can \mathcal{P}_1 also win with a **positional** strategy?

 \sim If yes, W is half-positional.

W is **bipositional** if both \mathcal{P}_1 (objective *W*) and \mathcal{P}_2 (objective $C^{\omega} \setminus W$) have positional winning strategies.

Bipositionality is well-understood

- Characterization over finite arenas.²
- Characterization over infinite arenas.³

 $^2\mathsf{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

³Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Bipositionality is well-understood

- Characterization over finite arenas.²
- Characterization over infinite arenas.³

²Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

³Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Previous results on half-positionality

- **Sufficient** conditions over finite arenas.^{4,5}
- Structural characterization over infinite arenas.⁶

⁴Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁵Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Bipositionality is well-understood

- Characterization over finite arenas.²
- Characterization over infinite arenas.³

²Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

³Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Previous results on half-positionality

- **Sufficient** conditions over finite arenas.^{4,5}
- Structural characterization over infinite arenas.⁶

⁴Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁵Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Might still be difficult to decide if an objective is half-positional!

Our objectives

Central class of objectives: ω -regular objectives.

→ Notably encompasses LTL specifications.

Our objectives

Central class of objectives: ω -regular objectives.

→ Notably encompasses LTL specifications.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Our objectives

Central class of objectives: ω -regular objectives.

~ Notably encompasses LTL specifications.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Here

Effective characterization of half-positional objectives recognized by **deterministic Büchi automata** (DBA).

DBA recognize a subclass of the ω -regular objectives.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of *W* with a conjunction of **three easy-to-check conditions**.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of *W* with a conjunction of **three easy-to-check conditions**.

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of *W* with a conjunction of **three easy-to-check conditions**.

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** games, then it also holds in **infinite two-player** games!

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of *W* with a conjunction of **three easy-to-check conditions**.

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** games, then it also holds in **infinite two-player** games!

Thank you! Any question?

Appendix

Some examples (1/2)

Let $C = \{a, b\}$. DBA read infinite words; accepting *transitions* are marked with \bullet .

• W = Büchi(a) = "seeing a infinitely often": half-positional.

Some examples (1/2)

Let $C = \{a, b\}$. DBA read infinite words; accepting *transitions* are marked with \bullet .

• W = Büchi(a) = "seeing a infinitely often": half-positional.

• $W = \text{Büchi}(a) \cap \text{Büchi}(b)$: **not** half-positional.

b

Some examples (2/2)

• $W = C^* aa C^{\omega}$: **not** half-positional.

Some examples (2/2)

→ This last example is not bipositional.

Relations on prefixes

Let $W \subseteq C^{\omega}$ be an objective.

Left quotient

For $u \in C^*$, $u^{-1}W = \{w \in C^{\omega} \mid uw \in W\}$.

For
$$u, v \in C^*$$
,
 $u \sim v$ if $u^{-1}W = v^{-1}W$ (\approx Myhill-Nerode relation),
 $u \preceq v$ if $u^{-1}W \subseteq v^{-1}W$.

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq is total.

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq is total.

For $W = (aa + bb)C^{\omega}$, words a and b are not comparable for \leq .

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq is total.

Büchi(a) $\cup C^*aaC^{\omega}$ has a total prefix preorder.

Condition 2: progress-consistency

Let $W \subseteq C^{\omega}$ be an objective.

Condition 2

Objective W is progress-consistent if

for all $u, v \in C^*$, $u \prec uv$ implies $uv^{\omega} \in W$.

$$C^*aaC^{\omega}$$
 is **not**:
 $b \prec b(ba)$ but $b(ba)^{\omega} \notin W$.

Büchi $(a) \cup C^*aaC^{\omega}$ is (here, $b(ba)^{\omega} \in W$).

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim .

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Büchi(a) \cap Büchi(b) is **not**. One equivalence class, but needs at least two states.

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Büchi(a) $\cup C^*aaC^{\omega}$ is (three classes, three states).

Theorem

An objective W recognized by a DBA is half-positional **if and only** if

- \leq_W is total,
- W is progress-consistent, and
- W is Myhill-Nerode-like.

 \rightsquigarrow All three conditions are easy to decide.