Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer ${ }^{1}$, Antonio Casares ${ }^{2}$, Mickael Randour ${ }^{3}$, Pierre Vandenhove ${ }^{1,3}$
${ }^{1}$ Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
${ }^{2}$ LaBRI, Université de Bordeaux, France
${ }^{3}$ F.R.S.-FNRS \& UMONS - Université de Mons, Belgium

August 24, 2023
IJCAI 2023 - Best Papers from Sister Conferences Track Originally published in CONCUR 2022

Controller synthesis: a game-theoretic approach

Controller synthesis: a game-theoretic approach

Controller synthesis: a game-theoretic approach

[^0]
Our core model: two-player zero-sum games on graphs

Our core model: two-player zero-sum games on graphs

- $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word
$w=b$

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word
$w=b a$

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word
$w=b a b$

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word
$w=b a b b$

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word $w=b a b b c \ldots \in C^{\omega}$.

Our core model: two-player zero-sum games on graphs

■ $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.

- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word $w=b a b b c \ldots \in C^{\omega}$.

■ Objective of \mathcal{P}_{1} is a set $W \subseteq C^{\omega}$.

Our core model: two-player zero-sum games on graphs

- $C=\{a, b, c\}, \mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$ generate an infinite word $w=b a b b c \ldots \in C^{\omega}$.
■ Objective of \mathcal{P}_{1} is a set $W \subseteq C^{\omega}$.

Motivation

Understand the objectives for which positional strategies suffice to win (in all arenas).

Half-positionality

Strategies
 A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$.

Half-positionality

> Strategies
> A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$. It is positional if the choices only depend on the current vertex, i.e., if $\sigma: V_{1} \rightarrow E$.

Half-positionality

> Strategies
> A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$. It is positional if the choices only depend on the current vertex, i.e., if $\sigma: V_{1} \rightarrow E$.

Half-positional objectives

In all games with objective W, if \mathcal{P}_{1} can win with some strategy, can \mathcal{P}_{1} also win with a positional strategy?
\sim If yes, W is half-positional.

Half-positionality

Strategies

A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$. It is positional if the choices only depend on the current vertex, i.e., if $\sigma: V_{1} \rightarrow E$.

Half-positional objectives

In all games with objective W, if \mathcal{P}_{1} can win with some strategy, can \mathcal{P}_{1} also win with a positional strategy? \sim If yes, W is half-positional.
W is bipositional if both \mathcal{P}_{1} (objective W) and \mathcal{P}_{2} (objective $C^{\omega} \backslash W$) have positional winning strategies.

Half-positionality

Bipositionality is well-understood

- Characterization over finite arenas. ${ }^{2}$
- Characterization over infinite arenas. ${ }^{3}$

[^1]
Half-positionality

Bipositionality is well-understood

- Characterization over finite arenas. ${ }^{2}$
- Characterization over infinite arenas. ${ }^{3}$
${ }^{2}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.
${ }^{3}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Previous results on half-positionality

- Sufficient conditions over finite arenas. ${ }^{4,5}$
- Structural characterization over infinite arenas. ${ }^{6}$

[^2]
Half-positionality

Bipositionality is well-understood

- Characterization over finite arenas. ${ }^{2}$
- Characterization over infinite arenas. ${ }^{3}$
${ }^{2}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.
${ }^{3}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Previous results on half-positionality

- Sufficient conditions over finite arenas. ${ }^{4,5}$
- Structural characterization over infinite arenas. ${ }^{6}$
${ }^{4}$ Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.
${ }^{5}$ Bianco et al., "Exploring the boundary of half-positionality", 2011.
${ }^{6}$ Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Might still be difficult to decide if an objective is half-positional!

Our objectives

Central class of objectives: ω-regular objectives.

\rightsquigarrow Notably encompasses LTL specifications.

Our objectives

Central class of objectives: ω-regular objectives.

\rightsquigarrow Notably encompasses LTL specifications.

Open problem
Half-positionality not completely understood for ω-regular objectives!

Our objectives

Central class of objectives: ω-regular objectives.

\rightsquigarrow Notably encompasses LTL specifications.

Open problem

Half-positionality not completely understood for ω-regular objectives!

Here

Effective characterization of half-positional objectives recognized by deterministic Büchi automata (DBA).

DBA recognize a subclass of the ω-regular objectives.

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three easy-to-check conditions.

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three easy-to-check conditions.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three easy-to-check conditions.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

One-to-two-player, finite-to-infinite lift
If W is half-positional over finite one-player games, then it also holds in infinite two-player games!

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three easy-to-check conditions.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

One-to-two-player, finite-to-infinite lift
If W is half-positional over finite one-player games, then it also holds in infinite two-player games!

Thank you! Any question?

Appendix

Some examples $(1 / 2)$

Let $C=\{a, b\}$. DBA read infinite words; accepting transitions are marked with •

■ $W=$ Büchi $(a)=$ "seeing a infinitely often": half-positional.

Some examples $(1 / 2)$

Let $C=\{a, b\}$. DBA read infinite words; accepting transitions are marked with •

■ $W=$ Büchi $(a)=$ "seeing a infinitely often": half-positional.

- $W=\operatorname{Büchi}(a) \cap \operatorname{Büchi}(b)$: not half-positional.

Some examples $(2 / 2)$

■ $W=C^{*} a a C^{\omega}$: not half-positional.

Some examples $(2 / 2)$

- $W=C^{*} a a C^{\omega}$: not half-positional.

- $W=\operatorname{Büchi}(a) \cup C^{*} a a C^{\omega}$: half-positional.

\rightsquigarrow This last example is not bipositional.

Relations on prefixes

Let $W \subseteq C^{\omega}$ be an objective.

Left quotient

For $u \in C^{*}, u^{-1} W=\left\{w \in C^{\omega} \mid u w \in W\right\}$.
For $u, v \in C^{*}$,
■ $u \sim v$ if $u^{-1} W=v^{-1} W$ (\approx Myhill-Nerode relation $)$,
■ $u \preceq v$ if $u^{-1} W \subseteq v^{-1} W$.

Condition 1: \preceq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1
 Prefix preorder \preceq is total.

Condition $1: \preceq$ is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \preceq is total.

For $W=(a a+b b) C^{\omega}$, words a and b are not comparable for \preceq.

Condition $1: \preceq$ is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \preceq is total.

Büchi $(a) \cup C^{*} a a C^{\omega}$ has a total prefix preorder.

Condition 2: progress-consistency

Let $W \subseteq C^{\omega}$ be an objective.

Condition 2

Objective W is progress-consistent if
for all $u, v \in C^{*}, u \prec u v$ implies $u v^{\omega} \in W$.
$C^{*} a a C^{\omega}$ is not:
$b \prec b(b a)$ but $b(b a)^{\omega} \notin W$.

Büchi $(a) \cup C^{*} a a C^{\omega}$ is (here, $\left.b(b a)^{\omega} \in W\right)$.

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.
Condition 3
Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Büchi(a) $\cap \operatorname{Büchi}(b)$ is not. One equivalence class, but needs at least two states.

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Büchi $(a) \cup C^{*} a a C^{\omega}$ is (three classes, three states).

Characterization

Theorem
An objective W recognized by a DBA is half-positional if and only if

- $\preceq w$ is total,
- W is progress-consistent, and
- W is Myhill-Nerode-like.
\rightsquigarrow All three conditions are easy to decide.

[^0]: ${ }^{1}$ Sutton and Barto, Reinforcement Learning: An Introduction, 2018; Hahn et al., "An Impossibility Result in Automata-Theoretic Reinforcement Learning", 2022.

[^1]: ${ }^{2}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.
 ${ }^{3}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

[^2]: ${ }^{4}$ Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.
 ${ }^{5}$ Bianco et al., "Exploring the boundary of half-positionality", 2011.
 ${ }^{6}$ Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

