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Sciences Mathématiques
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Pr. Thomas Brihaye, Université de Mons (Directeur)
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Pr. Krishnendu Chatterjee, IST Austria
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Pr. Cédric Rivière, Université de Mons
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Chapter 1

Introduction

We here present the context of this thesis, which is on the edge be-

tween game theory and model-checking. We then give our main contri-

butions and discuss related work.

Game theory. Game theory [OR94] is a branch of mathematics which

has been successfully applied in various domains including economics,

biology, and computer science. Game theory attempts to model strate-

gic situations where several individuals are interacting and try to predict

what will be the decisions taken by individuals in a given situation, as-

suming rationality of those individuals. In this framework, a strategic

situation is called a game and each individual taking part to this game is

called a player, their decisions are called strategies. One could say that

the systematic study of game theory started with the 1944 book “Theory

of Games and Economic Behaviour” by John von Neumann and Oskar

Morgenstern [vNM44]. This book mainly focused on strictly competitive

situations in which only two individuals interact, also known as zero-

sum games. Another important step forward in the development of game

theory, around 1950, has been the introduction of the concept of Nash

equilibrium together with a proof of its existence [Nas50]. This impor-

tant notion allows us to study multiplayer non-zero-sum games. Follow-

ing the seminal work of Nash, several other important notions have been

7



8 Chapter 1 — Introduction

introduced including the subgame perfect equilibrium of Reinhard Selten

[Sel65], the concepts of incomplete information and Bayesian games of

John Harsanyi [Har68]. Let us mention that Nash, Selten and Harsanyi

became Economics Nobel laureates in 1994 for their contributions to game

theory and their applications to economics. Repeated games (see for ex-

ample [A+81, BPS07]) and stochastic games (introduced by Lloyd Shap-

ley [Sha53], Economics Nobel laureates in 2012, together with Alvin E.

Roth) are also two examples of games intensively studied and largely

applied in economics.

Algorithmic game theory. More recently a large current of work

in game theory has arisen under the driving force of the computer-

science community. This led to the new subfield of algorithmic game

theory [NRTV07]. Nash theorem is a purely existential result, i.e., it

ensures the existence of Nash equilibria but gives no clue on how we

could compute them and how difficult this computation would be. The

needs for computational and complexity information in this domain are

well illustrated by a famous quotation from Kamal Jain (Microsoft Re-

search), popularised by Christos Papadimitriou (Berkeley): “If your lap-

top can’t find the equilibrium, then neither can the market.”. In the

general case of non-zero-sum games, results concerning the complexity

of finding Nash equilibria have only been obtained recently by Papadim-

itriou et al [DGP09]. They have introduced a new complexity class, called

PPAD, to characterise the hardness to compute such equilibria. Beside

those important initial results, the computational aspects of game the-

oretical concepts are not yet well studied, but there is currently a large

international research effort to better understand them.

Model-checking. Computer aided verification, and more specifically

model-checking, is a branch of computer science which offers techniques

to check automatically that a given computer system satisfies a given

specification [CGP01]. The model-checking techniques apply on a model

or an abstraction of the system (such as a finite automaton) together with

a translation of the specification into a logical formula (of a temporal

logic for instance). The classical model-checking approach intends to
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develop efficient algorithms to provide a boolean (yes or no) answer to the

question: “Does the system satisfy the specification?”. Computer aided

verification is essential when considering computer systems responsible

of critical tasks such as air traffic management, control of nuclear power

plant,... Nowadays, this technology is an important part of the design

cycle in companies such as Intel or IBM.

Unfortunately, classical model-checking techniques do not trivially ex-

tend to complex systems, such as embedded or distributed systems. A

main reason for this is that such systems often consist of multiple inde-

pendent components with individual objectives. These components can

be viewed as selfish agents that may cooperate and compete at the same

time. It is difficult to model the interplay between these components with

traditional finite state machines, as they cannot reflect the intricate quan-

titative valuation of an agent on how well he has met his goal (in term of

quality of service, time and/or energy consumption,...). In particular, it

is not realistic to assume that these components are always cooperating

to satisfy a common goal, as it is, e.g., assumed in works that distinguish

between an environment and a system. We argue that it is more realistic

to assume that all components act like selfish agents that try to achieve

their own objectives and are either unconcerned about the effect this has

on the other components or consider this effect to be secondary. It is

indeed a recent trend to enhance the system models used in the classical

approach of verification by quantitative cost and gain functions, and to

exploit the well established game-theoretic framework [Nas50, OR94] for

their formal analysis.

The first steps towards the extension of computational models with

concepts from classical game theory were done by advancing from boolean

to general infinite two-player zero-sum games played on graphs [GTW02].

Like their qualitative counterparts, those games are adequate to model

interaction problems between a controller and an environment [Tho95,

Tho08]. As usual in control theory, one can distinguish between moves

of a control player, who plays actions to control a system to meet a con-

trol objective, and an antagonistic environment player. In the classical

setting, the control player has a qualitative objective—he might, for ex-
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ample, try to enforce a temporal specification—whereas the environment

tries to prevent this. In the extension to quantitative games, the con-

troller instead tries to maximise its gain, while the environment tries to

minimise it. This extension lifts the controller synthesis problem from a

constructive extension of a decision problem to a classical optimisation

problem.

However, the previous extension has not lifted the restriction to purely

antagonist interactions between a controller and a hostile environment.

In order to study more complex systems with more than two compo-

nents, and with objectives that are not necessarily antagonist, new multi-

agent models, inspired from game theory, have been considered: multi-

player non-zero-sum games. In this context, equilibria take the place that

winning and optimal strategies take in qualitative and quantitative two-

player games zero-sum games, respectively. Depending on the kind of the

agents’ rational behaviour, several sorts of equilibria can be considered,

including Nash equilibrium, subgame perfect equilibrium, or secure equi-

librium (recent concept of equilibrium particularly suitable in the context

of controller synthesis, introduced by K. Chatterjee, T. A. Henzinger and

M. Jurdzinski [CHJ04]). Surprisingly, qualitative objectives have so far

prevailed in the study of equilibria for distributed systems. However, we

argue that quantitative objectives—such as reaching a set of target states

quickly or with a minimal consumption of energy—are natural objectives

that ought to be studied alongside (or instead of) traditional qualitative

objectives.

In summary, in order to study complex interactive computer systems

with more than two components, and with quantitative objectives that

are not necessarily antagonist, we resort to multiplayer non-zero-sum

quantitative games played on graphs (also called multiplayer cost games

in this document). Our thesis follows this research direction.

Our contribution. Most of our results concern existence of several

kinds of equilibria in (turn-based) multiplayer cost games. We study

Nash equilibria and more refined notions of equilibria. As Nash equilibria

do not exist in every multiplayer cost game, we focus on a particular
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subclass of cost games where each player has a quantitative reachability

objective, and we also define large subclasses of cost games where simple 1

Nash equilibria exist.

We here give our main results, listed in chronological order of their

discovery. Our contributions are detailed in Chapter 3.

In collaboration with Thomas Brihaye and Véronique Bruyère, we

study multiplayer quantitative reachability games. In this framework,

each player has a goal set of vertices of the graph, and aims at reaching

his own goal set as soon as possible. We focus on existence results for

two solution concepts: Nash equilibrium and secure equilibrium. We show

the existence of Nash (resp. secure) equilibria in multiplayer (resp. two-

player) games, and also show that these equilibria can be chosen with

finite memory (see [BBD10, BBD12] and Chapters 4, 5). Moreover, we

prove that given a Nash (resp. secure) equilibrium of a multiplayer (resp.

two-player) game, we can build a finite-memory Nash (resp. secure)

equilibrium of the same type, i.e. preserving the set of players achieving

their reachability objectives (see [BBD12] and Chapters 4, 5).

Together with Thomas Brihaye, Véronique Bruyère and Hugo Gim-

bert, we consider alternative solution concepts to the classical notion of

Nash (or secure) equilibria. In particular, in the present framework of

games on graphs, it is very natural to consider the notion of subgame

perfect equilibrium. Indeed if the initial state or the initial history of the

system is not known, then a robust controller should be subgame per-

fect. We prove that there exists a subgame perfect equilibrium in every

multiplayer quantitative reachability game (see [BBDG12, BBDG13] and

Chapter 6).

We also introduce an even stronger solution concept with the notion of

subgame perfect secure equilibrium, which gathers both the sequential na-

ture of subgame perfect equilibria and the verification-oriented aspects

of secure equilibria. We show that there exists a subgame perfect se-

cure equilibrium in every two-player quantitative reachability game (see

[BBDG12, BBDG13] and Chapter 7).

1. By simple Nash equilibrium, we mean that each of its strategies can be repre-

sented by a finite automaton of reasonable size.
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Moreover, we provide an algorithm that decides in ExpSpace whether

there exists a secure equilibrium (with players’ costs below some thresh-

olds) in a multiplayer quantitative reachability game (see [BBDG13] and

Chapter 5). To our knowledge, the existence of a secure equilibrium in

multiplayer quantitative reachability games is still an open problem.

Jointly with Thomas Brihaye and Sven Schewe, we consider more

general objectives: the quantitative objectives of the players are expressed

through a cost function for each player. Each cost function assigns, for

every play of the game, a value that represents the cost that is incurred for

a player by this play. Cost functions allow to express classical quantitative

objectives such as quantitative reachability or mean-payoff objectives. In

this framework, all players are supposed to be rational: they want to

minimise their own cost.

Our results are twofold. Firstly, we prove the existence of simple

Nash equilibria for a large class of cost games that includes quantitative

reachability and mean-payoff objectives (see [BDS13] and Chapter 4).

This result then gives a quantitative counterpart to a result of E. Grädel

and M. Ummels [GU08] about qualitative games. Secondly, we study the

complexity of these Nash equilibria in terms of the memory needed in

the strategies of the individual players in these Nash equilibria. More

precisely, we ensure existence of Nash equilibria whose strategies only re-

quires a number of memory states that is linear in the size of the game for

a wide class of cost games, including games with quantitative reachability

and mean-payoff objectives.

Some of these results are summarised in Table 1.1. In this table, ’NE’

(resp. ’SE’, ’SPE’, ’SPSE’) means ’Nash (resp. secure, subgame perfect,

subgame perfect secure) equilibrium’.

Related work. Several recent papers have considered two-player zero-

sum games played on finite graphs with regular objectives enriched by

some quantitative aspects. Let us mention some of them: games with

finitary objectives [CH06], mean-payoff parity games [CHJ05], games

with prioritised requirements [AKW08], request-response games where

the waiting times between the requests and the responses are minimised
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Table 1.1: Summary of the main results

NE • Existence of a finite-memory NE in multiplayer quantita-

tive reachability games [BBD10, BBD12].

• Existence of a simple NE in a large class of multiplayer

cost games [BDS13].

SE • Existence of a finite-memory SE in two-player quantitative

reachability games [BBD10, BBD12].

• Algorithm to decide in ExpSpace the existence of a SE

in multiplayer quantitative reachability games [BBDG12,

BBDG13].

SPE • Existence of a SPE in multiplayer quantitative reachability

games [BBDG12, BBDG13] (non-constructive proof).

SPSE • Existence of a SPSE in two-player quantitative reachability

games [BBDG12, BBDG13] (non-constructive proof).

[HTW08, Zim09], games whose winning conditions are expressed via

quantitative languages [BCHJ09], and more recently, cost-parity and

cost-Streett games [FZ12].

Other work concerns qualitative non-zero-sum games. In [CHJ04]

where the notion of secure equilibrium has been introduced, it is proved

that a unique maximal payoff profile of secure equilibria always exists

for two-player non-zero-sum games with regular objectives. In [GU08],

general criteria ensuring existence of Nash equilibria and subgame per-

fect equilibria (resp. secure equilibria) are provided for multiplayer (resp.

two-player) games, as well as complexity results. The complexity of Nash

equilibria in multiplayer concurrent games with Büchi objectives has been

discussed in [BBMU11]. [BBM10b] studies the existence of Nash equilib-

ria for timed games with qualitative reachability objectives

Finally, beyond the classical literature about game theory (see for

instance [FT91, FL08]), there is a series of recent results on the combi-

nation of non-zero-sum aspects with quantitative objectives. In [BG09],

the authors study games played on graphs with terminal vertices where

quantitative payoffs are assigned to the players. In [KLŠT12], the authors
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provide an algorithm to decide the existence of Nash equilibria for concur-

rent priced games with quantitative reachability objectives. In [PS09], the

authors prove existence of a Nash equilibrium in Muller games on finite

graphs where players have a preference ordering on the sets of the Muller

table. In [FKMY+10] (resp. [PS11]), it is shown that every multiplayer

sequential game has a subgame-perfect ε-equilibrium for every ε > 0 if

the payoff functions of the players are bounded and lower-semicontinuous

(resp. upper-semicontinuous).

Outline. This document is divided into two parts. Part I gives a brief

overview of necessary definitions and some results about games played

on graphs (Chapter 2), and then states the main contributions of this

thesis (Chapter 3). Chapter 2 presents the context of this thesis in order

to better understand where our contributions lie.

Part II details the results we obtained about multiplayer cost games,

as well as their complete proofs and additional related results. They are

grouped according to the kind of equilibrium that is considered: Chap-

ter 4 concerns Nash equilibrium, Chapter 5 concerns secure equilibrium,

Chapter 6 concerns subgame perfect equilibrium, and Chapter 7 concerns

subgame perfect secure equilibrium.

Finally, Chapter 8 lists some open problems, as well as other possible

research directions.



Part I

About General Games

Played on Graphs
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Chapter 2

Background

This chapter presents the context of this thesis.

The games we study in this document are games played on (directed)

graphs. Intuitively, a token is moved by the players from vertex to vertex,

along the edges. In our case, each vertex of the graph is controlled by

one and only one player, meaning that whenever the token reaches a

vertex, the player who controls this vertex moves the token along an

outgoing edge to a successor vertex (turn-based game). A play of the

game is then a path through the graph constructed by the moves of the

token. In some sense, the graph determines the rules of the game and the

possible interactions between the players. To make the game complete,

we need to know what are the goals of the players. We can distinguish

between qualitative and quantitative objectives. A qualitative objective

for a player means that he wants to guarantee that some property holds.

For example, a player wins a play if it reaches a certain vertex, otherwise,

he loses this play. A quantitative objective for a player signifies that he

aims at optimising (maximising or minimising) a certain value. A player

may, for instance, wish to minimise the number of edges until the token

reaches a certain vertex.

To summarise, a game, in this document, is composed of an arena

(roughly, a graph) and an objective for each player.

Once a game has been fixed, it is natural to wonder how the game

17



18 Chapter 2 — Background

will be played. Depending of the kind of the players’ rational behaviour 1,

we can predict what might be a potential result of the game, which is

formalised through a particular solution concept. In this document, we

will study different solution concepts, according to the sort of games that

is considered.

The next sections describe the notion of arena and different kinds of

objectives.

2.1 Arena

This section defines what is an arena and gives some related vocabu-

lary words. Notations and definitions are inspired from [GU08, GTW02,

BBDG13, BDS13].

Definition 2.1.1. Given a finite set Π of players, an (finite) arena is a

tuple AΠ = (V, (Vi)i∈Π, E) where

• G = (V,E) is a (finite) directed graph with vertices V and edges

E ⊆ V × V such that for all v ∈ V , there exists v′ ∈ V with

(v, v′) ∈ E (i.e., each vertex has at least one outgoing edge), and

• (Vi)i∈Π is a partition of V such that Vi is the set of vertices con-

trolled by player i.

When the set of players is clear from the context, we simply write A
for AΠ. In the sequel, an arena is always supposed to be finite, unless

it is written explicitly that it can be infinite, or when we consider the

infinite unravelling of the graph (see Section 4.1.3). Given an arena, the

set V of vertices is partitioned between the players, then we only consider

turn-based games. Usually, we call the players player 1, player 2,. . .

Example 2.1.2. Let us consider the following arena A = (V, (Vi)i∈Π, E)

for a set Π = {1, 2} of two players. The directed graph G = (V,E) has

four vertices and six edges: V = {A,B,C,D} and E = {(A,B), (B,A),

(B,C), (C,B), (A,D), (D,B)}. The set of vertices controlled by player 1

(resp. player 2) is V1 = {A,C,D} (resp. V2 = {B}). This arena is

1. For example, a player may only care about his own objective, or he may want

to harm the other players if he does not harm himself by doing so.
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depicted in Figure 2.1. The vertices of player 1 (resp. player 2) are

represented by circles (resp. squares). We will keep this convention

throughout the document.

A B C

D

Figure 2.1: An arena.

Intuitively, a game played on an arena A = (V, (Vi)i∈Π, E) proceeds

as follows. First, a token is placed on some initial vertex v0. Whenever

a token is on a vertex v ∈ Vi controlled by player i ∈ Π, player i chooses

one of the outgoing edges (v, v′) ∈ E and moves the token along this

edge to v′. This way, the players together determine a infinite path in A
starting in v0.

We here give most of the notations that will be used in the sequel of

the document.

A finite (resp. infinite) path through the graph G = (V,E) is called

a history (resp. a play). Let ε denote the empty history, and Hist (resp.

Plays) denote the set of all histories (resp. plays) in A. For i ∈ Π, the

set Histi is the set of all histories h ∈ Hist \ {ε} whose last vertex belongs

to Vi. We write h = h0 . . . hk, where h0, . . . , hk ∈ V (k ∈ N), for a non-

empty history h, and similarly, ρ = ρ0ρ1 . . ., where ρ0, ρ1, . . . ∈ V , for a

play ρ.

A prefix (resp. proper prefix ) α of a non-empty history h = h0 . . . hk
is a finite sequence h0 . . . hl, with l ≤ k (resp. l < k), denoted by α ≤ h

(resp. α < h). We analogously consider a prefix α of a play ρ, denoted

by α < ρ. The length |h| of h is the number k of its edges 2. Note

that the length is not defined as the number of vertices. Given a play

ρ = ρ0ρ1 . . ., we denote by ρ≤l the prefix of ρ of length l (for some l ∈ N),

i.e. ρ≤l = ρ0ρ1 . . . ρl. Similarly, ρ<l = ρ0ρ1 . . . ρl−1.

2. As a convention, we let |ε| = −1.
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Given a non-empty history h = h0 . . . hk and a vertex v such that

(hk, v) ∈ E, we denote by hv the history h0 . . . hkv. Moreover, given a

history h = h0 . . . hk and a play ρ = ρ0ρ1 . . . such that (hk, ρ0) ∈ E, we

denote by hρ the play h0 . . . hkρ0ρ1 . . .. The function First (resp. Last)

returns, for a non-empty history h = h0 . . . hk, the first vertex h0 (resp.

the last vertex hk) of h. The function First naturally extends to plays.

We say that a play ρ = ρ0ρ1 . . . visits a set S ⊆ V (resp. a ver-

tex v ∈ V ) if there exists l ∈ N such that ρl is in S (resp. ρl = v). The

same terminology also stands for a history h. More precisely, we say

that ρ visits a set S at (resp. before) depth d ∈ N if ρd is in S (resp. if

there exists l ≤ d such that ρl is in S).

A strategy 3 of player i ∈ Π in A is a function σ : Histi → V as-

signing to each non-empty history h that ends in a vertex controlled

by player i (Last(h) ∈ Vi), a successor v = σ(h) of Last(h). That is,(
Last(h), σ(h)

)
∈ E. We say that a play ρ = ρ0ρ1 . . . of A is consistent

with a strategy σ of player i if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such

that ρk ∈ Vi. The same terminology is used for any history h. A strategy

profile of A is a tuple (σi)i∈Π of strategies, where σi refers to a strategy

for player i. Given an initial vertex v, a strategy profile determines a

unique play starting in v that is consistent with all strategies σi. This

play is called the outcome of (σi)i∈Π from v, and is denoted by 〈(σi)i∈Π〉v.
We write σ−j for (σi)i∈Π\{j}, the set of strategies σi for all the players

except for player j. We say that a player deviates from a strategy (resp.

from a play) if he does not carefully follow this strategy (resp. this play).

More formally, for a strategy profile (σi)i∈Π with outcome ρ, we say that

player j deviates from ρ if there exists a strategy σ′j of player j and a

prefix h of ρ consistent with σ′j , such that h ∈ Histj and σ′j(h) 6= σj(h).

A finite strategy automaton [Umm05] for player i ∈ Π over an arena A
is a Mealy automaton Mi = (M,m0, V, δ, ν) where:

– M is a non-empty, finite set of memory states,

– m0 ∈M is the initial memory state,

– δ : M × V →M is the memory update function,

– ν : M × Vi → V is the transition choice function, which satisfies

3. In this document, a strategy is always a pure one.
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(v, ν(m, v)) ∈ E for all m ∈M and v ∈ Vi.
We can extend the memory update function δ to a function δ∗ : M ×
Hist→M defined by δ∗(m, ε) = m and δ∗(m,hv) = δ(δ∗(m,h), v) for all

m ∈ M and hv ∈ Hist. The strategy σMi computed by a finite strategy

automaton Mi is defined by σMi
(hv) = ν(δ∗(m0, h), v) for all hv ∈ Hist

such that v ∈ Vi. We say that σ is a finite-memory strategy if there exists 4

a finite strategy automatonM such that σ = σM. Moreover, we say that

σ = σM has a memory of size at most |M |, where |M | is the number of

states of M. In particular, if |M | = 1, we say that σ is a positional

(or memoryless) strategy (the current vertex of the play determines the

choice of the next vertex, that is, σ : Vi → V ). We call (σi)i∈Π a strategy

profile with memory m if for all i ∈ Π, the strategy σi has a memory

of size at most m. In an equivalent way, σ is a finite-memory strategy

if the equivalence relation ≈σ on Hist defined by h ≈σ h′ if h, h′ end in

the same vertex, and σ(hδ) = σ(h′δ) for all histories hδ, h′δ ∈ Histi, has

finite index.

A strategy profile (σi)i∈Π is called positional or finite-memory if

each σi is a positional or a finite-memory strategy, respectively.

Sometimes, it is useful to specify an initial vertex v0 ∈ V for an

arena A. We then call the pair (A, v0) an initialised arena. A history

(resp. a play) of (A, v0) is a history (resp. a play) of A starting in v0.

Example 2.1.3. Let us come back to the arena A of Example 2.1.2 (on

page 18). For instance, ABC and (BC)ω are respectively a history and

a play of this arena. 5 On the contrary, AC (resp. (BD)ω) is not one of

its histories (resp. plays).

The function σ1 : V1 → V defined 6 by σ1(A) = B is a positional

strategy of player 1. In particular, the plays (AB)ω and (BC)ω are

consistent with σ1.

Let us now define the following finite-memory strategy of player 2:

4. Note that there exist several finite strategy automata such that σ = σM.
5. The notation (BC)ω corresponds to the infinite word BCBCBC . . . on the al-

phabet V . In the sequel, we will keep using classical notations for (sets of) (in)finite

words [PP04] in order to write (sets of) paths in a graph.
6. Notice that vertices C and D have only one successor, so player 1 has no choice

to make in these vertices.



22 Chapter 2 — Background

σ2(B) = C and σ2(hB) = A for all histories hB, with h 6= ε. The

outcome of the strategy profile (σ1, σ2) in the initialised arena (A, B) is

the play BC(BA)ω.

We can construct a finite strategy automaton Mσ2 that computes

the strategy σ2. The set M of memory states is M = {m0,m1}, and

the initial state is m0. The memory update function δ : M × V → M

is defined as δ(m0, v) = m1 and δ(m1, v) = m1 for all v ∈ V , and the

transition choice function ν : M × V2 → V is given by ν(m0, B) = C

and ν(m1, B) = A. The automaton Mσ2 is depicted in Figure 2.2: a

label −/v′ on an edge (m,m′) means that δ(m, v) = m′ for all v ∈ V ,

and ν(m,B) = v′.

m0 m1

−/C
−/A

Figure 2.2: The finite strategy automaton Mσ2
.

Sections 2.2 and 2.3 give some definitions and results for different

kinds of games (depending on the objectives of the players). The list

of results is not exhaustive but contains those that are useful for the

comprehension of the rest of the document. For the interested reader,

the references given in each section contain more information.

2.2 Qualitative Objectives

In this section, we focus on games where the players have qualitative

objectives. This means that each player wants to guarantee that some

property holds along a play. In Section 2.2.1, we study zero-sum games,

while in Section 2.2.2, we explore non-zero-sum games.

2.2.1 Zero-sum Games

This section, inspired from [GTW02], deals with qualitative zero-sum

games. These games are two-player games where the two players have

antagonistic objectives. In other words, one player plays in such a way as
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to satisfy some property, while the other player plays in order to prevent

this to happen. More formally, the objective of player 1 is represented as

a set of plays in the arena of the game. A play is then won by player 1

(resp. player 2) if it belongs (resp. does not belong) to this set.

Definition 2.2.1. Given a two-player arena A = (V, (V1, V2), E), a qual-

itative zero-sum game is a pair G = (A,Win), where Win ⊆ V ω is the

winning condition for player 1.

In this definition, we implicitly assume that the set of players is {1, 2}.
A play ρ is won by player 1 if and only if ρ belongs to Win. Player 2

wins ρ if and only if player 1 does not win ρ, meaning that V ω \Win (also

denoted by Winc) is the winning condition for player 2.

Given an initialised arena (A, v0), we denote by (G, v0) the game G
played on (A, v0), and we call it an initialised game. The term “initialised

game” and the notation (G, v0) will be used for any kind of game G that

we study in this document.

Example 2.2.2. Consider the two-player arena A of Example 2.1.2 (on

page 18), which is depicted below. We remind that the vertices of player 1

(resp. player 2) are represented by circles (resp. squares).

A B C

D

Let G = (A,Win) be the qualitative zero-sum game played on the

arena A, and where the winning condition of player 1 is given by Win =

{ρ ∈ V ω | ∃i ∈ N ρi = D}. In this game, player 1 wants a play to visit

vertex D at least once (reachability winning condition), and player 2

wants to avoid this. For instance, player 1 wins the play (ADB)ω,

whereas player 2 wins the play (BC)ω.
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Given a play ρ, we can define the gain 7 of player 1 for this play as:

Gain1(ρ) =

{
1 if ρ ∈Win,

−1 otherwise,
(2.1)

and the gain of player 2 as Gain2(ρ) = −Gain1(ρ). For any play ρ, it holds

that Gain1(ρ) + Gain2(ρ) = 0, that is why the game is called zero-sum.

Winning strategy

In qualitative zero-sum games, we assume that each player is rational

in the sense that he wants to win. As the objectives of the players are

completely antagonistic, it is natural to wonder whether a player can

play in such a way that he wins for sure, however the other player plays.

Such a behaviour is formalised through the solution concept of winning

strategy defined below.

Definition 2.2.3. Given a qualitative zero-sum game G, a strategy σ of

a player in G is a winning strategy for this player from a vertex v0 if all

plays starting in v0 and consistent with σ are won by this player.

We say that a player wins an initialised game (G, v0) if he has a

winning strategy from v0. Given a game G, we define the winning region

for player i ∈ {1, 2}, denoted Wi, as the set of all vertices v such that

player i wins the game (G, v). Clearly, since the game is zero-sum, at

most one player wins the initialised game, and then W1 ∩W2 = ∅.

Example 2.2.4. Let us come back to the qualitative zero-sum game G of

Example 2.2.2 (on page 23), where player 1 wants to reach vertex D.

From vertex B, player 1 has no winning strategy, but player 2 does have

a winning strategy: if he always chooses the edge (B,C), then every

play consistent with this strategy never visits vertex D. In other words,

player 2 wins the game (G, B). One can easily show that the winning

regions for both players are W1 = {A,D} and W2 = {B,C}.

7. In the literature, the gain of a player is also known as his payoff. We here

choose the word “gain” as opposed to the word “cost”, introduced later in the docu-

ment. Using gains (resp. costs) implies that each player aims at maximising his (resp.

minimising his).
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In this example, one can notice that the winning regions for both

players form a partition of V . Whenever a game has this property, we

say that it is determined.

Definition 2.2.5. A qualitative zero-sum game G = (A,Win) is deter-

mined if the winning regions for player 1 and player 2 form a partition

of the set V of vertices of G. That is, V = W1 ∪W2.

Martin showed [Mar75] that if the winning condition is a Borel sub-

set 8 of V ω (Borel winning condition), then the game is determined.

Theorem 2.2.6 ([Mar75]). Every qualitative zero-sum game with a Borel

winning condition is determined.

The following definitions give some examples of particular Borel win-

ning conditions [Tho95].

Definition 2.2.7. A reachability winning condition given by a goal set

R ⊆ V is the set of plays ρ = ρ0ρ1 . . . such that there exists i ∈ N with

ρi ∈ R.

A qualitative zero-sum game with a reachability winning condition is

also called a (zero-sum qualitative) reachability game and is denoted by

G = (A,R).

Definition 2.2.8. A safety winning condition given by a goal set S ⊆ V
is the set of plays ρ = ρ0ρ1 . . . such that for all i ∈ N, ρi ∈ S.

A qualitative zero-sum game with a safety winning condition is also

called a (zero-sum qualitative) safety game and is denoted by G = (A,S).

Definition 2.2.9. A reachability under safety winning condition given

by two sets R,S ⊆ V is the set of plays ρ = ρ0ρ1 . . . such that there exists

i ∈ N with ρi ∈ R, and for all i ∈ N, ρi ∈ S.

A qualitative zero-sum game with a reachability under safety winning

condition is also called a (zero-sum qualitative) reachability under safety

game and is denoted by G = (A,R,S).

8. We assume that the reader is familiar with the product topology on V ω and the

notion of Borel sets (see for instance [PP04]).
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Reachability games (resp. safety games) are special cases of reacha-

bility under safety games where S = V (resp. R = V ).

Definition 2.2.10. A Büchi winning condition given by a goal set F ⊆ V
is the set of plays ρ = ρ0ρ1 . . . such that for all i ∈ N, there exists j ∈ N
with j ≥ i and ρj ∈ F.

A qualitative zero-sum game with a Büchi winning condition is also

called a (zero-sum qualitative) Büchi game and is denoted by G = (A,F).

Definition 2.2.11. A weak parity winning condition given by a colouring

function c : V → N is the set of plays ρ = ρ0ρ1 . . . such that the minimal

colour occurring in the sequence c(ρ0)c(ρ1) . . . is even.

A qualitative zero-sum game with a weak parity winning condition is

also called a (zero-sum qualitative) weak parity game and is denoted by

G = (A, c).

Remark 2.2.12. The reachability under safety condition can be encoded

with a weak parity condition by defining the colouring function c as

follows: for any v ∈ V , c(v) = 3 if v 6∈ S, c(v) = 2 if v ∈ R and c(v) = 1

otherwise.

Definition 2.2.13. A parity winning condition given by a colouring func-

tion c : V → N is the set of plays ρ = ρ0ρ1 . . . such that the minimal

colour occurring infinitely often in the sequence c(ρ0)c(ρ1) . . . is even.

A qualitative zero-sum game with a parity winning condition is also

called a (zero-sum qualitative) parity game and is denoted by G = (A, c).

Definition 2.2.14. A Muller winning condition given by a family of

goal sets F1, . . . ,Fm ⊆ V is the set of plays ρ such that the set of vertices

appearing infinitely often in ρ is exactly Fk for a certain k ∈ {1, . . . ,m}.
A qualitative zero-sum game with a Muller winning condition is also

called a (zero-sum qualitative) Muller game and is denoted by G =

(A,F1, . . . ,Fm).

For all these winning conditions except the last one, the player who

wins the game has a memoryless winning strategy (memoryless determi-

nacy).
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Theorem 2.2.15 ([GTW02, Tho08]). Every qualitative zero-sum game

with a reachability/safety/reachability under safety/Büchi/(weak) parity

winning condition is determined. Moreover, for every vertex v, one of

the two players has a memoryless winning strategy from v.

For the Muller case however, memory is necessary, but one can show

that the player who wins the game has a finite-memory winning strategy.

Theorem 2.2.16 ([Tho08]). Every qualitative zero-sum game with a

Muller winning condition is determined. Moreover, for every vertex v,

one of the two players has a finite-memory winning strategy from v.

2.2.2 Non-zero-sum Games

This section, based on [GU08], studies a natural extension of zero-

sum games: non-zero-sum games. In such games, there may be more

than two players, each one with his own objective, and several players

may win the same play, or no player may win a play (the objectives are

not necessarily antagonistic to each other).

Definition 2.2.17. Given a finite set Π of players and an arena A =

(V, (Vi)i∈Π, E), a qualitative non-zero-sum game is a tuple G = (Π,A,
(Wini)i∈Π), where Wini ⊆ V ω is the winning condition for player i, for

all i ∈ Π.

For all i ∈ Π, a play ρ is won by player i if and only if ρ belongs to

Wini. According to this definition, qualitative zero-sum games are then

particular cases of two-player qualitative non-zero-sum games.

Example 2.2.18. Consider the two-player arena A of Example 2.1.2 (on

page 18), which is depicted below.

A B C

D
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Let G = ({1, 2},A, (Win1,Win2)) be the qualitative non-zero-sum

game played on the arena A, and where player 1 has a reachability win-

ning condition for the goal set R = {D} (as in Example 2.2.2), and

player 2 has a Büchi winning condition for the goal set F = {C} (he

wants a play to visit infinitely often vertex C). In particular, player 1

wins the play (ADB)ω, player 2 wins the play (BC)ω, both players win

the play AD(BC)ω, and none of them wins the play (BA)ω.

In zero-sum games, the rational behaviour of a player is to play accord-

ing to a winning strategy, because the players have conflicting objectives.

In non-zero-sum games, it is usually not the case, so we rather look for

a “contract” that makes everyone “satisfied” (in the sense that no one

wants to break the contract if the others follow it), that is, we search for

something like an equilibrium.

Nash Equilibrium

A Nash equilibrium is a solution concept that captures the idea that

each player is selfish (he only cares about his own objective) and rational

(he prefers winning to losing). Roughly, a Nash equilibrium is a strategy

profile in which each player has chosen the best strategy for him, taking

into account the strategies of the other players. This famous notion was

introduced by J. F. Nash [Nas50].

Definition 2.2.19. Given a qualitative non-zero-sum game G = (Π,A,
(Wini)i∈Π) and an initial vertex v0 ∈ V , a strategy profile (σi)i∈Π of G
is a Nash equilibrium of (G, v0) if, for every player j ∈ Π and for every

strategy σ′j of player j, we have that

ρ′ ∈Winj ⇒ ρ ∈Winj ,

where ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

.

A Nash equilibrium (σi)i∈Π thus ensures that any deviation of a player

will not be better for him (i.e., a deviation can not make him win if he

was losing the play 〈(σi)i∈Π〉v0).
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To see that from the point of view of gains, we define, like in Equa-

tion (2.1), the gain of player i for a play ρ as:

Gaini(ρ) =

{
1 if ρ ∈Wini,

−1 otherwise.
(2.2)

The gain profile of this play is then (Gaini(ρ))i∈Π and is denoted by

Gain(ρ). We can now rephrase Definition 2.2.19 by using these gain func-

tions.

Definition 2.2.20. Given a qualitative non-zero-sum game (G, v0), a

strategy profile (σi)i∈Π of G is a Nash equilibrium of (G, v0) if, for every

player j ∈ Π and for every strategy σ′j of player j, we have that

Gainj(ρ
′) ≤ Gainj(ρ) ,

where ρ = 〈(σi)i∈Π〉v0 and ρ′ = 〈σ′j , σ−j〉v0 .

In a Nash equilibrium, each player is happy because none of his devi-

ations can give him a greater gain. A Nash equilibrium can thus be seen

as a contract between all players: if a player deviates from his contract

strategy, then he can not get a strictly greater gain provided that the

other players follow the contract.

Definition 2.2.21. Given a strategy profile (σi)i∈Π, a strategy σ′j of

player j is called a profitable deviation for player j w.r.t. (σi)i∈Π in (G, v0)

if Gainj(〈(σi)i∈Π〉v0) < Gainj(〈σ′j , σ−j〉v0).

As a consequence, a strategy profile (σi)i∈Π is a Nash equilibrium if

none of the players has a profitable deviation.

Example 2.2.22. Let us come back to the two-player qualitative non-zero-

sum game G described in Example 2.2.18 (on page 27), where player 1 has

a reachability winning condition for the goal set R = {D}, and player 2

has a Büchi winning condition for the goal set F = {C}.
We define the following positional strategies for player 1 and player 2

respectively: σ1(A) = B and σ2(B) = C. In (G, B), the outcome of

(σ1, σ2) is the play (BC)ω, which is winning for player 2 and losing for
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player 1. This strategy profile is in fact a Nash equilibrium in (G, B)

because player 2 wins this play (so he can not make a better choice), and

player 1 has no possibility to win while deviating since this play never

visits vertex A.

Let us now define two other strategies: a positional strategy σ′1 for

player 1 such that σ′1(A) = D, and a finite-memory strategy σ′2 for

player 2 such that σ′2(B) = A and σ′2(hB) = C for all histories hB, with

h 6= ε. The strategy profile (σ′1, σ
′
2) leads to the outcome BAD(BC)ω

in (G, B). As this play is won by both players, (σ′1, σ
′
2) is also a Nash

equilibrium in (G, B).

Remark that if we consider another positional strategy of player 2

defined by σ′′2 (B) = A, then (σ′1, σ
′′
2 ) is not a Nash equilibrium in (G, B).

Indeed, σ2 is a profitable deviation for player 2 w.r.t. (σ′1, σ
′′
2 ), since he

wins the play 〈σ′1, σ2〉B = (BC)ω and loses the play 〈σ′1, σ′′2 〉B = (BAD)ω.

In [CMJ04], it has been shown that there exists a Nash equilibrium in

every initialised multiplayer game with Borel winning conditions. Note

that this result has been generalised in [GU08].

Theorem 2.2.23 ([CMJ04]). Every initialised qualitative non-zero-sum

game with Borel winning conditions has a Nash equilibrium.

Subgame Perfect Equilibrium

Let us first motivate the introduction of a more refined notion of equi-

librium than the Nash equilibrium. For this purpose, we consider once

again the Nash equilibrium (σ1, σ2) of Example 2.2.22. Assume that

player 2 changes his mind at the first step and decides to choose the

edge (B,A) (instead of (B,C)). Then, according to σ1 (which belongs

to the Nash equilibrium), player 1 chooses the edge (A,B), whereas it

would be more rational for him to choose the edge (A,D) in order to win

the play. This shows that Nash equilibria do not take into account the se-

quential nature of games played on graphs: they are not anymore robust

as soon as one (or several) player does not play according to the equi-

librium for some finite amount of time. The notion of subgame perfect

equilibrium avoids these non-rational behaviours.
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This notion is a stronger solution concept than the Nash equilibrium.

To be a subgame perfect equilibrium, a strategy profile has to be a Nash

equilibrium not only from the initial vertex, but also after every possible

history of the game, i.e. in every subgame. The notion of subgame perfect

equilibrium was introduced by R. Selten [Sel65].

Before presenting the formal definition, let us first give some nota-

tions. Given a qualitative non-zero-sum game G = (Π,A, (Wini)i∈Π) and

a history h of G, we denote by G|h the game G|h = (Π,A, (Wini|h)i∈Π)

where Wini|h = {ρ ∈ V ω | hρ ∈Wini}, and we say that G|h is a subgame

of G. For an initialised game (G, v0) and a history hv of (G, v0) (with

v ∈ V ), the initialised game (G|h, v) is called the subgame of (G, v0) with

history hv. Given a strategy σi for player i in G, we define the strat-

egy 9 σi|h in (G|h, v) as σi|h(h′) = σi(hh
′) for all non-empty histories h′

of G such that First(h′) = v and Last(h′) ∈ Vi. We usually write σ−j |h
for (σi|h)i∈Π\{j}.

Then, we say that (σi|h)i∈Π is a Nash equilibrium in the subgame

(G|h, v) if, for every player j ∈ Π and every strategy σ′j of player j, we

have that Gainj(h〈σ′j |h, σ−j |h〉v) ≤ Gainj(h〈(σi|h)i∈Π〉v). 10

Definition 2.2.24. Given a qualitative non-zero-sum game (G, v0), a

strategy profile (σi)i∈Π of G is a subgame perfect equilibrium of (G, v0) if

(σi|h)i∈Π is a Nash equilibrium in (G|h, v), for every history hv of (G, v0),

with v ∈ V .

In particular, a subgame perfect equilibrium is also a Nash equilib-

rium.

Example 2.2.25. Let us come back to the two-player qualitative non-zero-

sum game G described in Example 2.2.18 (on page 27), where player 1 has

a reachability winning condition for the goal set R = {D}, and player 2

has a Büchi winning condition for the goal set F = {C}.

9. Notice that σi|h is only defined for histories beginning with hv, but it is not

a problem since when we consider plays consistent with such a strategy, it always

happens in the subgame (G|h, v).
10. Recall that the notation h〈(σi|h)i∈Π〉v represents the play of (G, v0) with prefix h

that is consistent with (σi|h)i∈Π from v.
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We showed that the strategy profile (σ1, σ2) of Example 2.2.22, where

player 1 (resp. player 2) always chooses the edge (A,B) (resp. (B,C)),

is a Nash equilibrium in (G, B). But it is not a subgame perfect equilib-

rium in this game, because (σ1|h, σ2|h) is not a Nash equilibrium in the

subgame (G|h, v) for h = B and v = A. Indeed, the strategy σ′1|h defined

in Example 2.2.22, which always chooses the edge (A,D), is a profitable

deviation for player 1 w.r.t. (σ1|h, σ2|h) in (G|h, v).

One can be convinced that the strategy profile (σ′1, σ2) is a subgame

perfect equilibrium in (G, B), since after any possible history of the game,

the choices made by the players are always rational compared to their

objectives.

It has been proved in [Umm06] that there exists a subgame perfect

equilibrium in every initialised multiplayer game with Borel winning con-

ditions. Note that this result has been generalised in [GU08].

Theorem 2.2.26 ([Umm06]). Every initialised qualitative non-zero-sum

game with Borel winning conditions has a subgame perfect equilibrium.

Secure Equilibrium

A secure equilibrium is another refinement of the concept of Nash

equilibrium. While in a Nash equilibrium, each player only cares about

his own gain, in a secure equilibrium, each player cares about his own

gain, as well as the other players’ gains (but in a negative way). First,

each player aims at maximising his own gain, and then, he aims at min-

imising the other players’ gains. This kind of behaviour naturally appears

when verifying systems with multiple components, which motivated the

definition of secure equilibria.

The concept of secure equilibrium was introduced by K. Chatterjee,

T. A. Henzinger and M. Jurdzinski [CHJ04], and adapts the famous Nash

equilibrium to the context of assume-guarantee synthesis [CH07, CR10].

We first define the notion of secure equilibria in the two-player case,

we will consider the multiplayer case further.

Definition 2.2.27. Given a two-player qualitative non-zero-sum game

G = ({1, 2},A, (Win1,Win2)) and an initial vertex v0 ∈ V , a strategy
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profile (σ1, σ2) of G is called secure in (G, v0) if, for every strategy σ′1 of

player 1, we have that(
ρ ∈Win1 ⇒ ρ′ ∈Win1

)
⇒

(
ρ ∈Win2 ⇒ ρ′ ∈Win2

)
,

where ρ = 〈σ1, σ2〉v0
and ρ′ = 〈σ′1, σ2〉v0

; and symmetrically for every

strategy σ′2 of player 2.

A secure strategy profile (σ1, σ2) thus ensures that any deviation of

player 1 that is not bad for him (i.e., a deviation that does not make him

lose if he was winning the play 〈σ1, σ2〉v0
) will not be bad for player 2,

and symmetrically for any deviation of player 2.

We can rephrase Definition 2.2.27 by using the gain functions of Equa-

tion (2.2).

Definition 2.2.28. Given a two-player qualitative non-zero-sum game

(G, v0), a strategy profile (σ1, σ2) of G is called secure in (G, v0) if, for

every strategy σ′1 of player 1, we have that

Gain1(ρ) ≤ Gain1(ρ′) ⇒ Gain2(ρ) ≤ Gain2(ρ′) ,

where ρ = 〈σ1, σ2〉v0 and ρ′ = 〈σ′1, σ2〉v0 ; and symmetrically for every

strategy σ′2 of player 2.

In a secure strategy profile, any deviation of player 1 that does not

decrease his gain will not decrease the gain of player 2. A secure profile

can thus be seen as a contract between the two players which strengthens

cooperation: if a player chooses another strategy that is not harmful to

himself, then this cannot harm the other player if the latter follows the

contract.

Definition 2.2.29. Given a two-player qualitative non-zero-sum game

(G, v0), a strategy profile of G is a secure equilibrium of (G, v0) if it is a

Nash equilibrium and it is secure in (G, v0).

In other words, secure equilibria are those Nash equilibria which re-

inforce cooperation between the two players.
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In [CHJ04], an equivalent characterisation is given for secure equilibria

in two-player games. To this end, two binary relations ≺1 and ≺2 are

defined on gain profiles:

(x1, x2) ≺1 (y1, y2) iff (x1 < y1) ∨ (x1 = y1 ∧ x2 > y2) ; (2.3)

symmetrically, (x1, x2) ≺2 (y1, y2) iff (x2 < y2) ∨ (x2 = y2 ∧ x1 > y1),

for any gain profiles (x1, x2) and (y1, y2). The relation ≺1 means that

player 1 prefers a gain profile that gives him a greater gain, and if two gain

profiles give him the same gain, then he prefers the gain profiles in which

player 2’s gain is lower. So, for player 1, we have that (0, 1) ≺1 (0, 0) ≺1

(1, 1) ≺1 (1, 0). Note that the relations ≺1 and ≺2 are transitive.

Definition 2.2.30 ([CHJ04]). Given a two-player qualitative non-zero-

sum game (G, v0), a strategy profile (σ1, σ2) of G is a secure equilibrium

of (G, v0) iff there does not exist a strategy σ′1 of player 1 such that:

Gain(ρ) ≺1 Gain(ρ′) ,

where ρ = 〈σ1, σ2〉v0 and ρ′ = 〈σ′1, σ2〉v0 ; and symmetrically for player 2.

In other words, player 1 (resp. player 2) has no incentive to deviate

w.r.t. the relation ≺1 (resp. ≺2). Remember that Gain(ρ) represents the

gain profile of the play ρ.

Example 2.2.31. Let us come back to the two-player qualitative non-zero-

sum game G described in Example 2.2.18 (on page 27), where player 1 has

a reachability winning condition for the goal set R = {D}, and player 2

has a Büchi winning condition for the goal set F = {C}.
We show that the Nash equilibrium (σ1, σ2) of Example 2.2.22 (on

page 29), where player 1 (resp. player 2) always chooses the edge (A,B)

(resp. (B,C)), is also a secure equilibrium in (G, B). Indeed, this profile

is secure as, on one hand, player 1 loses the outcome (BC)ω, then player 2

can not hope to lower player 1’s gain, and on the other hand, the outcome

never visits a vertex controlled by player 1, so he has no chance to lower

player 2’s gain.

As a counterexample, we consider the Nash equilibrium (σ′1, σ
′
2) of

Example 2.2.22, where σ′1 always chooses the edge (A,D) and σ′2 chooses
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the edge (B,A) if the play has just started in B, otherwise it always

chooses the edge (B,C). This strategy profile is not a secure equilib-

rium in (G, B) since the strategy σ2 enables player 2 to get the same

gain while decreasing player 1’s gain. More precisely, we have that:

Gain(〈σ′1, σ′2〉B) = (1, 1) ≺2 (0, 1) = Gain(〈σ′1, σ2〉B), as 〈σ′1, σ′2〉B =

BAD(BC)ω and 〈σ′1, σ2〉B = (BC)ω.

In [CHJ04], it is not only shown that there exists a secure equilib-

rium in two-player qualitative non-zero-sum game with Borel winning

conditions, but also a unique maximal secure equilibrium gain profile. A

maximal secure equilibrium gain profile is a gain profile (gi)i∈Π such that

there exists a secure equilibrium with gain profile 11 (gi)i∈Π and for every

secure equilibrium with gain profile (g′i)i∈Π, it holds that g′i ≤ gi, for all

i ∈ Π.

Theorem 2.2.32 ([CHJ04]). Every initialised two-player qualitative

non-zero-sum game with Borel winning conditions has a unique maxi-

mal secure equilibrium gain profile.

The proof of this result relies on a partition of the set V of vertices of

the graph into four sets of vertices from which the players have particular

interesting strategies.

Theorem 2.2.32 is generalised in [GU08] for well-behaved winning con-

ditions. Let G = (A, (Win1,Win2)) be a two-player qualitative non-zero-

sum game. We say that the pair (Win1,Win2) of winning conditions is

determined if any two-player zero-sum game G′ = (A,Win), such that

the winning condition Win is a Boolean combination of Win1 and Win2,

is determined.

Theorem 2.2.33 ([GU08]). Let (G, v0) be a two-player qualitative non-

zero-sum game. If the pair (Win1,Win2) of winning conditions of G is

determined, then there exists a unique maximal secure equilibrium gain

profile in (G, v0).

Note that, in fact, it suffices that the two-player zero-sum games

G′ = (A,Win1) and G′′ = (A,Winc2) are determined.

11. The gain profile of a strategy profile is the gain profile of its outcome.
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As regards the multiplayer case, two definitions of a secure equilib-

rium are given in [CHJ04]. It is said there that they are equivalent but

they are not. The first one is quite strong: there exists a simple three-

player game with no “secure equilibrium” according to this definition (see

Example 2.2.34). Let us explain the idea. A strategy profile (σi)i∈Π is

said to be “secure” in a game (G, v0) if, for every player j ∈ Π and for

every strategy σ′j of player j,

Gainj(ρ) ≤ Gainj(ρ
′) ⇒

(
∀i 6= j Gaini(ρ) ≤ Gaini(ρ

′)
)
, (2.4)

where ρ = 〈(σi)i∈Π〉v0 and ρ′ = 〈σ′j , σ−j〉v0 . Then, a strategy profile is a

“secure equilibrium” if it is both a Nash equilibrium and secure. It means

that if a player deviates from a “secure equilibrium” while keeping the

same gain, then all the other players must have a greater (or the same)

gain than in the equilibrium. We show in the following example that

there exists a game with no such equilibrium.

Example 2.2.34. Let us consider the three-player qualitative non-zero-

sum game G = ({1, 2, 3},A, (Win1,Win2,Win3)), where the arena A is

depicted in Figure 2.3, and player 1 (resp. player 2, player 3) has reach-

ability winning condition for the goal set R1 = {B,C} (resp. R2 = {B},
R3 = {C}). Only player 1 (who controls the circle vertices) plays in this

game.

B A C

Figure 2.3: Arena of the three-player game G.

Let σ that always chooses the edge (A,B). Then, the outcome is

won by players 1 and 2, and lost by player 3. This strategy is not “se-

cure”. To see that, let us consider the strategy σ′ that always chooses the

edge (A,C). Its outcome is won by players 1 and 3, and lost by player 2.

So, player 1’s gain remains the same, but player 2’s gain strictly de-

creases with the strategy σ′ of player 1, which contradicts the definition

of a “secure” strategy. With a similar argument, one can show that the

strategy σ′ is not “secure” either.
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Let σ′′ be a strategy that chooses the edges (A,B) and (A,C), each

one at least once. The outcome of such a strategy is won by the three

players, but the strategy that always chooses the edge (A,B) strictly de-

creases player 3’s gain. As a consequence, such a strategy is not “secure”,

and then, this game has no “secure equilibrium”.

Let us now give the second definition of secure equilibria that is pro-

posed in [CHJ04] for multiplayer games. For this purpose, we need to

associate a binary relation ≺j on gain profiles with each player j. Given

two gain profiles (xi)i∈Π and (yi)i∈Π:

(xi)i∈Π ≺j (yi)i∈Π iff
(
xj < yj

)
∨ (2.5)(

xj = yj ∧ (∀i 6= j xi ≥ yi) ∧ (∃i 6= j xi > yi)
)
.

We then say that player j prefers (yi)i∈Π to (xi)i∈Π. In other words,

player j prefers a gain profile to another one either if he has a strictly

greater gain, or if he keeps the same gain, the other players have a lower

gain, and at least one has a strictly lower gain. For example, we have

that (0, 1, 0) ≺1 (1, 1, 1) ≺1 (1, 1, 0) ≺1 (1, 0, 0). One can show that each

relation ≺j is transitive. Moreover, the relation ≺j given here exactly

corresponds to the definitions of ≺1 and ≺2 in the two-player case (see

Equation (2.3)).

Definition 2.2.35. Given a multiplayer qualitative non-zero-sum game

(G, v0), a strategy profile (σ1, σ2) of G is a secure equilibrium of (G, v0) if

for every player j ∈ Π, there does not exist any strategy σ′j of player j

such that:

Gain(ρ) ≺j Gain(ρ′) ,

where ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

.

In other words, player j has no incentive to deviate w.r.t. relation ≺j .

Definition 2.2.36. Given a strategy profile (σi)i∈Π, a strategy σ′j of

player j is called a ≺j-profitable deviation for player j w.r.t. (σi)i∈Π in

(G, v0) if Gain(〈(σi)i∈Π〉v0) ≺j Gain(〈σ′j , σ−j〉v0).

As a consequence, a strategy profile (σi)i∈Π is a secure equilibrium if

no player j has a ≺j-profitable deviation.
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Unfortunately, Theorem 2.2.32 (about the existence of a unique maxi-

mal secure equilibrium gain profile) does not hold in the multiplayer case.

Let us show this with the following example.

Example 2.2.37 ([CHJ04]). Let us come back to the three-player game G
of Example 2.2.34 (on page 36) and consider the strategies σ, σ′ and σ′′

defined in that example. The strategy σ′′ is not a secure equilibrium

because σ is a ≺1-profitable deviation for player 1 (since (1, 1, 1) ≺1

(1, 1, 0)). On the other hand, one can prove that σ and σ′ are secure

equilibria. Their gain profiles are (1, 1, 0) and (1, 0, 1), which are both

maximal, but incomparable. Then, there does not exist a unique maximal

secure equilibrium gain profile in this game.

To our knowledge, the existence of secure equilibria in multiplayer

qualitative non-zero-games is still an open problem.

Let us now give an equivalent characterisation of a secure equilibrium.

For this, we first give the definition of a secure strategy profile.

Definition 2.2.38. Given a multiplayer qualitative non-zero-sum game

(G, v0), a strategy profile (σi)i∈Π of G is called secure in (G, v0) if, for

every player j ∈ Π and every strategy σ′j of player j, we have that

Gainj(ρ) ≤ Gainj(ρ
′) ⇒

((
∀i 6= j Gaini(ρ) ≤ Gaini(ρ

′)
)

∨
(
∃i 6= j Gaini(ρ) < Gaini(ρ

′)
))
,

where ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

.

Like in the two-player case, a secure profile ensures that any deviation

of a player that does not put him at a disadvantage cannot put the other

players at a disadvantage either, if they follow the contract.

Definition 2.2.39. Given a multiplayer qualitative non-zero-sum game

(G, v0), a strategy profile of G is a secure equilibrium of (G, v0) if it is a

Nash equilibrium and it is secure in (G, v0).

Complexity Results

In this section, we give a non-exhaustive list of some complexity re-

sults, which are the most related to our work. We call NE (resp. SPE)
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the following decision problems.

Given a qualitative non-zero-sum game with reachability winning

conditions and some thresholds (xi)i∈Π, (yi)i∈Π ∈ {0, 1}|Π|, decide

whether the game has a Nash (resp. subgame perfect) equilibrium

with gain profile (gi)i∈Π such that xi ≤ gi ≤ yi, for all i ∈ Π. 12

By adapting the proof of [Umm08, Theorem 8], one can show that

this problem is in NP for Nash equilibria.

Theorem 2.2.40 ([Umm08]). NE is in NP.

Theorem 2.2.41 ([CMJ04, Umm05]). NE (and SPE) is NP-hard, even

with the threshold (yi)i∈Π = (1, . . . , 1).

Theorem 2.2.42 ([GU08]). The problem of deciding whether, in an ini-

tialised two-player qualitative game with parity winning conditions, there

exists a secure equilibrium with gain profile (0, 0) (resp. (1, 0) or (0, 1),

resp. (1, 1)) is in UP ∩ co-UP (resp. is co-NP-complete, resp. is in NP).

If the number of priorities is bounded, these four problems are in P.

2.3 Quantitative Objectives

In this section, we focus on games where the players have quantitative

objectives. This means that each player aims at optimising (maximising

or minimising) a certain value along a play. Section 2.3.1 is about Min-

Max cost games, while Section 2.3.2 refers to multiplayer cost games.

2.3.1 Min-Max Cost Games

This section, mainly inspired from [Tri09], considers Min-Max cost

games. These games generalise qualitative zero-sum games to the quan-

titative framework. In Min-Max cost games, there are two players: player

Min, who wants to minimise the cost he pays for plays, and player Max,

who wants to maximise the gain he gets for plays.

12. Note that, thanks to Theorem 2.2.26, deciding the existence of a subgame per-

fect equilibrium in an initialised qualitative non-zero-sum game with Borel winning

conditions is trivial, since the answer is always ’yes’.
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Definition 2.3.1. Given a two-player arena A = (V, (VMin, VMax), E), a

Min-Max cost game is a triple G = (A,CostMin,GainMax), where

CostMin : Plays→ R∪{+∞,−∞} is the cost function of player Min, and

GainMax : Plays → R ∪ {+∞,−∞} is the gain function of player Max,

such that CostMin(ρ) ≥ GainMax(ρ) for all ρ ∈ Plays.

In this definition, we implicitly assume that the set of players is

{Min,Max}.
For every play ρ, the value CostMin(ρ) represents the amount that

player Min loses for this play, and GainMax(ρ) represents the amount

that player Max wins for this play. In such a game, player Min wants to

minimise his cost, while player Max wants to maximise his gain.

Let us stress that, according to this definition, a Min-Max cost game is

zero-sum if CostMin = GainMax, but this might not always be the case 13.

We also point out that Definition 2.3.1 allows to take quite unrelated

functions CostMin and GainMax, but usually they are similar (see Defini-

tion 2.3.3). In the sequel, we denote by ΣMin (resp. ΣMax) the set of

strategies of player Min (resp. Max) in a Min-Max cost game.

Example 2.3.2. We describe the following Min-Max cost game G = (A,
CostMin,GainMax). Its arena A is the one of Example 2.1.2 (on page 18),

but we enrich the graph with prices on the edges in order to define the

cost function CostMin. The price function φ : E → {1, 2, 3}, which assigns

a price to each edge of the graph, is as follows: φ(A,B) = φ(B,A) =

φ(B,C) = 1, φ(A,D) = 2 and φ(C,B) = φ(D,B) = 3 (see Figure 2.4).

We remind that vertices controlled by player Min (resp. player Max) are

represented by circles (resp. squares).

The cost function CostMin of player Min is defined as follows:

CostMin(ρ) =

{∑n
i=1 φ(ρi−1, ρi) if n is the least index s.t. ρn = C,

+∞ otherwise,

for every play ρ = ρ0ρ1 . . . of G. This cost function expresses a quantita-

tive reachability objective: player Min wants to reach vertex C (shaded

vertex) while minimising the sum of prices up to this vertex. For player

13. For an example, see the average-price game in Remark 2.3.4.
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A B C

D

1

1

1

3

2 3

Figure 2.4: Arena A with prices on edges.

Max, we set GainMax = CostMin, which means that this player wants

to avoid vertex C or maximise the sum of the prices until reaching it

(quantitative safety objective).

For example, the play (AB)ω of this game leads to an infinite cost/gain

for player Min/Max, whereas the play AD(BC)ω induces a cost/gain of 6

for player Min/Max.

We here give four well-known kinds of Min-Max cost games. For

each sort of game, the cost and gain functions are defined from a price

function φ : E → R (and a reward function ϑ : E → R in the last case),

which labels the edges of the arena with prices (and rewards). For a

play ρ, we use the following notations: φ(ρ≤n) =
∑n
i=1 φ(ρi−1, ρi) and

ϑ(ρ≤n) =
∑n
i=1 ϑ(ρi−1, ρi).

Definition 2.3.3 ([Tri09]). Given an arena A = (V, (VMin, VMax), E), a

price function φ : E → R that assigns a price to each edge, a diverging 14

reward function ϑ : E → R that assigns a reward to each edge, and a

play ρ = ρ0ρ1 . . . in A, we define the following Min-Max cost games:

1. a reachability-price game is a Min-Max cost game G = (A,RPMin,

RPMax) together with a given goal set R ⊆ V , where

RPMin(ρ) =

{
φ(ρ≤n) if n is the least index s.t. ρn ∈ R,

+∞ otherwise,

and RPMin = RPMax;

14. For all plays ρ = ρ0ρ1 . . . in A, it holds that limn→∞ |
∑n

i=1 ϑ(ρi−1, ρi)| = +∞.

This is equivalent to requiring that every cycle has a positive sum of rewards.
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2. a discounted-price game is a Min-Max cost game G = (A,DPMin(λ),

DPMax(λ)) together with a given discount factor λ ∈ ]0, 1[, where

DPMin(λ)(ρ) = (1− λ) ·
+∞∑
i=1

λi−1φ(ρi−1, ρi) ,

and DPMin(λ) = DPMax(λ);

3. an average-price game 15 is a Min-Max cost game G = (A,APMin,

APMax), where

APMin(ρ) = lim sup
n→+∞

φ(ρ≤n)

n
,

and APMax(ρ) = lim inf
n→+∞

φ(ρ≤n)

n
;

4. a price-per-reward-average game is a Min-Max cost game G =

(A,PRAvgMin,PRAvgMax), where

PRAvgMin(ρ) = lim sup
n→+∞

φ(ρ≤n)

ϑ(ρ≤n)
,

and PRAvgMax(ρ) = lim inf
n→+∞

φ(ρ≤n)

ϑ(ρ≤n)
.

An average-price game is then a particular case of a price-per-reward-

average game. Let us observe that the Min-Max cost game G of Exam-

ple 2.3.2 is a reachability-price game for the goal set R = {C}.

Remark 2.3.4. Reachability-price and discounted-price games are zero-

sum games, whereas average-price and price-per-reward-average games

are not. For example, let us consider the average-price game G = (A,
APMin,APMax) depicted in Figure 2.5. The vertices of the arena are

A and B, and are both controlled by player Min. The number 0 or 1

associated to each edge corresponds with the price of this edge (φ(A,B) =

φ(B,B) = 1 and the price of the other edges is zero).

Let ρ be the play ABAB2A2B4A4 . . . B2n

A2n

. . ., where Ai means the

concatenation of i A. Then, the sequence of prices appearing along ρ is

15. When the cost function of a player is APMin, we say that he has a mean-payoff

objective.
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Figure 2.5: Average-price game G.
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. . ., and so we get: APMin(ρ) = 2
3 and APMax(ρ) =

1
2 . As these costs are not equal, the average-price game G depicted in

Figure 2.5 is not a zero-sum game. As a consequence, we can conclude

that average-price and price-per-reward-average games are non-zero-sum

games.

Value and optimal strategies

Let us remind that in qualitative zero-sum games, we wonder if a

player can ensure to win, no matter how the other player plays. In Min-

Max cost games, we look for some value that a player can guarantee to

have, however the other player plays.

Given a Min-Max cost game and a vertex v of the graph, we call the

upper value the lowest cost that player Min can guarantee to pay from v,

and the lower value the greatest gain that player Max can guarantee to

get from v.

Definition 2.3.5. Given a Min-Max cost game G, we define, for every

vertex v ∈ V , the upper value Val∗(v) as:

Val∗(v) = inf
σ1∈ΣMin

sup
σ2∈ΣMax

CostMin(〈σ1, σ2〉v) ,

and the lower value Val∗(v) as:

Val∗(v) = sup
σ2∈ΣMax

inf
σ1∈ΣMin

GainMax(〈σ1, σ2〉v) .

Note that for every vertex v, it always holds that Val∗(v) ≥ Val∗(v).

When these values are equal for all v, we say that the game is determined.
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Definition 2.3.6. A Min-Max cost game G is determined if, for every

v ∈ V , we have Val∗(v) = Val∗(v). We also say that the game G has a

value from v, and we write Val(v) = Val∗(v) = Val∗(v).

In a game G, an ε-optimal strategy for player Min ensures that for

all v, his cost will not exceed Val∗(v) + ε in (G, v), against any strategy

of player Max. Similarly, an ε-optimal strategy for player Max ensures

that for all v, his gain will not fall below Val∗(v) − ε in (G, v), against

any strategy of player Min.

Definition 2.3.7. Given a Min-Max cost game G and ε ≥ 0, we say that

σ?1 ∈ ΣMin is an ε-optimal strategy for player Min if, for every v ∈ V , we

have that

sup
σ2∈ΣMax

CostMin(〈σ?1 , σ2〉v) ≤ Val∗(v) + ε .

Similarly, σ?2 ∈ ΣMax is an ε-optimal strategy for player Max if, for every

v ∈ V , we have that

inf
σ1∈ΣMin

GainMax(〈σ1, σ
?
2〉v) ≥ Val∗(v)− ε .

In particular, if the game is determined, σ?1 ∈ ΣMin and σ?2 ∈ ΣMax

are 0-optimal strategies, also called optimal strategies, for the respective

players if, for every v ∈ V , we have that

inf
σ1∈ΣMin

GainMax(〈σ1, σ
?
2〉v) = Val(v) = sup

σ2∈ΣMax

CostMin(〈σ?1 , σ2〉v) .

In other words, if player Min plays according to an optimal strategy

from v, then he loses at most Val(v). On the other hand, if player Max

plays according to an optimal strategy from v, then he wins at least

Val(v).

Remark 2.3.8. Given a game G and ε ≥ 0, if for all v ∈ V , there exists a

strategy σv1 for player Min such that

sup
σ2∈ΣMax

CostMin(〈σv1 , σ2〉v) ≤ Val∗(v) + ε , (2.6)

then player Min has an ε-optimal strategy σ?1 in G. Indeed, we can define

σ?1(h) := σv1(h) such that v = First(h). Then, any play starting in v and

consistent with σ?1 will be consistent with σv1 and satisfy Equation (2.6).
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Also note that the converse is true. A similar remark can be done for

ε-optimal strategies of player Max.

Example 2.3.9. Let us come back to the zero-sum Min-Max cost game G
described in Example 2.3.2 (on page 40), whose arena is depicted below,

and where player Min has a quantitative reachability objective for the

goal set R = {C}.

A B C

D

1

1

1

3

2 3

Let us show that this game is determined. From vertices A, B and D,

the lowest cost (resp. greatest gain) that player Min (resp. player Max)

can guarantee to have is +∞. Then, Val(A) = Val(B) = Val(D) = +∞.

From vertex C, no matter how both players play, their cost/gain is 0,

and so, Val(C) = 0.

Let us define the following two positional strategies σ?1 and σ?2 for

player Min and player Max respectively: σ?1(A) = B and σ?2(B) = A.

These strategies are optimal for the respective players: from every ver-

tex v of the game, σ?1 ensures that player Min’s cost is at most Val(v),

and σ?2 ensures that player Max’s gain is at least Val(v).

The following theorem is a well-known result about the particular cost

games described in Definition 2.3.3.

Theorem 2.3.10 ([FV97, Tri09]). Reachability-price games, discounted-

price games, average-price games, and price-per-reward games are deter-

mined and have positional optimal strategies for both players.

The following result is more general, and states the determinacy of

zero-sum Min-Max cost games with bounded, Borel measurable cost func-

tions.

Theorem 2.3.11 ([Mer86]). Every zero-sum Min-Max cost game, where

CostMin is a bounded, Borel measurable function, is determined, and both

players have ε-optimal strategies, for any ε > 0.
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This is a classical and well-known result, but we have not found any

detailed proof in the literature, so we give one here.

Proof. Let G = (A,CostMin,GainMax) be a zero-sum Min-Max cost game

where CostMin is a bounded, Borel measurable function (and GainMax =

CostMin). For any real number r ∈ R, we define the winning condition

Winr = {ρ ∈ Plays | CostMin(ρ) ≤ r}, and we consider the qualita-

tive zero-sum game Gr = (A,Winr). Since CostMin is Borel measurable,

Winr = (CostMin)−1(]−∞, r]) is a Borel set, and so we can apply Martin’s

result (see Theorem 2.2.6) to the game Gr. Then, we know that one of

the players can win from every vertex v. If we see the game as a Min-Max

cost game, it implies that it is determined, and Val(v) = 0 or 1 for every

vertex v.

Let us fix ε > 0 and some vertex v ∈ V . Let rv be the infimum of all r

such that player 1 (player Min in G) wins the game Gr = (A,Winr) from v.

Notice that rv is finite as CostMin is bounded, and consequently, there

exists c ∈ R such that Winr = Plays for all r ≥ c, and Winr = ∅ for all

r ≤ −c. It is also easy to see that for all r1 ≤ r2, if player 1 wins (Gr1 , v),

then he also wins (Gr2 , v) (as Winr1 ⊆Winr2), and by contrapositive and

determinacy, if player 2 wins (Gr2 , v), then he also wins (Gr1 , v). Let us

show that Val(v) = rv.

By definition of rv, player 1 (player Min in G) has a winning strat-

egy σv1 from v in the game Grv+ε = (A,Winrv+ε). Thus, it holds that

supσ2∈ΣMax
CostMin(〈σv1 , σ2〉v) ≤ rv + ε, meaning that player Min can

guarantee that his cost is at most rv + ε.

Similarly, we have that rv−ε < rv, and so, player 2 (player Max in G)

has a winning strategy σv2 from v in the game Grv−ε = (A,Winrv−ε).

Then we have that infσ1∈ΣMin
CostMin(〈σ1, σ

v
2〉v) ≥ rv − ε, meaning that

player Max can guarantee that his gain is at least rv − ε (recall that

GainMax = CostMin).

As a consequence, for all ε > 0, Val∗(v) ≤ rv +ε and Val∗(v) ≥ rv−ε,
which implies that Val∗(v) = Val∗(v) = Val(v) = rv. By Remark 2.3.8,

player Min and player Max have ε-optimal strategies in G for all ε > 0,

and Val(v) = rv for all v ∈ V .
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Let us show with the following example that there exist zero-sum Min-

Max cost games where the players have ε-optimal strategies for all ε > 0,

but they do not have optimal strategies.

Example 2.3.12. Let G be the zero-sum Min-Max cost game whose arena

is depicted in Figure 2.6, and where the cost function CostMin is defined

by CostMin(AnBω) = −1 + 1
n for n ∈ N0 and CostMin(Aω) = 0. One

can be convinced that Val(A) = −1. For all ε > 0, player Min has an

ε-optimal strategy to ensure to pay at most −1+ε from A, but he has no

optimal strategy from A to guarantee that his cost will not exceed −1.

A B

Figure 2.6: A Min-Max cost game without optimal strategies.

Remark 2.3.13. In a zero-sum Min-Max cost game where CostMin is

bounded, Borel measurable, and also continuous 16, then both players

have optimal strategies.

2.3.2 Multiplayer Cost Games

This section, mainly inspired from [BDS13], introduces the games

on which we will focus in the sequel of this document: multiplayer cost

games. These games generalise the other kinds of games we have defined

before. They are played by any number of players, and each player wants

to minimise the cost he pays for plays. In particular, they are quantitative

non-zero-sum games.

Definition 2.3.14. Given a finite set Π of players and an arena A =

(V, (Vi)i∈Π, E), a multiplayer cost game is a tuple G = (Π,A, (Costi)i∈Π),

where Costi : Plays→ R∪ {+∞,−∞} is the cost function of player i, for

all i ∈ Π.

16. Notice that the function CostMin of Example 2.3.12 is not continuous.
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For every play ρ of the game, the value Costi(ρ) represents the amount

that player i loses for this play. The cost profile of this play is then

(Costi(ρ))i∈Π and is denoted by Cost(ρ).

For the sake of simplicity, we assume that each player has a cost

function that he wants to minimise. But note that minimising cost or

maximising gain are essentially equivalent, as maximising the gain for

player i can be modelled by using Costi to be minus this gain and then

minimising the cost. Then, a Min-Max cost game is a particular case of

a two-player cost game.

Notice that the cost functions of a cost game are defined on the

set Plays, and not on V ω, as they often depend on prices put on the

edges of the game graph.

Let us insist on the fact that the players of a multiplayer cost game

may have completely different cost functions, as in the following example.

Example 2.3.15. Let G = ({1, 2},A, (Cost1,Cost2)) be the two-player cost

game whose arena A is depicted below (see Example 2.3.2 on page 40

for more details), and such that player 1 has the same cost function as

player Min in that example, that is, Cost1 = RPMin for the goal set

R = {C}. As for player 2, we set Cost2 = APMin, for the same 17 price

function φ defined in that example. Then, for player 2, his cost of a play

is the long-run average of the prices that appear along this play. Recall

that the cost functions RPMin and APMin are specified in Definition 2.3.3.

A B C

D

1

1

1

3

2 3

An example of a play in G can be given by ρ = (AB)ω, leading to the

costs Cost1(ρ) = +∞ and Cost2(ρ) = 1. In the same way, the play ρ′ =

A(BC)ω induces the following costs: Cost1(ρ′) = 2 and Cost2(ρ′) = 2.

17. Note that we could have defined a different price function for each player. In

this case, the edges of the graph would have been labelled by couples of numbers.
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Nash Equilibrium

In this section, we define the concept of Nash equilibrium in the con-

text of cost games.

Definition 2.3.16. Given a multiplayer cost game G = (Π,A,
(Costi)i∈Π) and an initial vertex v0 ∈ V , a strategy profile (σi)i∈Π of G
is a Nash equilibrium of (G, v0) if, for every player j ∈ Π and for every

strategy σ′j of player j, we have that:

Costj(ρ) ≤ Costj(ρ
′) ,

where ρ = 〈(σi)i∈Π〉v0 and ρ′ = 〈σ′j , (σi)i∈Π\{j}〉v0 .

Notice that this definition exactly corresponds to Definition 2.2.20 in

the qualitative framework, except that the inequality is here reversed as

we consider costs to minimise instead of gains to maximise.

Definition 2.3.17. Given a strategy profile (σi)i∈Π, a strategy σ′j of

player j is called a profitable deviation for player j w.r.t. (σi)i∈Π in (G, v0)

if Costj(〈(σi)i∈Π〉v0
) > Costj(〈σ′j , σ−j〉v0

).

As in the qualitative case, a strategy profile (σi)i∈Π is a Nash equi-

librium if none of the players has a profitable deviation.

Example 2.3.18. Let us come back to the two-player cost game G de-

scribed in Example 2.3.15 (on page 48), where Cost1 = RPMin for the

goal set R = {C} (quantitative reachability objective), and Cost2 =

APMin (mean-payoff objective). We consider the positional strategies σ1

and σ2 of player 1 and player 2 respectively, defined by σ1(A) = B and

σ2(B) = A. If we fix the initial vertex A, the outcome of the strategy

profile (σ1, σ2) is the play ρ = (AB)ω, with cost profile (+∞, 1). One can

show that (σ1, σ2) is in fact a Nash equilibrium in (G, A): player 2 gets

the least cost he can expect in this game, and player 1 has no incentive

to choose the edge (A,D) (it does not allow the play to pass through

vertex C).

We now consider the positional strategy profile (σ′1, σ
′
2) with σ′1(A) =

B and σ′2(B) = C. Its outcome is the play ρ′ = A(BC)ω. However,
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this strategy profile is not a Nash equilibrium in (G, A), because player 2

can strictly lower his cost by always choosing the edge (B,A) instead of

(B,C), thus lowering his cost from 2 to 1. In other words, the strategy

σ2 is a profitable deviation for player 2 w.r.t. (σ′1, σ
′
2).

It is important to notice that there exist simple cost games with no

Nash equilibrium, as it is shown in the following example.

Example 2.3.19. Let (G, A) be the one-player cost game 18 whose arena

is depicted in Figure 2.7, and where the cost function Cost1 is defined

by Cost1(AnBω) = −1 + 1
n for n ∈ N0 and Cost1(Aω) = 0. One can be

convinced that there is no Nash equilibrium in (G, A). Indeed, looping

infinitely often in A is not a Nash equilibrium, and for the other strategy

profiles, looping one more time in A is always a profitable deviation.

A B

Figure 2.7: A one-player cost game without Nash equilibrium.

Subgame Perfect Equilibrium

In this section, we define the concept of subgame perfect equilibrium

in the context of cost games, and give some existence results about it.

Let us first generalise the notion of subgame in this framework. Given

a multiplayer cost game G = (Π,A, (Costi)i∈Π) and a history h of G, we

denote by G|h the game G|h = (Π,A, (Costi|h)i∈Π) where Costi|h(ρ) =

Costi(hρ) for any play ρ such that (Last(h),First(ρ)) ∈ E, 19 and we say

that G|h is a subgame of G. We keep the same notations for initialised

subgames and particular strategies σi|h as in Section 2.2.2 (just before

Definition 2.2.24).

Then, given a history hv of a cost game (G, v0) (with v ∈ V ), we

say that (σi|h)i∈Π is a Nash equilibrium in the subgame (G|h, v) if, for

18. This game is in the same vein as the Min-Max cost game of Example 2.3.12.
19. Notice that Costi|h is not defined on all of Plays, but this is not a problem since

it is always applied on plays beginning with a successor of Last(h).
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every player j ∈ Π and every strategy σ′j of player j, we have that

Costj |h(〈σ′j |h, σ−j |h〉v) ≥ Costj |h(〈(σi|h)i∈Π〉v), or in an equivalent way,

Costj(h〈σ′j |h, σ−j |h〉v) ≥ Costj(h〈(σi|h)i∈Π〉v).
Exactly as in the qualitative case, a strategy profile is a subgame

perfect equilibrium in a game if it is a Nash equilibrium in every subgame.

In particular, a subgame perfect equilibrium is also a Nash equilibrium.

Definition 2.3.20. Given a multiplayer cost game (G, v0), a strategy

profile (σi)i∈Π of G is a subgame perfect equilibrium of (G, v0) if (σi|h)i∈Π

is a Nash equilibrium in (G|h, v), for every history hv of (G, v0), with

v ∈ V .

Let us illustrate this on an example.

Example 2.3.21. Let us come back to the two-player cost game G de-

scribed in Example 2.3.15 (on page 48), where Cost1 = RPMin for the

goal set R = {C}, and Cost2 = APMin. The Nash equilibrium (σ1, σ2)

of Example 2.3.18 (on page 49) is also a subgame perfect equilibrium

in (G, A).

The first result we present is the existence of a subgame perfect equi-

librium in multiplayer cost games played on finite trees. This directly

follows from the classical Kuhn’s theorem [Kuh53] (see below). A pref-

erence relation is a total, reflexive and transitive binary relation.

Theorem 2.3.22 ([Kuh53]). Given a multiplayer cost game G = (Π,A,
(Costi)i∈Π) whose graph is a finite tree 20, and a preference relation -i on

cost profiles 21 for each player i ∈ Π, there exists a strategy profile (σi)i∈Π

such that for every history hv in G, with v ∈ V , for every player j ∈ Π,

and every strategy σ′j of player j, we have

Cost(ρ′) -j Cost(ρ)

where ρ = h〈(σi|h)i∈Π〉v and ρ′ = h〈σ′j |h, σ−j |h〉v.

20. When a game is played on a tree, we always assume that the game is initialised,

and the initial vertex is the root of the tree.
21. Given two cost profiles x and y, the notation x -j y means that player j prefers y

to x, or the two cost profiles are equivalent for him.
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Let -j be the binary relation on cost profiles defined by (xi)i∈Π -j
(yi)i∈Π iff xj ≥ yj . It is clearly a preference relation which captures the

concept of Nash equilibrium (see Definition 2.3.16). We thus have the

following corollary.

Corollary 2.3.23. In every multiplayer cost game whose graph is a finite

tree, there exists a subgame perfect equilibrium.

In particular, it implies that there exists a Nash equilibrium in every

multiplayer cost game whose graph is a finite tree.

The following result states the existence of a subgame perfect equi-

librium (and thus, a Nash equilibrium) in a certain class of cost games.

Theorem 2.3.24 ([FL83, Har85]). Given a multiplayer cost game G =

(Π,A, (Costi)i∈Π) and an initial vertex v0 ∈ V , if the cost functions

(Costi)i∈Π are continuous and real-valued 22, then there exists a subgame

perfect equilibrium in (G, v0).

Notice that if Costi is a continuous real-valued function, then Costi is

bounded, as Plays is compact 23.

Remark 2.3.25. Theorem 2.3.24 does not apply on games with mean-

payoff objectives, as the cost function APMin (see Definition 2.3.3) is not

continuous. Indeed, let us consider the one-player cost game whose arena

is depicted in Figure 2.8, and where the cost function Cost1 is APMin for

the price function φ defined by φ(A,A) = φ(A,B) = 0 and φ(B,B) = 1.

A B

0 1

0

Figure 2.8: The cost function APMin is not continuous.

The sequence of plays (AnBω)n∈N0
converges to the play Aω. For

all n ∈ N0, we have that APMin(AnBω) = 1, but APMin(Aω) = 0.

22. A real-valued cost function assigns a real number to every play.
23. Plays is compact since it is a closed set in V ω , which is compact.
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Contributions

The aim of this chapter is to summarise, in a few pages, the main

contributions of this thesis, and to give the history of the principal results.

The sequel of this document is devoted to the details and the proofs of

these results.

In this thesis, we focus on existence results for several kinds of equilib-

rium in multiplayer cost games. Many parameters appear when studying

cost games: the graph can be enriched with prices on edges or not; there

can be two or more players; the objectives of the players can be various

and also complicated; different kinds of rational behaviour can be con-

sidered for the players, leading to different concepts of equilibria;... We

have worked in a gradual manner: we fixed some of these parameters

and we studied the existence of the chosen notion of equilibrium in the

chosen class of games, as well as the complexity of the equilibria in terms

of the memory needed in the strategies of the individual players in these

equilibria. Then, we proceeded to more or less restrictive parameters,

like more general objectives or more refined notions of equilibrium. Note

that most of our results hold for any number of players.

As Nash equilibria do not always exist in cost games (see Exam-

ple 2.3.19), we first focused on quantitative reachability objectives, and

we studied quantitative reachability games [BBD10, BBD12, BBDG12,

BBDG13]. These games are cost games where each player has a goal set

53
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of vertices of the graph, and aims at reaching his own goal set as soon

as possible. In other words, he wants to minimise the number of edges

until the play reaches his goal set for the first time (see Definition 4.1.1

for more details).

Once the objectives were fixed, we studied the existence of different

notions of equilibria. We proved in [BBD10, BBD12] several results about

the famous Nash equilibrium, and the more recent concept of secure equi-

librium. To our knowledge, it was the first time that the notion of secure

equilibrium was considered in the quantitative framework. The formal

definition can be found in Section 5.1, and naturally extends the defini-

tion given in the qualitative framework ([CHJ04], or see Definition 2.2.35

or 2.2.39).

The first problem we considered is the following one.

Problem 1. Does there exist a Nash equilibrium (resp. a secure equi-

librium) in every initialised quantitative reachability game?

We provided the following positive answers.

• In every initialised multiplayer quantitative reachability game,

there exists a finite-memory Nash equilibrium (Theorem 4.1.5).

• In every initialised two-player quantitative reachability game, there

exists a finite-memory secure equilibrium (Theorem 5.2.1).

• In every initialised multiplayer quantitative reachability game, one

can decide whether there exists a secure equilibrium in ExpSpace

(Theorem 5.2.7).

• In every initialised multiplayer quantitative reachability game, one

can decide in ExpSpace whether there exists a secure equilibrium

such that the players’ costs are below some thresholds (Proposi-

tion 5.2.22).

We also somewhat extended our existence result of Nash equilibria in

two directions. The first one concerns quantitative reachability/safety

games (Definition 4.2.1). These are cost games where some players

have quantitative reachability objectives, whereas others have quanti-

tative safety objectives (they want to avoid some bad set of vertices or,

if impossible, delay its visit as long as possible).
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In another direction, we enriched the graph with tuples of prices (one

price for each player) on the edges of the graph, and studied quantitative

reachability games with tuples of prices on edges (Definition 4.3.1). In

such games, the edges of the graph are labelled with tuples of positive

prices (one price for each player), and every player has a reachability

objective, but in this framework, we do not only count the number of

edges to reach the goal of a player, but we sum up his prices along the

path until his goal is reached.

We positively answered Problem 1 for Nash equilibria in these two

kinds of cost games [BBD12].

• In any initialised multiplayer quantitative reachability/safety game,

there exists a finite-memory Nash equilibrium (Theorem 4.2.2).

• In any initialised multiplayer quantitative reachability game with

tuples of prices on edges, there exists a finite-memory Nash equi-

librium (Theorem 4.3.2).

The second problem asks, given a Nash (resp. secure) equilibrium,

whether there exists a finite-memory Nash (resp. secure) equilibrium

with the same type, meaning that the sets of players who reach their goal

set along the outcome of the initial equilibrium and along the outcome

of the finite-memory one are the same.

Problem 2. Given a Nash equilibrium (resp. a secure equilibrium) in

an initialised quantitative reachability game, does there exist a finite-

memory Nash equilibrium (resp. secure equilibrium) with the same type?

The answers to this problem for Nash and secure equilibria are both

positive in multiplayer quantitative reachability games.

• Given a Nash equilibrium in an initialised multiplayer quantitative

reachability game, there exists a finite-memory Nash equilibrium of

the same type (Theorem 4.1.12).

• Given a secure equilibrium in an initialised multiplayer quantitative

reachability game, there exists a finite-memory secure equilibrium

of the same type (Theorem 5.2.8).

The first result comes from [BBD10, BBD12] and the second one comes

from [BBDG12, BBDG13].
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Then, we considered more refined notions of equilibria, like subgame

perfect equilibria. And we introduced [BBDG12, BBDG13] a new and

even stronger solution concept with the notion of subgame perfect secure

equilibrium (see Section 7.1 for the definition), which gathers both the se-

quential nature of subgame perfect equilibria and the verification-oriented

aspects of secure equilibria.

The third problem concerns the existence of subgame perfect (secure)

equilibria in quantitative reachability games.

Problem 3. Does there exist a subgame perfect equilibrium (resp. a sub-

game perfect secure equilibrium) in every initialised quantitative reacha-

bility game?

We gave the two following positive answers [BBDG12, BBDG13].

• In every initialised multiplayer quantitative reachability game,

there exists a subgame perfect equilibrium (Theorem 6.1.1).

• In every initialised two-player quantitative reachability game, there

exists a subgame perfect secure equilibrium (Theorem 7.3.1).

In order to prove these two results, we had to use proof techniques

(namely, topology) completely different from the ones given in [BBD10,

BBD12] for the existence of Nash and secure equilibria.

The first result extends to quantitative reachability games with tuples

of prices on edges.

• In every initialised multiplayer quantitative reachability game with

tuples of prices on edges, there exists a subgame perfect equilibrium

(Theorem 6.2.1).

Once multiplayer quantitative reachability games have been quite well

understood, we wanted to extend our results to other classes of cost

games. We studied in [BDS13] quantitative objectives expressed through

a cost function for each player. Each cost function assigns, for every play

of the game, a value that represents the cost that is incurred for a player

by this play. In this framework, we allow tuples of prices and rewards on

the edges of the graph.

Problems 4 and 5 extend the question of existence of (finite-memory)

Nash equilibria to general multiplayer cost games.
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Problem 4. Does there exist a Nash equilibrium in every initialised

multiplayer cost game?

Problem 5. Does there exist a finite-memory Nash equilibrium in every

initialised multiplayer cost game?

If we make no restriction on the cost games, the answer to Problem 4

(and thus to Problem 5) is negative (see again Example 2.3.19). That

is why we identified [BDS13] large classes of cost games for which the

answers to Problems 4 and 5 are positive. These classes of cost games

include, in particular, quantitative reachability objectives, mean-payoff

objectives, discounted objectives, and many other ones. This result then

gave a quantitative counterpart to a result of E. Grädel and M. Um-

mels [GU08] about qualitative games. Moreover, it generalised some re-

sults obtained in [BBD10, BBD12] about quantitative reachability/safety

objectives to a wider class of objectives.

• In every initialised multiplayer cost game where each cost function

is prefix-linear and positionally coalition-determined, there exists a

Nash equilibrium with memory (at most) linear in the size of the

game (Proposition 4.4.6).

• In every initialised multiplayer cost game where each cost function

is prefix-independent and coalition-determined, there exists a Nash

equilibrium (Proposition 4.4.11).

• In every initialised multiplayer cost game where each cost func-

tion is prefix-independent and finite-memory coalition-determined,

there exists a finite-memory Nash equilibrium (Proposition 4.4.12).

These results are partly established in [BDS13]. The definitions concern-

ing the hypotheses required for the cost functions of the game can be

found in Section 4.4.1.

We deduced from the first result that simple Nash equilibria exists

in cost games where the players have quantitative reachability objectives

or mean-payoff objectives (Corollary 4.4.15). We also got a more general

result, which states that if each cost function satisfies either the hypothe-

ses of the first result, or the ones of the third result, then there exists a

finite-memory Nash equilibrium in the cost game (Theorem 4.4.14).
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The general philosophy of the proofs is as follows: we derive exis-

tence of Nash equilibria in multiplayer non-zero-sum quantitative games

(and characterisation of their complexity) through determinacy results

(and characterisation of the optimal strategies) of several well-chosen two-

player quantitative games obtained from the initial multiplayer game.

All these results are covered in Part II, and are grouped according

to the kind of equilibrium that is considered. They were not a direct

consequence of the existing results in the qualitative framework, we had

to develop new proof techniques.

On another hand, we have established some collaborations with Hugo

Gimbert (CNRS researcher in LaBRI-Bordeaux) and Sven Schewe (lec-

turer at the University of Liverpool), which led to several publications.

We are currently working with János Flesch, Jeroen Kuipers, Gijs Schoen-

makers, and Koos Vrieze (from Maastricht university).



Part II

Focus on Multiplayer

Cost Games
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Chapter 4

Nash Equilibrium

In this chapter, based on [BBD10, BBD12, BDS13], we study the

notion of Nash equilibrium in multiplayer cost games. Let us remind

that this concept is defined in Section 2.3.2 (see Definition 2.3.16), and

the notations about arenas, plays, histories and strategies can be found

in Section 2.1.

In Sections 4.1, 4.2 and 4.3, we mainly focus on cost games where

all players have quantitative reachability (or safety) objectives. Then, in

Section 4.4, we turn to larger classes of cost games, where existence of

Nash equilibria can be proved.

4.1 Quantitative Reachability Objectives

In this section, we define quantitative reachability games, which are

particular cost games, and give several results concerning these games

and Nash equilibria.

4.1.1 Definition

Quantitative reachability games are cost games where all players have

quantitative reachability objectives. It means that, given a certain set Ri
of vertices, each player i wants to reach one of these vertices as soon as
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possible (that is, while minimising the number of edges to visit this set

for the first time).

Definition 4.1.1. A multiplayer quantitative reachability game is a mul-

tiplayer cost game G = (Π,A, (Costi)i∈Π) such that for any i ∈ Π,

Costi = RPMin for a given goal set Ri ⊆ V , and the shared price func-

tion φ : E → R with φ(e) = 1 for all e ∈ E.

Abusively, such a game is denoted by G = (Π,A, (Ri)i∈Π).

Thus, in a quantitative reachability game G, the cost of player i of a

play ρ = ρ0ρ1 . . . is 1:

Costi(ρ) =

{
l if l is the least index such that ρl ∈ Ri,

+∞ otherwise.
(4.1)

Let us introduce two notations that will be useful in the sequel. For

any play ρ, we denote by Visit(ρ) the set of players i ∈ Π such that ρ

visits Ri. The set Visit(h) for a history h is defined similarly.

The type of a strategy profile (σi)i∈Π in a quantitative reachability

game (G, v0) is the set of players j ∈ Π such that the outcome of (σi)i∈Π

in (G, v0) visits Rj , and is denoted by Type(v0, (σi)i∈Π). In other words,

Type(v0, (σi)i∈Π) = Visit(〈(σi)i∈Π〉v0). When the context is clear, we

simply write Type((σi)i∈Π).

Example 4.1.2. Let G = ({1, 2},A, (R1,R2)) be the two-player quanti-

tative reachability game whose arena A is depicted in Figure 4.1 and

where R1 = {C} and R2 = {D}. We remind that the vertices of player 1

(resp. player 2) are represented by circles (resp. squares). Notice that

the vertex of R1 (resp. R2) is shaded (resp. doubly circled) in the figure. 2

Let us define the following memoryless strategies σ1 and σ2 for player 1

and player 2 respectively, as: σ1(A) = D and σ2(B) = C. 3 The outcome

of (σ1, σ2) in (G, A) is the play (AD)ω, with cost profile (+∞, 1), since

the play (AD)ω does not visit R1 and visits R2 within one edge.

The strategy profile (σ1, σ2) is not a Nash equilibrium in (G, A), since

the memoryless strategy σ′1 defined by σ′1(A) = B is a profitable deviation

1. See Definition 2.3.3.
2. We will keep this convention in the sequel of the document.
3. Notice that player 1 has no choice to make in vertices C and D.
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AB D

C

Figure 4.1: A two-player quantitative reachability game.

for player 1. Indeed, the outcome of (σ′1, σ2) in (G, A) is the play (ABC)ω,

and Cost1((ABC)ω) = 2 < +∞.

On the opposite side, one can show that (σ′1, σ2) is a Nash equilibrium

in (G, A).

Notice that all strategies discussed so far are memoryless. In or-

der to obtain a Nash equilibrium of type {1, 2} in (G, A), finite-memory

strategies are necessary. We define the following finite-memory strategy

profile (τ1, τ2) as:

τ1(hA) =

{
D if h = ε

B if h 6= ε
; τ2(h′B) =

{
C if h′ visits D

A otherwise

for all histories hA and h′B. The outcome of (τ1, τ2) in (G, A) is the

play AD(ABC)ω, with cost profile (4, 1). We claim that the strategy

profile (τ1, τ2) is a Nash equilibrium in (G, A). For player 2, it is clearly

impossible to pay a cost less than 1 in this game. Moreover, player 1 has

no incentive to deviate, because if he chooses the edge (A,B) at the first

step, then player 2 chooses the edge (B,A) according to τ2. And so, the

cost of player 1 will be greater than 4.

We will see in Section 4.1.4 that there always exists a finite-memory

Nash equilibrium in an initialised multiplayer quantitative reachability

game.

4.1.2 Qualitative Games vs Quantitative Games

We show in this section that Problems 1 and 2 can not be reduced

to problems on qualitative games in the following sense. Existence of

Nash equilibria in qualitative non-zero-sum games where each player has
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a reachability objective (given by Theorem 2.2.23) does not directly imply

existence of Nash equilibria in quantitative reachability games.

Given a quantitative reachability game G = (Π,A, (Ri)i∈Π), one can

naturally define a qualitative version of G, denoted by G and given by

the qualitative non-zero-sum game G = (Π,A, (Wini)i∈Π), where Wini =

{ρ ∈ V ω | ∃n ∈ N, ρn ∈ Ri}, for all i ∈ Π.

By Theorem 2.2.23, we know that there exists a Nash equilibrium in G.

Nevertheless, the next example illustrates that lifting Nash equilibria in G
to Nash equilibria in G does not work. That is why we developed new

ideas to solve Problem 1.

Example 4.1.3. Let us now consider the two-player quantitative reachabil-

ity game G = ({1, 2},A, (R1,R2)) whose arena A is depicted in Figure 4.2,

and such that R1 = {B,E} and R2 = {C}. Notice that only player 1

effectively plays in this game.

A

B

D

C

E

Figure 4.2: A two-player quantitative reachability game.

We are going to exhibit a Nash equilibrium σ1 in the corresponding

qualitative game (G, A) that can not be lifted to a Nash equilibrium in

the quantitative game (G, A). The positional strategy σ1 of player 1 is

defined by σ1(A) = D. It is a Nash equilibrium in (G, A), with out-

come ADEω that player 1 wins and player 2 loses. However, σ1 is not a

Nash equilibrium in (G, A). Indeed, choosing the edge (A,B) provides a

smaller cost to player 1: Cost1(ABCω) < Cost1(ADEω). Notice that in

this example, there is no Nash equilibrium in (G, A) where only player 1

reaches his goal set.

The next proposition shows that on the opposite side, any Nash equi-

librium in a quantitative reachability game G can be lifted to a Nash

equilibrium in the corresponding qualitative game G.
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Proposition 4.1.4. Any Nash equilibrium in a multiplayer quantitative

reachability game (G, v0) is also a Nash equilibrium in the corresponding

qualitative game (G, v0).

Proof. Let (σi)i∈Π be a Nash equilibrium in a multiplayer quantita-

tive reachability game (G, v0). For a contradiction, let us assume that

in (G, v0), player j has a profitable deviation σ′j w.r.t. (σi)i∈Π. This

is only possible if 〈(σi)i∈Π〉v0
is lost by player j and 〈σ′j , σ−j〉v0

is won

by player j. Thus when playing σ′j against σ−j , player j manages to

reach Rj . Clearly enough, σ′j would also be a profitable deviation w.r.t.

(σi)i∈Π in (G, v0), contradicting the hypothesis.

4.1.3 Unravelling of a Graph

Let G = (Π,A, (Ri)i∈Π) be a multiplayer quantitative reachability

game played on an arena A = (V, (Vi)i∈Π, E). In order to prove most

of the results concerning quantitative reachability games (even for the

other concepts of equilibria studied in this document), it will often be

useful to unravel the graph G = (V,E) from an initial vertex v0, which

ends up in an infinite tree, denoted by T . This tree can be seen as a new

graph where the set of vertices is the set of histories of A starting in v0,

the initial vertex is the history v0, and an edge of T is a pair (h, hv) of

histories starting in v0 such that (Last(h), v) ∈ E. A history h is a vertex

of player i in T if h ∈ Histi, and h belongs to the goal set of player i

if Last(h) ∈ Ri.

We denote by T the corresponding quantitative reachability game

played on this new arena 4. This game T played on the unravelling T

of G from v0 is equivalent to the game (G, v0) played on the graph G in

the following sense. A play (ρ0)(ρ0ρ1)(ρ0ρ1ρ2) . . . in T induces a unique

play ρ = ρ0ρ1ρ2 . . . in (G, v0), and conversely. Thus, we denote a play in T
by the respective play in (G, v0). The bijection between plays of (G, v0)

and plays of T allows us to use the same cost functions (Costi)i∈Π, and

to transform easily strategies in G to strategies in T (and conversely).

4. Notice that the graph T is infinite, but comes from a finite graph.
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For practical reasons, we often use equivalently T in our proofs in-

stead of (G, v0), and the equilibria defined in T are obviously equilibria

in (G, v0). Moreover, figures given in proofs to help the understanding

roughly represent the unravelling T of G and plays in game T .

We also sometimes need to consider the tree T limited to a certain

depth d ∈ N: we denote by Truncd(T ) the truncated tree of T of depth d

and Truncd(T ) the finite game played on Truncd(T ). More precisely,

the set of vertices of Truncd(T ) is the set of histories starting in v0 of

length ≤ d; the edges of Truncd(T ) are defined in the same way as for T ,

except that for the histories h of length d, there exists no edge (h, hv). A

play in Truncd(T ) corresponds to a history of (G, v0) of length equal to d.

The notions of cost and strategy are defined exactly like in the game T ,

but limited to the depth d. For instance, a player pays an infinite cost for

a play ρ in Truncd(T ) if his goal set is not visited by ρ. Remark that T
and Truncd(T ) are always supposed to be initialised in v0.

The reason why we consider the games Truncd(T ) for certain depths d

is that Corollary 2.3.23 (Kuhn’s theorem) applies in these games since

they are played on finite trees.

For an example of a game (G, v0) and an associated truncated tree

Truncd(T ), see Figures 4.4 and 4.5 on page 76.

4.1.4 Results

In this section, we present and prove the two main results about Nash

equilibria in multiplayer quantitative reachability games. On one hand,

we state that there always exists a finite-memory Nash equilibrium in

such games (Theorem 4.1.5). On the other hand, we show that, given a

Nash equilibrium, there exists a finite-memory Nash equilibrium of the

same type (Theorem 4.1.12).

Existence of a Finite-Memory Nash Equilibrium

In this section, we show the existence of a finite-memory Nash equilib-

rium in multiplayer quantitative reachability games, and then positively

solve Problem 1 for Nash equilibria.



4.1 — Quantitative Reachability Objectives 67

Theorem 4.1.5. In every initialised multiplayer quantitative reachability

game, there exists a finite-memory Nash equilibrium.

The proof of this theorem is based on the following ideas. Given a

quantitative reachability game (G, v0) played on a finite graph G, we un-

ravel the graph from v0, as in Section 4.1.3, to get an equivalent game T
played on the infinite tree T . By Kuhn’s theorem (Corollary 2.3.23),

there exists a Nash equilibrium in the game Truncd(T ) played on the fi-

nite tree Truncd(T ), for any depth d. By choosing an adequate depth d,

Proposition 4.1.6 enables to extend this Nash equilibrium to a Nash equi-

librium in T , and thus in G. Let us detail these ideas.

Proposition 4.1.6 states that it is possible to extend a Nash equilib-

rium in Truncd(T ) to a Nash equilibrium in the game T , if depth d is

equal to (|Π|+1) ·2 · |V |. We then obtain Theorem 4.1.5 as a consequence

of Corollary 2.3.23 and Proposition 4.1.6.

Proposition 4.1.6. Let (G, v0) be a multiplayer quantitative reachability

game and T be the corresponding game played on the unravelling of G

from v0. If there exists a Nash equilibrium in the game Truncd(T ) where

d = (|Π|+ 1) · 2 · |V |, then there exists a finite-memory Nash equilibrium

in the game T .

The proof of Proposition 4.1.6 roughly works as follows. Let (σi)i∈Π

be a Nash equilibrium in Truncd(T ). A well-chosen prefix αβ, where β can

be repeated (as a cycle), is first extracted from the outcome ρ of (σi)i∈Π.

The outcome of the required Nash equilibrium (τi)i∈Π in T will be equal

to αβω. As soon as a player deviates from this play, all the other players

form a coalition to punish him in a way that this deviation is not prof-

itable for him. These ideas are detailed in Lemmas 4.1.7 and 4.1.8. One

can see Lemma 4.1.7 as a technical result used to prove Lemma 4.1.8,

which is the main ingredient to show Proposition 4.1.6. The proof of

Lemma 4.1.7 relies on the memoryless determinacy of zero-sum qual-

itative reachability games (Theorem 2.2.15). More precisely, given a

multiplayer quantitative reachability game G = (Π,A, (Ri)i∈Π), we con-

sider the (zero-sum qualitative) reachability game Gj = (Aj ,Rj), where

Aj = (V, (Vj , V \ Vj), E), and player j plays in order to reach his goal
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set Rj , against the coalition of all other players that wants to prevent

him from reaching his goal set. Player j plays on the vertices from Vj
and the coalition on V \ Vj .

Lemma 4.1.7. Let G = (Π,A, (Ri)i∈Π) be a multiplayer quantitative

reachability game, and T be the corresponding game played on the unrav-

elling of G from a vertex v0. For any depth d ∈ N, let (σi)i∈Π be a Nash

equilibrium in Truncd(T ), and ρ the (finite) outcome of (σi)i∈Π. Assume

that ρ has a prefix αβγ, where α, β, γ ∈ V +, such that

Visit(α) = Visit(αβγ)

Last(α) = Last(αβ)

|αβ| ≤ l · |V |
|αβγ| = (l + 1) · |V |

for some l ≥ 1.

Let j ∈ Π be such that α does not visit Rj, and let us consider the zero-

sum qualitative reachability game Gj = (Aj ,Rj). Then for all histories hv

of (G, v0) (with v ∈ V ) consistent with σ−j and such that |hv| ≤ |αβ|, the

coalition of the players i 6= j wins the game Gj from v.

Condition Visit(α) = Visit(αβγ) means that if Ri is visited by αβγ for

any i ∈ Π, then it has already been visited by α. Condition Last(α) =

Last(αβ) means that β can be repeated (as a cycle). The play ρ of

Lemma 4.1.7 is illustrated in Figure 4.3 (in the proof of Proposition 4.1.6,

on page 75).

Lemma 4.1.7 says in particular that the players i 6= j can play together

to prevent player j from reaching his goal set Rj , from any vertex of the

history αβ (as αβ is consistent with σ−j).

Proof of Lemma 4.1.7. Let us assume that the hypotheses of the lemma

are fulfilled. By contradiction suppose that player j wins the game Gj

from v. By Theorem 2.2.15, player j has a memoryless winning strat-

egy µvj which enables him to reach his goal set Rj within at most |V | − 1

edges from v. We show that µvj leads to a profitable deviation for player j

w.r.t. (σi)i∈Π in the game Truncd(T ), which is impossible by hypothesis.
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Let ρ′ be a play in Truncd(T ) such that hv is a prefix of ρ′, and

from hv, player j plays according to the strategy µvj and each other

player i 6= j continues to play according to σi. As the play ρ′ is consistent

with the memoryless winning strategy µvj from hv, it visits Rj , and so,

Costj(ρ
′) ≤ |hv|+ |V |
≤ |αβ|+ |V |
≤ l · |V |+ |V | = (l + 1) · |V | = |αβγ| .

We consider the following two cases. If Costj(ρ) = +∞ (i.e. ρ does

not visit Rj), we have

Costj(ρ
′) < Costj(ρ) = +∞.

On the contrary, if Costj(ρ) < +∞ (i.e. ρ visits Rj , but after the pre-

fix αβγ by hypothesis), then we have

Costj(ρ
′) < Costj(ρ)

as Costj(ρ) > (l + 1) · |V |.
Since ρ′ is consistent with σ−j , the strategy of player j induced by

the play ρ′ is a profitable deviation for player j w.r.t. (σi)i∈Π, which is a

contradiction.

Now that we have proved Lemma 4.1.7, we use it in order to obtain

Lemma 4.1.8, which states that one can define a Nash equilibrium (τi)i∈Π

in the game T , based on the Nash equilibrium (σi)i∈Π given in some

game Truncd(T ).

Lemma 4.1.8. Let G = (Π,A, (Ri)i∈Π) be a multiplayer quantitative

reachability game, and T be the corresponding game played on the un-

ravelling of G from a vertex v0. For any depth d ∈ N, let (σi)i∈Π be a

Nash equilibrium in Truncd(T ), and αβγ be a prefix of ρ = 〈(σi)i∈Π〉v0

as defined in Lemma 4.1.7. Then there exists a Nash equilibrium (τi)i∈Π

in the game T . Moreover, (τi)i∈Π is finite-memory, and Type((τi)i∈Π) =

Visit(α).
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Proof. Let us assume that the hypotheses of the lemma are fulfilled, and

let us set Π = {1, . . . , n}. As α and β end in the same vertex, we can

consider the infinite play αβω in the game T . Without loss of generality

we can order the players i ∈ Π so that

∀i ≤ k Costi(αβ
ω) < +∞ (α visits Ri)

∀i > k Costi(αβ
ω) = +∞ (α does not visit Ri)

where 0 ≤ k ≤ n. In the second case, notice that ρ could visit Ri (but

after the prefix αβγ).

The Nash equilibrium (τi)i∈Π required by Lemma 4.1.8 is intuitively

defined as follows. First, the outcome of (τi)i∈Π is exactly αβω. Secondly,

the first player j who deviates from αβω is punished by the coalition of

the other players in the following way. If j ≤ k and the deviation oc-

curs in the tree Truncd(T ), then the coalition plays according to σ−j in

this tree. It prevents player j from reaching his goal set Rj faster than

in αβω. And if j > k, the coalition wins the zero-sum qualitative reach-

ability game Gj from the vertex v where player j has deviated from αβω

(see Lemma 4.1.7), then the coalition plays according to its memoryless

winning strategy µv{j (given by Theorem 2.2.15), so that player j does not

reach his goal set at all. We denote by µvi,j the strategy of player i 6= j

derived from µv{j .

We begin by defining a punishment function P : Hist→ Π∪{⊥}, such

that P (h) indicates the first player j who has deviated from αβω, with

respect to h. We write P (h) = ⊥ if no deviation has occurred. For v0,

we define P (v0) = ⊥, and for every history hv ∈ Hist (v ∈ V ) starting

in v0, we let:

P (hv) :=


⊥ if P (h) = ⊥ and hv < αβω,

i if P (h) = ⊥, hv 6< αβω and h ∈ Histi,

P (h) otherwise (P (h) 6= ⊥) .

The Nash equilibrium (τi)i∈Π is then defined as follows: for all i ∈ Π,
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let h be a history of (G, v0) ending in a vertex of Vi,

τi(h) :=



v if P (h) = ⊥ (h < αβω), s.t. hv < αβω,

σi(h) if P (h) 6= ⊥, i, P (h) ≤ k and |h| < d,

µvi,P (h)(v
′′) if P (h) 6= ⊥, i and P (h) > k,

s.t.
(
h = h′vv′h′′v′′ (v, v′, v′′ ∈ V ),

P (h′v) = ⊥, and P (h′vv′) = P (h)
)
,

arbitrary otherwise,

(4.2)

where arbitrary means that the next vertex is chosen arbitrarily (in a

memoryless way). Notice that in the third case, the strategy µvi,P (h) is

well-defined since we can apply Lemma 4.1.7 (P (h) > k) when consid-

ering the history h̄v such that h̄v ≤ h′v (see h′ above) and |h̄v| ≤ |αβ|.
Clearly, the outcome of (τi)i∈Π is the play αβω, and Type((τi)i∈Π) is equal

to Visit(α) (= Visit(αβ)).

We first show that the strategy profile (τi)i∈Π is a Nash equilibrium

in the game T . Let τ ′j be a strategy of player j. We show that this is not

a profitable deviation for player j w.r.t. (τi)i∈Π in T . We distinguish the

following two cases:

(i) j ≤ k (Costj(αβ
ω) < +∞, α visits Rj).

Suppose that τ ′j is a profitable deviation for player j w.r.t. (τi)i∈Π

in the game T . Let us set π = 〈(τi)i∈Π〉v0
and π′ = 〈τ ′j , τ−j〉v0

.

Then

Costj(π
′) < Costj(π).

On the other hand we know that

Costj(π) = Costj(ρ) ≤ |α|.

So, if we limit the play π′ in T to its prefix of length d (> |α|), we

get a play ρ′ in Truncd(T ) such that

Costj(ρ
′) = Costj(π

′) < Costj(ρ).

By Equation (4.2), the play ρ′ is consistent with (σi)i∈Π\{j}, and

so, the strategy τ ′j restricted to the tree Truncd(T ) is a profitable
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deviation for player j w.r.t. (σi)i∈Π in the game Truncd(T ). This

contradicts the fact that (σi)i∈Π is a Nash equilibrium in this game.

(ii) j > k (Costj(αβ
ω) = +∞, αβω does not visit Rj).

If player j deviates from αβω (with the strategy τ ′j), then by Equa-

tion (4.2), the other players combine against him and play according

to a memoryless strategy µv{j given by Lemma 4.1.7. This strategy

of the coalition keeps the play 〈τ ′j , τ−j〉v0
away from the set Rj ,

whatever player j does. Therefore, τ ′j is not a profitable deviation

for player j w.r.t. (τi)i∈Π in the game T .

We now prove that (τi)i∈Π is a finite-memory strategy profile. Ac-

cording to the definition of finite-memory strategy (see Section 2.1), we

have to prove that each relation ≈τi on Hist has finite index (recall that

h ≈τi h′ if h, h′ end in the same vertex, and τi(hδ) = τi(h
′δ) for all histo-

ries hδ, h′δ ∈ Histi). In this aim, we define for each player i an equivalence

relation ∼τi with finite index such that

∀h, h′ ∈ Hist, h ∼τi h′ ⇒ h ≈τi h′.

We first define an equivalence relation ∼P with finite index related

to the punishment function P . For all prefixes h, h′ of αβω, i.e. such

that no player has to be punished, this relation does not distinguish two

histories that are identical except for a certain number of cycles β. For

the other histories, it just remembers the first player who has deviated

from αβω. The definition of ∼P is as follows:

h ∼P h′ if h = αβlβ′, h′ = αβmβ′, β′ < β, l,m ≥ 0

hv ∼P h′v′ if h, h′ ∈ Histi, h, h
′ < αβω, but hv, h′v′ 6< αβω

hv ∼P hvδ if h < αβω, hv 6< αβω, δ ∈ V ∗.

The relation ∼P is an equivalence relation on Hist with finite index, and

h ∼P h′ implies that P (h) = P (h′).

We now turn to the definition of ∼τi . It is based on the definition

of τi (given in Equation (4.2)) and ∼P . To get an equivalence with

finite index, we proceed as follows. Recall that each strategy µvi,P (h) is
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memoryless and when a player plays arbitrarily, his strategy is also mem-

oryless. Furthermore notice that, in the definition of τi, the strategy σi
is only applied to histories h with length |h| < d. For histories h such

that τi(h) = v with hv < αβω, it is enough to remember information

with respect to αβ, as already done for ∼P . Therefore, for h, h′ ∈ Hist,

we define ∼τi in the following way:

h ∼τi h′ if

(
h ∼P h′ ∧ Last(h) = Last(h′) ∧(

P (h) = ⊥ ∨ P (h) = i

∨
(
P (h) 6= ⊥, i ∧ P (h) > k

)
∨
(
P (h) 6= ⊥, i ∧ P (h) ≤ k ∧ |h|, |h′| ≥ d

)))
.

Notice that this relation satisfies

h ∼τi h′ ⇒
(
τi(h) = τi(h

′) and Last(h) = Last(h′)
)

and has finite index. Moreover, if h ∼τi h′, then hδ ∼τi h′δ for all histo-

ries hδ, h′δ ∈ Histi, and so h ≈τi h′, and the relation ≈τi has finite index.

Remark 4.1.9. The Nash equilibrium given in the proof of Lemma 4.1.8

needs a memory (at most) exponential 5 in the size of the game.

We can now proceed to the proof of Proposition 4.1.6, which states

that if there exists a Nash equilibrium in the game Truncd(T ) where

d = (|Π|+ 1) · 2 · |V |, then there exists a finite-memory Nash equilibrium

in the game T .

Proof of Proposition 4.1.6. Let (G, v0) be a multiplayer quantitative

reachability game and T be the corresponding game played on the unrav-

elling of G from v0. Assume that there exists a Nash equilibrium (σi)i∈Π

5. Note that Corollary 4.4.15 improves this result: it states, in particular, that

in every initialised multiplayer quantitative reachability game, there exists a Nash

equilibrium with memory (at most) linear in the size of the game.
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in the game Truncd(T ), where d = (|Π|+1) ·2 · |V |. We set Π = {1, . . . , n}
and ρ = 〈(σi)i∈Π〉v0

.

To be able to use Lemma 4.1.8, we consider the prefix pq of ρ of

minimal length such that

∃ l ≥ 1 |p| = (l − 1) · |V |
|pq| = (l + 1) · |V |
Visit(p) = Visit(pq) . (4.3)

It means that |q| = 2 · |V | − 1 and no new goal set is visited by q. Let us

show that such a prefix pq exists. In the worst case, the play ρ visits the

goal set of a new player in each prefix of length i · 2 · |V |, for 1 ≤ i ≤ n,

i.e. |p| = n · 2 · |V |. But the length d of ρ is equal to (n + 1) · 2 · |V |
by hypothesis. As a consequence, such a prefix pq exists. Moreover, the

following statements are true.

• l ≤ 2 · n+ 1.

• If Visit(p)  Visit(ρ), then l < 2 · n+ 1.

The first statement results from the fact that |p| ≤ n · 2 · |V | (see above).

For the second statement, suppose that there exists i ∈ Visit(ρ)\Visit(p),

then ρ visit Ri after the prefix pq by Equation (4.3). And so, it can not

be the case that l = 2 · n+ 1.

Given the length of q, one vertex of V is visited at least twice by q.

More precisely, we can write

pq = αβγ with α, β, γ ∈ V +

Last(α) = Last(αβ)

|α| ≥ (l − 1) · |V |
|αβ| ≤ l · |V | .

In particular, |p| ≤ |α| (see Figure 4.3). Moreover, Visit(α) = Visit(αβγ),

and |αβγ| = (l + 1) · |V |.
As the hypotheses of Lemma 4.1.8 are verified, we can apply it in this

context to get a finite-memory Nash equilibrium (τi)i∈Π in the game T
with Type((τi)i∈Π) = Visit(α).
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Figure 4.3: Slicing of the play ρ in the tree Truncd(T ).

Remark 4.1.10. From the proof of Proposition 4.1.6, we can construct a

Nash equilibrium such that each player pays either an infinite cost, or a

cost bounded by |Π| · 2 · |V |.
Proposition 4.1.6 asserts that given a game G and the game Truncd(T )

played on the truncated tree of T of a well-chosen depth d, one can lift

any Nash equilibrium (σi)i∈Π of Truncd(T ) to a Nash equilibrium (τi)i∈Π

of G. The proof of Proposition 4.1.6 states that the type of (τi)i∈Π is

equal to Visit(α), which might be different from the type of (σi)i∈Π. We

here give an example that shows that it is in fact impossible to preserve

the type of the lifted Nash equilibrium (σi)i∈Π.

Example 4.1.11. Let us consider the two-player quantitative reachability

game G = ({1, 2},A, (R1,R2)), whose arena is depicted in Figure 4.4, and

where V1 = {A,C,E}, V2 = {B,D}, R1 = {C} and R2 = {E}. One can

show that (G, A) admits only Nash equilibria of type {2} or ∅. Indeed, on

one hand, there is no play of G where both goal sets are visited, and on

the other hand, any strategy profile such that its outcome visits R1 (i.e.,

is of the form A+BCω) is not a Nash equilibrium, because choosing the

edge (B,D) instead of (B,C) is clearly a profitable deviation for player 2.

We will now see that for each d ≥ 2, the game played on Truncd(T )

admits a Nash equilibrium of type {1}. From the above discussion, this

equilibrium can not be lifted to a Nash equilibrium of the same type in G.

A truncated tree Truncd(T ) is depicted in Figure 4.5. One can show that
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the strategy profile leading to the outcome Ad−1BC (depicted in bold in

the figure) is a Nash equilibrium in Truncd(T ) of type {1}. Following the

lines of the proof of Proposition 4.1.6, we see that this Nash equilibrium

is lifted to a Nash equilibrium of G with outcome Aω and type ∅.

A B C

D E

Figure 4.4: Game (G, A).

d

A

A B

A B C D

A B C D C E

A

A B

A B C D

AB CD C E

Figure 4.5: The truncated tree Truncd(T ).

Finite-Memory Nash Equilibria Preserving Types

In this section, we show that given a Nash equilibrium, we can con-

struct another Nash equilibrium with the same type such that all its

strategies are finite-memory. We then answer to Problem 2 for Nash

equilibria.

Theorem 4.1.12. Given a Nash equilibrium in an initialised multiplayer

quantitative reachability game, there exists a finite-memory Nash equilib-

rium of the same type.

The proof is based on two steps. Given a Nash equilibrium (σi)i∈Π

in a quantitative reachability game (G, v0), the first step constructs from

(σi)i∈Π another Nash equilibrium (τi)i∈Π with the same type, such that

the play 〈(τi)i∈Π〉v0
is of the form αβω with Visit(α) = Type((σi)i∈Π).
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This is possible thanks to Lemmas 4.1.14 and 4.1.15, by first elimi-

nating unnecessary cycles (see the formal definition below) from the

play 〈(σi)i∈Π〉v0 , and then locating a prefix αβ such that β can be in-

finitely repeated after α.

Definition 4.1.13. Given a play ρ = αβρ̃ in a quantitative reachability

game (G, v0) such that

α, β ∈ V +, ρ̃ ∈ V ω,
Last(α) = Last(αβ),

Visit(α) = Visit(αβ), and

Visit(α) 6= Visit(ρ),

if v = Last(α), then the cycle vβ is called an unnecessary cycle.

In other words, the cycle Last(α)β does not visit a new goal set, but

the play ρ visits a new one after this cycle, which means, in some sense,

that this cycle is “unnecessary”.

The second step of the proof of Theorem 4.1.12 transforms the Nash

equilibrium (τi)i∈Π given by the first step into a finite-memory one by

means of Lemma 4.1.8. For that purpose, we consider the strategy pro-

file (τi)i∈Π limited to the unravelling T of G truncated at a well-chosen

depth.

The next lemma indicates how to eliminate a cycle from the outcome

of a Nash equilibrium.

Lemma 4.1.14. Let (σi)i∈Π be a strategy profile in a multiplayer quanti-

tative reachability game (G, v0), and ρ = 〈(σi)i∈Π〉v0
its outcome. Suppose

that ρ = pqρ̃, where p, q ∈ V + and ρ̃ ∈ V ω, such that

Visit(p) = Visit(pq)

Last(p) = Last(pq).

We define a strategy profile (τi)i∈Π as follows:

τi(h) =

{
σi(h) if p 6≤ h,

σi(pqδ) if h = pδ and δ ∈ V ∗
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for all i ∈ Π and h ∈ Histi. We get the outcome 〈(τi)i∈Π〉v0
= pρ̃.

If there exists a profitable deviation τ ′j for player j w.r.t. (τi)i∈Π, then

there exists a profitable deviation σ′j for player j w.r.t. (σi)i∈Π.

Proof. Assume that the hypotheses of the lemma are fulfilled. We keep

the same notations, and we write π = 〈(τi)i∈Π〉v0
.

We observe that as ρ = pqρ̃, we have π = pρ̃ (see Figures 4.6 and 4.7).

It follows that

∀i ∈ Π, Costi(π) ≤ Costi(ρ). (4.4)

More precisely,

– if Costi(ρ) = +∞, then Costi(π) = +∞;

– if Costi(ρ) < +∞, then

– Costi(π) = Costi(ρ), if i ∈ Visit(p);

– Costi(π) = Costi(ρ)− (|q|+ 1), if i 6∈ Visit(p).

ρρ′1 ρ′2

p

q

ρ̃

Figure 4.6: Play ρ and deviations.

π

π′
1

π′
2

p

q

ρ̃

Figure 4.7: Play π and deviations.

Let τ ′j be a profitable deviation for player j w.r.t. (τi)i∈Π, and π′ be

the outcome of the strategy profile (τ ′j , τ−j) from v0. Then,

Costj(π
′) < Costj(π).

We show how to construct, from τ ′j , a profitable deviation σ′j for player j

w.r.t. (σi)i∈Π. Two cases occur.
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(i) The history p is not a prefix of π′ (like for the play π′1 in Figure 4.7).

We define σ′j := τ ′j and we denote by ρ′ the outcome of (σ′j , σ−j)

from v0. Given the definition of the strategy profile (τi)i∈Π, one

can verify that ρ′ = π′ (see the play ρ′1 in Figure 4.6). Thus,

Costj(ρ
′) = Costj(π

′) < Costj(π) ≤ Costj(ρ)

by Equation (4.4), which implies that σ′j is a profitable deviation

of player j w.r.t. (σi)i∈Π.

(ii) The history p is a prefix of π′ (like for the play π′2 in Figure 4.7).

We define for all histories h ∈ Histj :

σ′j(h) :=

{
σj(h) if pq 6≤ h,

τ ′j(pδ) if h = pqδ for δ ∈ V ∗.

Let us set ρ′ = 〈σ′j , σ−j〉v0
. As player j deviates after p with the

strategy τ ′j , one can prove that

π′ = pπ̃′ and ρ′ = pqπ̃′

by definition of (τi)i∈Π (see the play ρ′2 in Figure 4.6). Moreover,

as Costj(π
′) < Costj(π), it means that j ∈ Visit(π′) but j 6∈ Visit(p)

(as p is also a prefix of π). Since Visit(p) = Visit(pq), we have

Costj(π
′) + (|q|+ 1) = Costj(ρ

′).

Then, it holds that

– either Costj(ρ) = Costj(π) = +∞, and so, Costj(ρ
′) < Costj(ρ),

– or Costj(ρ) = Costj(π) + (|q|+ 1), and so, Costj(ρ
′) < Costj(ρ).

In both cases, it proves that the strategy σ′j is a profitable deviation

for player j w.r.t. (σi)i∈Π.

While Lemma 4.1.14 deals with elimination of unnecessary cycles,

Lemma 4.1.15 deals with repetition of a useful cycle.
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Lemma 4.1.15. Let (σi)i∈Π be a strategy profile in a multiplayer quan-

titative reachability game (G, v0), and ρ = 〈(σi)i∈Π〉v0
its outcome. We

assume that ρ = pqρ̃, where p, q ∈ V + and ρ̃ ∈ V ω, such that

Visit(p) = Visit(ρ)

Last(p) = Last(pq).

We define a strategy profile (τi)i∈Π as follows:

τi(h) =

{
σi(h) if p 6≤ h,

σi(pδ) if h = pqkδ, k ∈ N, δ ∈ V ∗ and q 6≤ δ

for all i ∈ Π and h ∈ Histi. We get the outcome 〈(τi)i∈Π〉v0
= pqω.

If there exists a profitable deviation τ ′j for player j w.r.t. (τi)i∈Π, then

there exists a profitable deviation σ′j for player j w.r.t. (σi)i∈Π.

Proof. Let us assume that the hypotheses of the lemma are satisfied. We

keep the same notations, and we write π = 〈(τi)i∈Π〉v0 . We have that

Costi(ρ) = Costi(π) for all i ∈ Π, since Visit(p) = Visit(ρ). One can prove

that π = pqω (see Figures 4.8 and 4.9).

p

q

ρ̃

ρ

Figure 4.8: Play ρ and its prefix pq.

p

q

π

q

q

q

Figure 4.9: Play π = pqω.

Let τ ′j be a profitable deviation for player j w.r.t. (τi)i∈Π, and π′

be the outcome of the strategy profile (τ ′j , τ−j) from v0. We show how
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to define a profitable deviation σ′j for player j w.r.t. (σi)i∈Π from the

deviation τ ′j . We distinguish the following two cases:

(i) The history pq is not a prefix of π′.

We define σ′j := τ ′j . As in the first case of the proof of Lemma 4.1.14,

we have Costj(ρ
′) < Costj(ρ), which implies that σ′j is a profitable

deviation of player j w.r.t. (σi)i∈Π.

(ii) The history pqk is a prefix of π′, for a certain k ≥ 1, with k being

maximal.

We define for all histories h ∈ Histj :

σ′j(h) :=

{
σj(h) if p 6≤ h,

τ ′j(pq
kδ) if h = pδ for δ ∈ V ∗.

Note that pqkδ is indeed a history of the game as Last(p) = Last(pq).

One can prove that

π′ = pqkπ̃′ and ρ′ = pπ̃′.

And then, from the point of view of costs, we have

Costj(ρ
′) < Costj(π

′) < yj = xj ,

which implies that the strategy σ′j is a profitable deviation for

player j w.r.t. (σi)i∈Π.

The next proposition achieves the first step of the proof of Theo-

rem 4.1.12 as mentioned at the beginning of Section 4.1.4. It shows that

one can construct from a Nash equilibrium another Nash equilibrium

with the same type and with an outcome of the form αβω. Its proof uses

Lemmas 4.1.14 and 4.1.15.

Proposition 4.1.16. Let (σi)i∈Π be a Nash equilibrium in a multiplayer

quantitative reachability game (G, v0). Then there exists a Nash equi-

librium (τi)i∈Π with the same type and such that 〈(τi)i∈Π〉v0 = αβω,

where Visit(α) = Type((σi)i∈Π) and |αβ| < (|Π|+ 1) · |V |.
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Proof. Let (σi)i∈Π be a Nash equilibrium in (G, v0) and let ρ be its out-

come in this game. Let us set Π = {1, . . . , n}, and assume, without loss

of generality, that the players are ordered in the following way:

Cost1(ρ) ≤ . . . ≤ Costk(ρ) < +∞
Costk+1(ρ) = . . . = Costn(ρ) = +∞

for a certain k such that 0 ≤ k ≤ n. We consider two cases:

(i) Cost1(ρ) ≥ |V |.

Then, there exists a prefix pq of ρ, with p, q ∈ V +, such that

|pq| < Cost1(ρ)

Visit(p) = Visit(pq) = ∅
Last(p) = Last(pq).

We define the strategy profile (τi)i∈Π as proposed in Lemma 4.1.14.

By this lemma, it is actually a Nash equilibrium in (G, v0). If we

write π = 〈(τi)i∈Π〉v0
, we have

ρ = pqρ̃ and π = pρ̃ for a certain ρ̃ ∈ V ω.

It follows that

∀ i ≤ k Costi(π) < Costi(ρ), and

∀ i > k Costi(π) = Costi(ρ) = +∞.

(ii) (Costl+1(ρ)− Costl(ρ)) ≥ |V | for 1 ≤ l ≤ k − 1.

Then, there exists a prefix pq of ρ, with p, q ∈ V +, such that

Costl(ρ) < |pq| < Costl+1(ρ)

Visit(p) = Visit(pq) = {1, . . . , l}
Last(p) = Last(pq).

We define the strategy profile (τi)i∈Π given in Lemma 4.1.14. It is

then a Nash equilibrium in (G, v0), and for π = 〈(τi)i∈Π〉v0 , we have

ρ = pqρ̃ and π = pρ̃ for a certain ρ̃ ∈ V ω.



4.1 — Quantitative Reachability Objectives 83

Hence, it holds that

Costi(π) = Costi(ρ) for i ≤ l ;
Costi(π) < Costi(ρ) for l < i ≤ k ;

Costi(π) = Costi(ρ) = +∞ for k < i ≤ n .

By applying finitely many times the two previous cases, we can assume,

without loss of generality, that (σi)i∈Π is a Nash equilibrium such that

Costi(ρ) < i · |V | for i ≤ k ;

Costi(ρ) = +∞ for i > k .

Let us go further. We can write ρ = αβρ̃ such that α, β ∈ V +, ρ̃ ∈ V ω,

and

Visit(α) = Visit(ρ)

Last(α) = Last(αβ)

|αβ| < (k + 1) · |V | ≤ (n+ 1) · |V |.

Indeed, the prefix of ρ of length
(
(k + 1) · |V |

)
visits each goal set Ri,

with i ≤ k, and after that, there remains enough vertices to observe a

cycle. Notice that Visit(α) = Visit(αβ) = Visit(ρ) (= Type((σi)i∈Π)).

If we define the strategy profile (τi)i∈Π like in Lemma 4.1.15, we

get a Nash equilibrium in (G, v0) with outcome αβω and the same type

as (σi)i∈Π.

We are now ready to prove Theorem 4.1.12.

Proof of Theorem 4.1.12. Let (G, v0) be a multiplayer quantitative reach-

ability game, and let (σi)i∈Π be a Nash equilibrium in this game. The

first step consists in constructing a Nash equilibrium as in Proposi-

tion 4.1.16. Let us denote it again by (σi)i∈Π, and set ρ := 〈(σi)i∈Π〉v0
.

By this proposition, we have that ρ = αβω, Visit(α) = Type((σi)i∈Π),

and |αβ| < (|Π| + 1) · |V |. The strategy profile (σi)i∈Π is also a Nash

equilibrium in the corresponding game T played on the unravelling T

of G from v0.
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For the second step, we consider Truncd(T ), the truncated tree of T

of depth d = (|Π| + 2) · |V |. It is clear that the strategy profile (σi)i∈Π

limited to this tree is also a Nash equilibrium of Truncd(T ).

We know that |αβ| < (|Π| + 1) · |V |, and so, we set γ ∈ V + such

that αβγ is a prefix of ρ and |αβγ| = (|Π|+2) · |V |. Furthermore, we have

Last(α) = Last(αβ) and Visit(α) = Visit(αβγ) (since Visit(α) = Type(ρ)).

Then, this prefix αβγ satisfies the properties described in Lemma 4.1.7

(with l = |Π|+1). By Lemma 4.1.8, we conclude that there exists a finite-

memory Nash equilibrium (τi)i∈Π such that Type((τi)i∈Π) = Visit(α),

that is, with the same type as the initial Nash equilibrium (σi)i∈Π.

4.2 Quantitative Reachability or Safety Ob-

jectives

In this section, we extend our result of existence of finite-memory

Nash equilibria in quantitative reachability games (Theorem 4.1.5) to

multiplayer quantitative reachability/safety games.

These games are cost games where some players have quantitative

reachability objectives, whereas others have quantitative safety objectives.

As previously, the players with reachability objectives want to reach their

goal set as soon as possible. The players with safety objectives want to

avoid 6 their bad set or, if impossible, delay its visit as long as possible.

Let us make that precise through the following definition.

Definition 4.2.1. A multiplayer quantitative reachability/safety game

is a multiplayer cost game G = (Π,A, (Costi)i∈Π) such that the set Π of

players into Πr and Πs, the sets of players with reachability and safety

objectives respectively, and for all i ∈ Πr, Costi = RPMin for a given goal

set Ri ⊆ V , and the shared price function φ : E → R with φ(e) = 1 for

all e ∈ E, while for all i ∈ Πs, Costi is defined, for a given bad set Si ⊆ V ,

6. Note that in Definition 2.2.8, a play satisfies a safety winning condition if it

stays forever in a given goal set S ⊆ V , which is equivalent to avoid the bad set V \ S.
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as:

Costi(ρ) =

{
−l if l is the least index such that ρl ∈ Si,

−∞ otherwise,

for any play ρ.

Abusively, such a game is written G = (Π,Πr,Πs,A, (Ri)i∈Πr , (Si)i∈Πs).

As before, the aim of each player i is to minimise his cost, i.e. reach

his goal set Ri as soon as possible for i ∈ Πr, or delay the visit of Si as

long as possible for i ∈ Πs. The main result of this section is the following

theorem which solves Problem 1 for Nash equilibria in this framework.

Theorem 4.2.2. In every initialised multiplayer quantitative reachabil-

ity/safety game, there exists a finite-memory Nash equilibrium.

In order to prove Theorem 4.2.2, we have to review the results of

Section 4.1.4 for quantitative reachability games. In the context of quan-

titative reachability/safety games, the notation Visit(ρ) refers to the set

of players i ∈ Πr and j ∈ Πs such that ρ visits Ri and Sj . Let us first

notice that Lemma 4.1.7 remains true in this framework when player j

belongs to Πr. As a reminder, this lemma roughly says that, given a

Nash equilibrium in Truncd(T ), if its outcome has a prefix that fulfils

some conditions, then the coalition of the players i 6= j wins the game Gj

from any vertex of this prefix.

Furthermore, Lemma 4.1.8 remains true, however we have to slightly

adapt its proof. Let us remind this lemma and prove it again in the

current context.

Lemma 4.2.3. Let G = (Π,Πr,Πs,A, (Ri)i∈Πr , (Si)i∈Πs) be a multi-

player quantitative reachability/safety game, and T be the correspond-

ing game played on the unravelling of G from a vertex v0. For any

depth d ∈ N, let (σi)i∈Π be a Nash equilibrium in Truncd(T ), and αβγ be
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a prefix of ρ = 〈(σi)i∈Π〉v0
, such that α, β, γ ∈ V +, and

Visit(α) = Visit(αβγ)

Last(α) = Last(αβ)

|αβ| ≤ l · |V |
|αβγ| = (l + 1) · |V |

for some l ≥ 1.

Then there exists a Nash equilibrium (τi)i∈Π in the game T . More-

over, (τi)i∈Π is finite-memory, and Type((τi)i∈Π) = Visit(α).

Proof. As in the proof of Lemma 4.1.8, we denote by µv{j the memoryless

winning strategy of the coalition Π \ {j} given by Lemma 4.1.7 (when its

hypotheses are satisfied) and Theorem 2.2.15, and we write µvi,j for the

strategy of player i 6= j derived from µv{j .

Moreover, we denote by Πf
r (resp. Πf

s ) the subset of players i ∈ Πr

(resp. i ∈ Πs) such that α visits Ri (resp. Si) and by Π∞r (resp. Π∞s ) the

set Πr \Πf
r (resp. Πs \Πf

s ).

The punishment function P is defined exactly as in the proof of

Lemma 4.1.8. We remind that for v0, we define P (v0) = ⊥, and for

every history hv ∈ Hist (v ∈ V ) starting in v0 , we let:

P (hv) :=


⊥ if P (h) = ⊥ and hv < αβω,

i if P (h) = ⊥, hv 6< αβω and h ∈ Histi,

P (h) otherwise (P (h) 6= ⊥) .

The difference with the proof of Lemma 4.1.8 arises in the definition

of the Nash equilibrium. A Nash equilibrium in this context needs to

incorporate an adequate punishment for the players with safety objec-

tives. More precisely, in order to dissuade a player j ∈ Πf
s from devi-

ating, the other players punish him by playing the strategies (σi)i∈Π\{j}

in Truncd(T ). Notice that a player j ∈ Π∞s has no incentive to deviate.
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Formally, we define the Nash equilibrium (τi)i∈Π as follows. For h ∈ Histi,

τi(h) :=



v if P (h) = ⊥ (h < αβω); such that hv < αβω,

σi(h) if P (h) 6= ⊥, i, P (h) ∈ Πf
r ∪Πf

s and |h| < d,

µvi,P (h)(v
′′) if P (h) 6= ⊥, i and P (h) ∈ Π∞r ,

s.t.
(
h = h′vv′h′′v′′ (v, v′, v′′ ∈ V ),

P (h′v) = ⊥, and P (h′vv′) = P (h)
)
,

arbitrary otherwise,

where arbitrary means that the next vertex is chosen arbitrarily (in

a memoryless way). Clearly, the outcome of (τi)i∈Π is the play αβω,

and Type((τi)i∈Π) is equal to Visit(α) (= Visit(αβ)).

It remains to prove that (τi)i∈Π is a finite-memory Nash equilibrium

in the game T . In order to do so, we prove that none of the players

has a profitable deviation. For players with reachability objectives, the

arguments are exactly the same as the ones provided in the proof of

Lemma 4.1.8. Let us now consider players with safety objectives. In

the case where j ∈ Π∞s , player j has clearly no incentive to deviate. In

the case where j ∈ Πf
s , player j has no incentive to deviate after the

prefix α if he wants to decrease his cost (recall that α visits Sj). Thus,

we assume that the strategy τ ′j causes a deviation from a vertex visited

in α. By definition of (τi)i∈Π, the other players first play according to σ−j
in Truncd(T ), and then in an arbitrary way.

Suppose that τ ′j is a profitable deviation for player j w.r.t. (τi)i∈Π in

the game T . Let us set π = 〈(τi)i∈Π〉v0
and π′ = 〈τ ′j , τ−j〉v0

. Then,

Costj(π
′) < Costj(π).

On the other hand, we know that

Costj(π) = Costj(ρ) ≤ |α|.

So, if we limit the play π′ in T to its prefix of length d, we get a play ρ′

in Truncd(T ) such that

Costj(ρ
′) ≤ Costj(π

′) < Costj(ρ).
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Notice that we do not necessarily have that Costj(ρ
′) = Costj(π

′) (as in

the proof of Lemma 4.1.8) since the bad set Sj can be visited by π′ and

not by ρ′ (if it is visited after depth d). As the play ρ′ is consistent with

the strategies σ−j by definition of (τi)i∈Π, the strategy τ ′j restricted to

the tree Truncd(T ) is a profitable deviation for player j w.r.t. (σi)i∈Π in

the game Truncd(T ). This is impossible. Moreover, as done in the proof

of Lemma 4.1.8, (τi)i∈Π is a finite-memory strategy profile.

Thanks to Lemma 4.2.3, Proposition 4.1.6 ensures that the Nash equi-

librium in Truncd(T ) provided by Kuhn’s theorem (Corollary 2.3.23) can

be lifted to T . This proves Theorem 4.2.2.

4.3 General Quantitative Reachability Ob-

jectives

In this section, we come back to a pure reachability framework and we

extend our model in the following way: we assume that edges are labelled

with tuples of positive prices (one price for each player). Here we do not

only count the number of edges to reach the goal of a player, but we sum

up his prices along the path until his goal is reached. His aim is still to

minimise his global cost for a play. We generalise Definition 4.1.1, and

extend Theorem 4.1.5 to these games.

Definition 4.3.1. A multiplayer quantitative reachability game with tu-

ples of prices on edges is a multiplayer cost game G = (Π,A, (Costi)i∈Π)

such that for any i ∈ Π, Costi = RPMin for a given goal set Ri ⊆ V , and

a given price function φi : E → R>0.

Abusively, such a game is denoted by G = (Π,A, (φi)i∈Π, (Ri)i∈Π).

Then, in such a game, the cost function Costi of player i is defined,

for any play ρ = ρ0ρ1 . . ., as 7:

Costi(ρ) =

{∑n
j=1 φi(ρj−1, ρj) if n is the least index s.t. ρn ∈ Ri,

+∞ otherwise.

7. See Definition 2.3.3.
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We also positively solve Problem 1 for Nash equilibria in this context.

Theorem 4.3.2. In every initialised multiplayer quantitative reachability

game with tuples of prices on edges, there exists a finite-memory Nash

equilibrium.

To prove Theorem 4.3.2, we follow the same scheme as in Section 4.1.4

for quantitative reachability games. In particular, we rely on Kuhn’s the-

orem (Corollary 2.3.23) and need to prove a counterpart of Lemma 4.1.7,

Lemma 4.1.8 and Proposition 4.1.6 in this framework.

Let us first introduce some notations that will be useful in this context.

We define cmin := mini∈Π mine∈E φi(e), cmax := maxi∈Π maxe∈E φi(e)

(resp. the minimal and maximal price appearing in the graph), and

K :=
⌈
cmax

cmin

⌉
. It is clear that cmin, cmax > 0 (since φi : E → R>0 for

all i ∈ Π), and K ≥ 1. Furthermore, for any play ρ = ρ0ρ1 . . . of G and

any player i ∈ Π, we define Indexi(ρ) as the least index l such that ρl ∈ Ri
if it exists, or −1 if not 8.

The counterpart of Lemma 4.1.7 is the following one, taking into

account the constant K defined before (see the length of αβγ).

Lemma 4.3.3. Let G = (Π,A, (φi)i∈Π, (Ri)i∈Π) be a multiplayer quan-

titative reachability game with tuples of prices on edges, and T be the

corresponding game played on the unravelling of G from a vertex v0.

For any depth d ∈ N, let (σi)i∈Π be a Nash equilibrium in Truncd(T ),

and ρ the (finite) outcome of (σi)i∈Π. Assume that ρ has a prefix αβγ,

where α, β, γ ∈ V +, such that

Visit(α) = Visit(αβγ)

Last(α) = Last(αβ)

|αβ| ≤ l · |V |
|αβγ| = (l + K) · |V |

for some l ≥ 1.

Let j ∈ Π be such that α does not visit Rj, and let us consider the zero-

sum qualitative reachability game Gj = (Aj ,Rj). Then for all histories hv

8. We are conscious that it is counter-intuitive to use the particular value −1, but

it is helpful in the proofs of Section 5.2.
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of (G, v0) (with v ∈ V ) consistent with σ−j and such that |hv| ≤ |αβ|, the

coalition of the players i 6= j wins the game Gj from v.

Sketch of proof. As for the proof of Lemma 4.1.7, we proceed by contra-

diction, and define a play ρ′ in the very same way. It follows that

Indexj(ρ
′) ≤ |hv|+ |V | (by Theorem 2.2.15)

≤ (l + 1) · |V | (by hypothesis)

≤ (l + K) · |V | (as K ≥ 1)

≤ d (as αβγ ≤ ρ).

Then, Costj(ρ
′) < +∞. If Costj(ρ) = +∞, then Costj(ρ

′) < Costj(ρ).

If Costj(ρ) < +∞, we write, as before, φj(hv) for the sum of the

prices of player j along the prefix hv. We have the following inequalities

(see Figure 4.10):

Costj(ρ
′) ≤ φj(hv) + cmax · |V |

Costj(ρ) > φj(hv) + cmin · K · |V | (as Indexj(ρ) > (l + K) · |V |)

≥ φj(hv) + cmin ·
cmax

cmin
· |V | (by definition of K)

= φj(hv) + cmax · |V | .

Then, we have Costj(ρ
′) < Costj(ρ).

In both cases, since ρ′ is consistent with σ−j , the strategy of player j

induced by the play ρ′ is a profitable deviation for player j w.r.t. (σi)i∈Π.

This contradicts the fact that (σi)i∈Π is a Nash equilibrium in the game

Truncd(T ).

The following lemma is the counterpart of Lemma 4.1.8.

Lemma 4.3.4. Let G = (Π,A, (φi)i∈Π, (Ri)i∈Π) be a multiplayer quan-

titative reachability game with tuples of prices on edges, and T be the

corresponding game played on the unravelling of G from a vertex v0.

For any depth d ∈ N, let (σi)i∈Π be a Nash equilibrium in Truncd(T ),

and αβγ be a prefix of ρ = 〈(σi)i∈Π〉v0 as defined in Lemma 4.3.3 where

|αβγ| = (l + K) · |V | for some l ≥ 1 such that l ≤ d
|V |·K . Then there

exists a Nash equilibrium (τi)i∈Π in the game T . Moreover, (τi)i∈Π is

finite-memory, and Type((τi)i∈Π) = Visit(α).
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K·|V |

(l−1)·|V |

l·|V |

(l+K)·|V |

d

h

v≤|V |

Rj

Rj

ρρ′

Figure 4.10: Plays ρ and ρ′ with their common prefix hv.

Proof. We prove this result in the very same way as Lemma 4.1.8. We

define (τi)i∈Π exactly as in the proof of this lemma, and we show that it

is a Nash equilibrium in T . The only difference lies in the case 9 j ≤ k.

We suppose that τ ′j is a profitable deviation for player j w.r.t. (τi)i∈Π

in the game T . So we have Costj(π
′) < Costj(π), where π = 〈(τi)i∈Π〉v0

and π′ = 〈τ ′j , τ−j〉v0 . As Indexj(π) ≤ |α|, we know that Costj(π) ≤
|α| · cmax. It follows that Costj(π

′) < |α| · cmax and

Indexj(π
′) < |α| · cmax

cmin

≤ l · |V | · K
≤ d (by hypothesis).

The first inequality can be justified as follows. For a contradiction, let us

assume that Indexj(π
′) ≥ |α|· cmax

cmin
. It follows that Costj(π

′) ≥ cmin·|α|· cmax

cmin
,

this contradicts the fact that Costj(π
′) < |α| · cmax.

As in the proof of Lemma 4.1.8, we limit the play π′ in T to its prefix

of length d and get a profitable deviation for player j w.r.t. (σi)i∈Π in the

9. Indeed, when j > k, i.e. when player j has not reached his goal set along αβω ,

the coalition punishes him in the exact same way as Lemma 4.1.8 by preventing him

from visiting his goal set.
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game Truncd(T ), contradicting the fact that (σi)i∈Π is a Nash equilibrium

in Truncd(T ).

Moreover, as done in the proof of Lemma 4.1.8, (τi)i∈Π is a finite-

memory strategy profile.

As a consequence of the two previous lemmas, Proposition 4.1.6 re-

mains true in this context, we only have to adjust the depth d of the

finite tree.

Proposition 4.3.5. Let (G, v0) be a multiplayer quantitative reachability

game with tuples of prices on edges, and T be the corresponding game

played on the unravelling of G from v0. If there exists a Nash equilibrium

in the game Truncd(T ) where d = max{(|Π|+ 1) · (K + 1) · |V |, (|Π| · (K +

1) + 1) · |V | · K}, then there exists a finite-memory Nash equilibrium in

the game T .

Proof. The proof is similar to the proof of Proposition 4.1.6. Let (σi)i∈Π

be a Nash equilibrium in the game Truncd(T ) and ρ its outcome. We

consider the prefix pq of ρ of minimal length such that

∃ l ≥ 1 |p| = (l − 1) · |V |
|pq| = (l + K) · |V |
Visit(p) = Visit(pq).

In the worst case, the play ρ visits the goal set of a new player in each

prefix of length i · (K + 1) · |V |, for 1 ≤ i ≤ |Π|, i.e. |p| = |Π| · (K + 1) · |V |.
So we know that l ≤ |Π| ·(K+1)+1 and pq exists as a prefix of ρ, because

the length d of ρ is greater or equal to (|Π|+1) ·(K+1) · |V | by hypothesis.

Given the length of q (K ≥ 1), one vertex of V is visited at least twice

by q. More precisely, we can write

pq = αβγ with Last(α) = Last(αβ)

|α| ≥ (l − 1) · |V |
|αβ| ≤ l · |V |.

We have Visit(α) = Visit(αβγ), and |αβγ| = (l + K) · |V |.
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Moreover, the following inequality holds:

d ≥ (|Π| · (K + 1) + 1) · |V | · K ≥ l · |V | · K and so, l ≤ d

|V | · K
.

Then, we can apply Lemma 4.3.4 and get a finite-memory Nash equilib-

rium (τi)i∈Π in the game T such that Type((τi)i∈Π) = Visit(α).

Thanks to Kuhn’s theorem (Corollary 2.3.23) and Proposition 4.3.5,

one can easily deduce Theorem 4.3.2.

Remark 4.3.6. Let us comment on the depth d that is chosen in Proposi-

tion 4.3.5. It is defined as the maximum between d1 := (|Π|+1)·(K+1)·|V |
and d2 := (|Π| · (K + 1) + 1) · |V | · K. One can easily prove that d1 < d2

if and only if K2 > |Π|+1
|Π| .

We now investigate an alternative method to handle simple price func-

tions. More precisely, we only consider price functions (φi)i∈Π such that

for all i, j ∈ Π, we have that φi = φj and φi : E → N0. In other words, it

means that there is a unique non-zero natural price on every edge. Later

on we are going to compare the depths of the finite trees obtained by the

two methods.

In the case of these simple price functions, we can directly deduce

Theorem 4.3.2 by replacing any edge of price c by a path of length c

composed of c new edges (of price 1) and then applying Theorem 4.1.5

on this new game. If we write A′ = (V ′, (Vi)i∈Π, E
′) the new arena

obtained by adding new vertices and edges when necessary, it holds that:

|V ′| ≤ |V |+ (cmax − 1) · |E|
≤ |V |+ (cmax − 1) · |V |2, and

|E′| ≤ cmax · |E| .

If we apply Proposition 4.1.6, the depth d′ of the finite tree that is con-

sidered satisfies:

d′ = (|Π|+ 1) · 2 · |V ′|
≤ (|Π|+ 1) · 2 · (|V |+ (cmax − 1) · |E|)
≤ (|Π|+ 1) · 2 ·

(
|V |+ (cmax − 1) · |V |2

)
.
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Whereas if we apply Proposition 4.3.5 directly on the initial game G,

we have the following equality:

d = max{(|Π|+ 1) · (K + 1) · |V |, (|Π| · (K + 1) + 1) · |V | · K} .

Let us first notice that if all the edges of G are labelled with the same

price (i.e., cmax = cmin and K = 1), then

d′ = (|Π|+ 1) · 2 · (|V |+ (cmax − 1) · |E|), and

d = (|Π|+ 1) · 2 · |V | .

And so,

if cmax = cmin = 1, then d′ = d = (|Π|+ 1) · 2 · |V |, and

if cmax = cmin > 1, then d′ > d .

When K > 1, the comparison between d and d′ depends on the values

of many parameters of the game. For example, if the graph of the game

has five vertices, three edges of price 1 and one edge of price 100, then it

is more interesting to study the game played on A′ and use techniques of

the proof of Theorem 4.1.5 to construct the Nash equilibrium, because

in this case, d′ = (Π + 1) · 2 · 104 and d = (|Π| · 101 + 1) · 5 · 101, and so

d >> d′.

Remark 4.3.7. The problem of deciding, given an initialised multiplayer

quantitative reachability game with tuples of prices on edges, and a tuple

of thresholds (ti)i∈Π ∈ (R∪{+∞})|Π|, whether there exists a Nash equi-

librium with cost profile at most (ti)i∈Π, is NP-complete (see [KLŠT12]).

Let us notice that in [KLŠT12], null prices on the edges are allowed.

However, even for multiplayer quantitative reachability games (without

tuples of prices on edges), this decision problem is NP-hard (it can be

deduced from the proof of [Umm05, Proposition 6.29], see also [CMJ04]).

4.4 Various Objectives

In this section, we show the existence of Nash equilibria in a large

class of multiplayer cost games. Section 4.4.1 presents and proves the

results we obtained, and Section 4.4.2 exhibits some particular classes of

cost games in which our results apply.
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4.4.1 Results

We here define a large class of cost games for which Problems 4 and 5

can be answered positively (see Theorem 4.4.14). For the sake of clarity,

we first show three propositions (Propositions 4.4.6, 4.4.11 and 4.4.12),

which state the existence of Nash equilibria in different subclasses of cost

games.

The general philosophy of our work is as follows: we try to derive

existence of simple Nash equilibria in multiplayer cost games (and char-

acterisation of their complexity) through determinacy results (and char-

acterisation of the optimal strategies) of several well-chosen Min-Max

cost games derived from the multiplayer game. These ideas were already

successfully exploited in the qualitative framework [GU08], and in the

case of limit-average objectives [TR98].

To describe the interesting class of cost games where Nash equilib-

ria exist, we need the concepts of prefix-independent, prefix-linear and

coalition-determined cost functions.

Definition 4.4.1. Given a multiplayer cost game G = (Π,A, (Costi)i∈Π),

a cost function Costi is prefix-independent in G if, for every vertex v ∈ V ,

every history hv ∈ Hist, and every play ρ ∈ Plays with First(ρ) = v, we

have:

Costi(hρ) = Costi(ρ) .

Note that usually the definition of prefix-independent does not depend

on the selected game.

For example, the cost functions APMin and PRAvgMin of Defini-

tion 2.3.3 are prefix-independent in any cost game (see the proof of

Corollary 4.4.15). As a counterexample, let us consider the cost func-

tion RPMin in the two-player cost game of Example 2.3.15 on page 48,

with goal set R = {C}. While choosing v = B, h = A and ρ = (BC)ω,

we have that RPMin(hρ) = RPMin(A(BC)ω) = 2, whereas RPMin(ρ) =

RPMin((BC)ω) = 1.

Definition 4.4.2. Given a multiplayer cost game G = (Π,A, (Costi)i∈Π),

a cost function Costi is prefix-linear in G if, for every vertex v ∈ V and



96 Chapter 4 — Nash Equilibrium

history hv ∈ Hist, there exists a ∈ R and b ∈ R+ such that, for every play

ρ ∈ Plays with First(ρ) = v, we have:

Costi(hρ) = a+ b · Costi(ρ) .

In particular, prefix-independent cost functions are special cases of

prefix-linear cost functions (take a = 0 and b = 1 for all histories hv).

Let us show an example of a one-player cost game where the cost function

of the player is not prefix-linear.

Example 4.4.3. Multiplayer cost games allow to encode energy games. In

our framework, where each player aims at minimising his cost, an energy

objective [BFL+08] (with threshold T ∈ R and price function φ : E → R)

could be encoded as follows:

Cost(ρ) =

{
supn≥0 φ(ρ≤n) if supn≥0 φ(ρ≤n) ≤ T
+∞ otherwise,

with φ(ρ≤n) =
∑n
i=1 φ(ρi−1, ρi).

A B

1 -11

-1

Figure 4.11: A game where the cost function which is not prefix-linear.

Let us consider the one-player cost game with an energy objective

played on the arena depicted in Figure 4.11. We show that the cost

function Cost, with threshold T = 2 and price function as in the figure,

is not prefix-linear in this game. For this, we exhibit a history hv ∈ Hist

such that for all a, b ∈ R there exists a play ρ ∈ Plays with First(ρ) = v,

such that Cost(hρ) 6= a+b ·Cost(ρ). We in fact give a play ρ independent

of a and b. Let hv be the history AA and ρ be the play A(AB)ω. We

have that Cost(ρ) = 2 and Cost(hρ) = Cost(AA(AB)ω) = +∞, since

supn≥0 φ((hρ)≤n) = 3, which is above the threshold T = 2. It is thus

impossible to find a, b ∈ R such that:

+∞ = Cost(hρ) = a+ b · Cost(ρ) = a+ b · 2.
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Notice that if a could be infinite, there would still be a problem. In-

deed, let us fix a = +∞ and ρ = (AB)ω. Then, we have that Cost(ρ) = 1,

and Cost(hρ) = Cost(A(AB)ω) = 2 6= +∞.

Let us now define the concept of coalition-determined cost function.

Definition 4.4.4. Given an arena A = (V, (Vi)i∈Π, E) and a multi-

player cost game G = (Π,A, (Costi)i∈Π), a cost function Costi is (positio-

nally/finite-memory) coalition-determined in G if there exists a gain func-

tion GainiMax : Plays → R ∪ {+∞,−∞} such that the Min-Max cost

game 10 Gi = (Ai,Costi,GainiMax), where Ai = (V, (Vi, V \ Vi), E) and

player i (player Min) plays against the coalition Π \ {i} (player Max),

is determined and has (positional/finite-memory) optimal strategies for

both players.

That is: ∃σ?i ∈ ΣMin, ∃σ?{i ∈ ΣMax (both positional/finite-memory) such

that ∀v ∈ V ,

inf
σi∈ΣMin

GainiMax(〈σi, σ?{i〉v) = Vali(v) = sup
σ{i∈ΣMax

Costi(〈σ?i , σ{i〉v) .

Given i ∈ Π, note that Gi does not depend on the cost functions Costj ,

with j 6= i.

Example 4.4.5. Let us consider the two-player cost game G (the same as in

Example 2.3.15 on page 48), whose arenaA is depicted in Figure 4.12, and

where player 1 has a quantitative reachability objective (Cost1 = RPMin

for the goal set R = {C}) and player 2 has a mean-payoff objective

(Cost2 = APMin). We show that both cost functions 11 are positionally

coalition-determined in this game.

Let us set Gain1
Max = Cost1 and study the Min-Max cost game G1 =

(A1,Cost1,Gain1
Max), where player Min (resp. Max) is player 1 (resp. 2)

and wants to minimise Cost1 (resp. maximise Gain1
Max). This game (ex-

actly the same as the Min-Max cost game of Example 2.3.2, on page 40)

is positionally determined by Theorem 2.3.10. In Example 2.3.9 (on

page 45), we proved that the positional strategies σ?1 and σ?{1
of player 1

and player 2 respectively, defined as: σ?1(A) = B and σ?{1
(B) = A, are

10. Remember that in a Min-Max cost game, it must hold that Costi ≥ GainiMax.
11. See Definition 2.3.3 for the description of the RPMin and APMin functions.
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A B C

D

1

1

1

3

2 3

Figure 4.12: A two-player cost game.

optimal in G1. From A, their outcome is 〈(σ?1 , σ?{1
)〉A = (AB)ω, and

Cost1((AB)ω) = Gain1
Max((AB)ω) = +∞. Then, Cost1 is positionally

coalition-determined in G.

Note that the positional strategy σ̃?1 defined by σ̃?1(A) = D is also op-

timal (for player 1) in G1. With this strategy, we have that 〈(σ̃?1 , σ?{1
)〉A =

(ADB)ω, and Cost1((ADB)ω) = Gain1
Max((ADB)ω)= +∞.

We now examine the Min-Max cost game G2 = (A2,Cost2,Gain2
Max),

where Gain2
Max = APMax. In this game, player Min (resp. Max) is

player 2 (resp. 1) and wants to minimise Cost2 (resp. maximise Gain2
Max).

This game is also positionally determined (Theorem 2.3.10). Let σ?2
and σ?{2

be the positional strategies of player 2 and player 1 respec-

tively, defined as follows: σ?2(B) = C and σ?{2
(A) = D. From A,

their outcome is 〈(σ?2 , σ?{2
)〉A = AD(BC)ω, and Cost2(AD(BC)ω) =

Gain2
Max(AD(BC)ω) = 2. We claim that σ?2 and σ?{2

are the only po-

sitional optimal strategies in G2. In particular, Cost2 is positionally

coalition-determined in G.

Proposition 4.4.6 positively answers Problem 5 for cost games with

prefix-linear, positionally 12 coalition-determined cost functions.

Proposition 4.4.6. In every initialised multiplayer cost game where each

cost function is prefix-linear and positionally coalition-determined, there

exists a Nash equilibrium with memory (at most) |V |+ |Π|.

Proof. Let G = (Π,A, (Costi)i∈Π) be a multiplayer cost game where each

cost function Costi is prefix-linear and positionally coalition-determined,

12. The proof of [BDS13, Theorem 10] only works if the cost functions of the game

are positionally coalition-determined.
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and let v0 ∈ V be an initial vertex. Since the cost functions are po-

sitionally coalition-determined in G, we know that, for every i ∈ Π,

there exists a gain function GainiMax such that the Min-Max cost game

Gi = (Ai,Costi,GainiMax) is determined, and there exist positional opti-

mal strategies σ?i and σ?{i for player i and the coalition Π\{i} respectively.

In particular, for j 6= i, we denote by σ?j,i the strategy of player j 6= i

derived from the strategy σ?{i of the coalition Π \ {i}.
The idea is to define a Nash equilibrium in G as follows: each player i

plays according to his strategy σ?i , and punishes the first player j 6= i who

deviates from his strategy σ?j , by playing according to σ?i,j (the strategy

of player i derived from σ?{j in the game Gj).
Formally, we consider the outcome of the optimal strategies (σ?i )i∈Π

from v0, and set ρ := 〈(σ?i )i∈Π〉v0
. We need to specify a punishment

function P : Hist→ Π∪{⊥} that detects who is the first player to deviate

from the play ρ, i.e. who has to be punished. For the initial vertex v0,

we define P (v0) = ⊥ (meaning that nobody has deviated from ρ) and for

every history hv ∈ Hist starting in v0 (v ∈ V ), we let:

P (hv) :=


⊥ if P (h) = ⊥ and hv is a prefix of ρ,

i if P (h) = ⊥, hv is not a prefix of ρ, and h ∈ Histi,

P (h) otherwise (P (h) 6= ⊥).

Then the definition of the Nash equilibrium (τi)i∈Π in (G, v0) is as follows.

For all i ∈ Π and hv ∈ Histi (v ∈ Vi),

τi(hv) :=

{
σ?i (v) if P (hv) = ⊥ or i,

σ?i,P (hv)(v) otherwise.

We remind that the strategies σ?i and σ?{i are positional, for all i ∈ Π.

Clearly, the outcome of (τi)i∈Π is the play ρ (= 〈(σ?i )i∈Π〉v0
).

Now we show that the strategy profile (τi)i∈Π is a Nash equilibrium

in (G, v0). As a contradiction, let us assume that there exists a profitable

deviation τ ′j for some player j ∈ Π. We denote by ρ′ := 〈τ ′j , τ−j〉v0
the

outcome where player j plays according to his profitable deviation τ ′j and

the players of the coalition Π\{j} keep their strategies (τi)i∈Π\{j}. Since
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τ ′j is a profitable deviation for player j w.r.t. (τi)i∈Π, we have that:

Costj(ρ
′) < Costj(ρ). (4.5)

Let hv (with v ∈ V ) be the longest common prefix of ρ and ρ′.

This prefix exists and is finite as both plays ρ and ρ′ start from ver-

tex v0 and ρ 6= ρ′ (remark that h could be empty). By definition of the

strategy profile (τi)i∈Π, we can write in the case of the outcome ρ that

ρ = h〈(σ?i )i∈Π〉v. Note that the strategies σ?i do not depend on h in

the notation h〈(σ?i )i∈Π〉v, since they are positional. In the case of the

outcome ρ′, player j does not follow his strategy σ?j any more from ver-

tex v, and so, the coalition Π \ {j} punishes him by playing according

to the strategy σ?{j after history hv, and so ρ′ = h〈τ ′j |h, σ?{j〉v (see Fig-

ure 4.13). 13 Here, τ ′j |h depends on the history h (as we do not know if τ ′j
is positional or not), whereas σ?{j does not (as it is a positional strategy).

v0

h

v

ρ=h〈(σ?
i )i∈Π〉vρ′ =h〈τ ′

j |h,σ
?
{j〉v

Figure 4.13: Sketch of the tree representing the unravelling of (G, v0).

Since σ?{j is an optimal strategy for the coalition Π \ {j} in the deter-

mined Min-Max cost game Gj , we have:

Valj(v) = inf
σj∈ΣMin

GainjMax(〈σj , σ?{j〉v)

≤ GainjMax(〈τ ′j |h, σ?{j〉v)
≤ Costj(〈τ ′j |h, σ?{j〉v) . (4.6)

The last inequality comes from the fact that Gj is a Min-Max cost game.

13. Recall that τ ′j |h is defined by τ ′j |h(h′) = τ ′j(hh′) for all non-empty histories h′

of G such that (Last(h),First(h′)) ∈ E and Last(h′) ∈ Vj .
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Moreover, Costj is prefix-linear in G, and then, when considering the

history hv, there exist a ∈ R and b ∈ R+ such that

Costj(ρ
′) = Costj(h〈τ ′j |h, σ?{j〉v) = a+ b · Costj(〈τ ′j |h, σ?{j〉v) . (4.7)

As b ≥ 0, Equations (4.6) and (4.7) imply:

Costj(ρ
′) ≥ a+ b · Valj(v) . (4.8)

Since h is also a prefix of ρ, we have:

Costj(ρ) = Costj(h〈(σ?i )i∈Π〉v) = a+ b · Costj(〈(σ?i )i∈Π〉v) . (4.9)

Furthermore, as σ?j is an optimal strategy for player j in the Min-Max

cost game Gj , it follows that:

Valj(v) = sup
σ{j∈ΣMax

Costj(〈σ?j , σ{j〉v)

≥ Costj(〈(σ?i )i∈Π〉v) . (4.10)

Then, Equations (4.9) and (4.10) imply:

Costj(ρ) ≤ a+ b · Valj(v) . (4.11)

Finally, Equations (4.8) and (4.11) lead to the following inequality:

Costj(ρ) ≤ a+ b · Valj(v) ≤ Costj(ρ
′) ,

which contradicts Equation (4.5). The strategy profile (τi)i∈Π is then a

Nash equilibrium in the game G.

Now we show that (τi)i∈Π is a strategy profile with memory (at most)

|V |+ |Π|. For this purpose, we define a finite strategy automaton for each

player that remembers the play ρ and who has to be punished. As the

play ρ is the outcome of the positional strategy profile (σ?i )i∈Π, we can

write ρ := v0 . . . vk−1(vk . . . vn)ω where 0 ≤ k ≤ n ≤ |V |, vl ∈ V for

all 0 ≤ l ≤ n and these vertices are all different. For any i ∈ Π, let

Mi = (M,m0, V, δ, ν) be the strategy automaton of player i, where:
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– M = {v0v0, v0v1, . . . , vn−1vn, vnvk} ∪Π \ {i}.
As we want to be sure that the play ρ is followed by all players, we

need to memorise which movement (edge) has to be chosen at each

step of ρ. This is the role of {v0v0, v0v1, . . . , vn−1vn, vnvk}. But

in case a player deviates from ρ, we only have to remember this

player during the rest of the play (no matter if another player later

deviates from ρ). This is the role of Π \ {i}.
– m0 = v0v0 (this memory state means that the play has not begun

yet).

– δ : M × V →M is defined in this way: given m ∈M and v ∈ V ,

δ(m, v) :=



j if m = j ∈ Π or (m = u1u2, with u1, u2 ∈ V ,

v 6= u2 and u1 ∈ Vj),
vlvl+1 if m = uvl for a certain l ∈ {0, . . . , n− 1},

u ∈ V , and v = vl,

vnvk otherwise (m = uvn and v = vn).

Intuitively, m represents either a player to punish, or the edge that

should, if following ρ, have been chosen at the last step of the

current stage of the play, and v is the real last vertex of the current

stage of the play.

Notice that in this definition of δ, j is different from i because if

player i follows the strategy computed by this strategy automaton,

one can be convinced that he does not deviate from the play ρ.

– ν : M × Vi → V is defined in this way: given m ∈M and v ∈ Vi,

ν(m, v) :=


σ?i (v) if m = u1u2 with u1, u2 ∈ V and v = u2,

σ?i,j(v) if m = j ∈ Π or (m = u1u2, with u1, u2 ∈ V ,

v 6= u2 and u1 ∈ Vj).

The idea is to play according to σ?i if everybody follows the play

ρ, and switch to σ?i,j if player j is the first player who has deviated

from ρ.

Obviously, the strategy σMi computed by the strategy automaton Mi

exactly corresponds to the strategy τi of the Nash equilibrium. And so,
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we can conclude that each strategy τi requires a memory of size at most

|M | ≤ |Π|+ |V |.

Applications of Proposition 4.4.6 to specific classes of cost games are

provided in Section 4.4.2.

Remark 4.4.7. If, in the definition of prefix-linear (Definition 4.4.2), a

can be a real number or +∞, and b is a strictly positive real number,

and if we assume that the cost functions are bounded from below, then

the proof of Proposition 4.4.6 still holds.

Let us also notice that the proof of Proposition 4.4.6 remains valid

for cost functions Costi : Plays→ K, where 〈K,+, ·, 0, 1,≤〉 is an ordered

field. This allows for instance to consider non-standard real costs and

enjoy infinitesimals to model the costs of a player. In particular, this

might be a road to explore in order to prove existence of secure equilibria

in cost games.

Example 4.4.8. Let us come back to the two-player cost game G of

Example 4.4.5 (on page 97), whose arena A is depicted below, and

where player 1 has a quantitative reachability objective (Cost1 = RPMin

for the goal set R = {C}) and player 2 has a mean-payoff objective

(Cost2 = APMin).

A B C

D

1

1

1

3

2 3

One can show that both cost functions are prefix-linear (see the proof

of Corollary 4.4.15). Since we saw in Example 4.4.5 (on page 97) that

these cost functions are also positionally coalition-determined, we can

apply the construction in the proof of Proposition 4.4.6 to get a Nash

equilibrium in (G, A). The construction from this proof results in two

different Nash equilibria, depending on the selection of the strategies

σ?1/σ̃?1 , σ?{1
, σ?2 and σ?{2

as defined in Example 4.4.5.
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The first Nash equilibrium (τ1, τ2) with outcome ρ = 〈σ?1 , σ?2〉A =

A(BC)ω is given, for all histories hA and h′B, by:

τ1(hA) =

{
B if P (hA) = ⊥, 1
D otherwise

; τ2(h′B) :=

{
C if P (h′B) = ⊥, 2
A otherwise

where the punishment function P is defined as in the proof of Proposi-

tion 4.4.6 and depends on the play ρ. The cost for this finite-memory

Nash equilibrium in (G, A) is Cost1(ρ) = 2 = Cost2(ρ).

The strategy τ̃1 of the second Nash equilibrium (τ̃1, τ2) in (G, A) with

outcome ρ̃ = 〈σ̃?1 , σ?2〉A = AD(BC)ω is given by τ̃1(hA) := D for all

histories hA. The costs for this finite-memory Nash equilibrium in (G, A)

are Cost1(ρ̃) = 6 and Cost2(ρ̃) = 2, respectively.

Note that there is no positional Nash equilibrium with outcome ρ or ρ̃

in (G, A). The only positional Nash equilibrium in this game is the one

with outcome (AB)ω and cost profile (+∞, 1).

Thanks to the proof of Proposition 4.4.6, we can construct a finite

strategy automaton Mτ1 that computes the strategy τ1 of player 1, for

instance. The set M of memory states is M = {AA,AB,BC,CB} ∪ {2}
since ρ = A(BC)ω, and the initial state is m0 = AA. The memory

update function δ : M × V → M and the transition choice function

ν : M × V1 → V are depicted in Figure 4.14: a label v/v′ on an edge

(m1,m2) means that δ(m1, v) = m2, and ν(m1, v) = v′ if v ∈ V1. If

v /∈ V1, we indicate that ν does not return any advice by a ‘−’, and label

the edge with v/−.

AA AB BC

CB

2

A/B B/−
C/B

B/−

A/D A/D

Figure 4.14: The finite strategy automaton Mτ1 .

When the optimal strategies in the Min-Max cost games Gi are not

positional, the proof of Proposition 4.4.6 does not hold anymore. Indeed,
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in that proof, we wrote ρ = h〈(σ?i )i∈Π〉v, but if the strategies (σ?i )i∈Π

use memory, we have to write ρ = h〈(σ?i |h)i∈Π〉v, since playing from v

as it was the initial vertex, and playing from v while taking into account

the initial history h might be done in different ways (as the σ?i ’s are not

positional). Moreover, playing according to σ?i |h from v might not ensure

that player i loses at most Vali(v) in the game Gi. In fact, an optimal

strategy σ?i might be “inconsistent” after certain histories, as it can been

in the following example.

Example 4.4.9. Let us consider the Min-Max cost game G = (A,CostMin,

GainMax) whose arena A is depicted in Figure 4.15. We set GainMax =

CostMin, and for any play ρ, CostMin(ρ) = 1 if ρ visits vertex B or E, and

CostMin(ρ) = 0 otherwise (ρ visits vertex D).

A

B C

D E

Figure 4.15: Min-Max cost game G.

The finite-memory strategy σ?1 defined by σ?1(C) = D and σ?1(hC) =

E for all histories hC with h 6= ε, is optimal for player Min in G. But

if he plays according to σ?1 |A from C, he pays a cost of 1, losing strictly

more than Val(C) = 0.

In the case where the optimal strategies are not positional, we also

want to compare the cost Costj(ρ) to the value Valj(v) as in the proof of

Proposition 4.4.6 (see Equation (4.11)). But Example 4.4.9 shows that

sometimes the optimal strategies might be inadequate. That is why we

prove the existence of an “intelligent” optimal strategy for player Min

in Min-Max cost games with a prefix-independent cost function CostMin.

What we mean by an “intelligent” optimal strategy is that player Min’s

cost of the outcome of such a strategy and any strategy of player Max, is

smaller or equal to the value of any vertex visited by this outcome. This
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property is formalised in the following lemma. Notice that we relax the

hypothesis of positional optimal strategies, but we require the stronger

condition about prefix-independent (instead of prefix-linear) cost func-

tions.

Lemma 4.4.10. Let G = (A,CostMin,GainMax) be a determined Min-

Max cost game such that the cost function CostMin is prefix-independent.

If there exists an optimal strategy σ?1 for player Min, then there exists an

optimal strategy τ?1 for player Min such that for all vertices v0 ∈ V and

all strategies σ2 of player Max, we have that

CostMin(ρ) ≤ min{Val(u) | u is a vertex of ρ} , where ρ = 〈τ?1 , σ2〉v0 .

Note that the strategy σ?1 of Example 4.4.9 does not satisfy the prop-

erty stated for τ?1 in the above lemma. Indeed, with v0 := A and

the strategy σ2 of player Max defined as σ2(A) := C, we have that

CostMin(〈σ?1 , σ2〉v0) = CostMin(ACE) = 1 > 0 = Val(C).

Proof of Lemma 4.4.10. For all histories h ∈ Hist1, we define

τ?1 (h) := σ?1(vh′′) s.t.


h = h′vh′′ (with v ∈ V ),

Val(v) = min{Val(u) | u is a vertex of h},
|h′| is minimal w.r.t. the above property 14.

We first show that τ?1 satisfies the property stated in Lemma 4.4.10.

Given v0 ∈ V and σ2 ∈ ΣMax, let ρ be the play 〈τ?1 , σ2〉v0
. We assert that

there exists a prefix h′v of ρ (with v ∈ V ) such that ρ = h′〈σ?1 , σ2|h′〉v.
Roughly, it means that after h′v, player Min plays according to σ?1 as if v

was the initial vertex (and forgets h′).

Indeed, let h′v be the smallest prefix of ρ such that

Val(v) = min{Val(u) | u is a vertex of ρ} . (4.12)

Note that min{Val(u) | u is a vertex of ρ} exists since |V | is finite. We

now prove that ρ = h′〈σ?1 , σ2|h′〉v. Let h′′ be a history such that h′vh′′ is

14. It means that for all prefixes h̄v̄ (with v̄ ∈ V ) of the history h such that Val(v̄) =

min{Val(u) | u is a vertex of h}, we have that |h′| ≤ |h̄|.
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a prefix of ρ, and h′vh′′ is in Hist1. We have

τ?1 (h′vh′′) = σ?1(vh′′) by the definitions of h′v and τ?1 .

Then, it holds that ρ = h′〈σ?1 , σ2|h′〉v.
As CostMin is prefix-independent and σ?1 is optimal, it follows that

CostMin(ρ) = CostMin(h′〈σ?1 , σ2|h′〉v)
= CostMin(〈σ?1 , σ2|h′〉v)
≤ sup
σ′

2∈ΣMax

CostMin(〈σ?1 , σ′2〉v) = Val(v) .

Val(v) = min{Val(u) | u is a vertex of ρ} (Equation (4.12)) implies that

CostMin(ρ) ≤ min{Val(u) | u is a vertex of ρ} ,

which proves the property stated in Lemma 4.4.10.

Furthermore, since v0 is a vertex of ρ, we have that

CostMin(〈τ?1 , σ2〉v0) = CostMin(ρ) ≤ Val(v0)

for any strategy σ2 ∈ ΣMax, which confirms that the strategy τ?1 is optimal

for player Min.

Lemma 4.4.10 enables to prove the existence of a Nash equilibrium in

multiplayer cost games where the cost functions are prefix-independent

and coalition-determined. Note that here we do not make any restric-

tion on the memory needed by the optimal strategies in the Min-Max

cost games Gi, contrary to Proposition 4.4.6 where the cost functions

are required to be positionally coalition-determined. Nevertheless, we

here ask for prefix-independent cost functions (stronger condition than

prefix-linear cost functions). Proposition 4.4.11 then positively answers

Problem 4 for cost games with prefix-independent, coalition-determined

cost functions.

Proposition 4.4.11. In every initialised multiplayer cost game where

each cost function is prefix-independent and coalition-determined, there

exists a Nash equilibrium.
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Proof. Let G = (Π,A, (Costi)i∈Π) be a multiplayer cost game such that

each cost function Costi is prefix-independent and coalition-determined,

and let v0 ∈ V be an initial vertex. By hypothesis, we know that, for

every i ∈ Π, there exists a gain function GainiMax such that the Min-Max

cost game Gi = (Ai,Costi,GainiMax) is determined and there exist optimal

strategies σ?i and σ?{i for player i and the coalition Π \ {i} respectively.

By Lemma 4.4.10, we can assume that σ?i verifies: for all strategies σ{i
of the coalition Π \ {i},

Costi(〈σ?i , σ{i〉v0
) ≤ min{Vali(u) | u is a vertex of 〈σ?i , σ{i〉v0

} . (4.13)

For j 6= i, we denote by σ?j,i the strategy of player j derived from the

strategy σ?{i of the coalition Π \ {i}.
The idea is to define the Nash equilibrium in G in a similar way to the

proof of Proposition 4.4.6. Each player i plays according to his strategy

σ?i , and punishes the first player j 6= i who deviates from his strategy σ?j ,

by playing according to σ?i,j from the first vertex where player j does not

follow σ?j , while forgetting the initial history until there.

We set ρ := 〈(σ?i )i∈Π〉v0
, and consider the same punishment function

P : Hist→ Π ∪ {⊥} as the one defined in the proof of Proposition 4.4.6.

As a reminder, it detects who is the first player to deviate from the play ρ,

i.e. who has to be punished. Then the definition of the Nash equilibrium

(τi)i∈Π in G is as follows. For all i ∈ Π and h ∈ Histi,

τi(h) :=


σ?i (h) if P (h) = ⊥ or i,

σ?i,P (h)(vv
′h′′) if P (h) 6= ⊥, i, s.t. h = h′vv′h′′ (v, v′ ∈ V ),

P (h′vv′) = P (h), and |h′| is minimal

w.r.t. this property.

Note that if P (h) 6= ⊥, then h has at least two vertices since P (v0) =

⊥ by definition of P . The decomposition h = h′vv′h′′ as described in

the second part of the definition of τi means that v is the vertex where

player P (h) has not chosen the outgoing edge that follows the play ρ. At

this very moment, the other players start to punish player P (h), while

forgetting the past history. Clearly, the outcome of (τi)i∈Π from v0 is the

play ρ (= 〈(σ?i )i∈Π〉v0).
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We prove that the strategy profile (τi)i∈Π is a Nash equilibrium in G.

As a contradiction, assume that there exists a profitable deviation τ ′j for

some player j ∈ Π. We denote by ρ′ := 〈τ ′j , τ−j〉v0 the outcome where

player j plays according to his profitable deviation τ ′j and the players

of the coalition Π \ {j} keep their strategies (τi)i∈Π\{j}. Since τ ′j is a

profitable deviation for player j w.r.t. (τi)i∈Π, we have that:

Costj(ρ
′) < Costj(ρ). (4.14)

Let hv (with v ∈ V ) be the longest common prefix of ρ and ρ′.

This prefix exists and is finite as both plays ρ and ρ′ start from ver-

tex v0 and ρ 6= ρ′ (remark that h could be empty). It follows that

ρ′ = h〈τ ′j |h, τ−j |h〉v. By definition of τ−j , we have that ρ′ = h〈τ ′j |h, σ?{j〉v.
That is, the coalition Π \ {j} starts playing according to σ?{j from v as if

it was the initial vertex. Indeed, let v′h′ be a history such that hvv′h′ is

a prefix of ρ′ and hvv′h′ is in Histi (v′ ∈ V ), for i 6= j. Notice that v ∈ Vj
as player j is the only player who deviates from ρ. We then have:

τi(hvv
′h′) = σ?i,j(vv

′h′)

by definition of τi (as P (hvv′) = j and |h| is minimal w.r.t. this property).

Since σ?{j is an optimal strategy for the coalition Π \ {j} in the deter-

mined Min-Max cost game Gj , we can deduce that:

Valj(v) = inf
σj∈ΣMin

GainjMax(〈σj , σ?{j〉v)

≤ GainjMax(〈τ ′j |h, σ?{j〉v)
≤ Costj(〈τ ′j |h, σ?{j〉v) .

The last inequality comes from the fact that Gj is a Min-Max cost game.

As Costj is prefix-independent, it follows that:

Valj(v) ≤ Costj(h〈τ ′j |h, σ?{j〉v) = Costj(ρ
′) . (4.15)

Furthermore, by Equation (4.13), we have that:

Costj(ρ) = Costj(〈(σ?i )i∈Π〉v0
)

≤ min{Valj(u) | u is a vertex of 〈(σ?i )i∈Π〉v0
}

≤ Valj(v) (since v is a vertex of 〈(σ?i )i∈Π〉v0)

≤ Costj(ρ
′) (by Equation (4.15)) ,
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which contradicts Equation (4.14). The strategy profile (τi)i∈Π is then a

Nash equilibrium in the game (G, v0).

When the cost functions are prefix-independent and finite-memory

coalition-determined in a cost game, we can prove that there exists a

finite-memory Nash equilibrium, and then positively answer Problem 5

for such games.

Proposition 4.4.12. In every initialised multiplayer cost game where

all cost functions are prefix-independent and finite-memory coalition-

determined, there exists a finite-memory Nash equilibrium.

The proof of this theorem relies on the construction of the Nash equi-

librium provided in the proof of Proposition 4.4.11.

Sketch of proof of Proposition 4.4.12. Let (G, v0) be an initialised multi-

player cost game with prefix-independent and finite-memory coalition-

determined cost functions. The proof follows the same philosophy con-

cerning memory as the proof of Proposition 4.4.6. We consider the Nash

equilibrium (τi)i∈Π defined in the proof of Proposition 4.4.11, whose out-

come is ρ := 〈(σ?i )i∈Π〉v0 . We keep the same notations as in that proof.

We remind that for all i ∈ Π, the strategy τi depends on the strategies

σ?i and σ?i,j for j ∈ Π \ {i}. As the cost functions are finite-memory

coalition-determined in G by hypothesis, these strategies are assumed to

be finite-memory. Given i ∈ Π (and j ∈ Π \ {i}), we denote by Mσ?
i

(resp. Mσ?
i,j ) a finite strategy automaton for the strategy σ?i (resp. σ?i,j).

As in the proof of Proposition 4.4.6, each player needs to remem-

ber both the play ρ and who has to be punished. But here the play

ρ is not anymore the outcome of a positional strategy profile: each

σ?i is a finite-memory strategy. Nevertheless, in some sense, we can

see the σ?i ’s as positional strategies played on the product graph G ×∏
i∈ΠMσ?

i , where G is the graph of the arena of G. This allows us to

write ρ := v0 . . . vk−1(vk . . . vn)ω where 15 0 ≤ k ≤ n ≤ |V | ·
∏
i∈Π |Mσ?

i |,
vl ∈ V for all 0 ≤ l ≤ n. Like in the proof of Proposition 4.4.6, we

can now define, for any i ∈ Π, Mτi , a finite strategy automaton for

15. |M| denotes the number of states of the automaton A.
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τi. In order to build explicitly Mτi , we need to take into account,

on one hand, the path ρ, and on the other hand, the memory of the

punishing strategies σ?i,j . This enables to bound the size of Mτi by

|V | ·
∏
i∈Π |Mσ?

i |+
∑
i∈Π

∑
j∈Π\{i} |M

σ?
i,j |.

Remark 4.4.13. As we have seen before, the outcomes ρ of the Nash equi-

libria (τi)i∈Π given in the proofs of Propositions 4.4.6, 4.4.11 and 4.4.12

are consistent with the optimal strategies (σ?i )i∈Π from v0. Then, it

holds that Costi(ρ) ≤ Vali(v0), for all i ∈ Π. That is, each player i pays

at most Vali(v0) for the outcomes ρ.

An interesting problem could be to find an algorithm to decide, given

a cost game and a tuple of thresholds (ti)i∈Π ∈ (R ∪ {−∞,+∞})|Π|,
whether there exists a simple Nash equilibrium with cost profile (ci)i∈Π

such that for all i ∈ Π, ci ≤ ti.

In the same idea as Propositions 4.4.6 and 4.4.12, we can state a more

general result, which answers Problem 4 (and Problem 5) for a large class

of cost games.

Theorem 4.4.14. In every initialised multiplayer cost game where each

cost function is either prefix-linear and positionally coalition-determined,

or prefix-independent and (finite-memory) coalition-determined, there ex-

ists a (finite-memory) Nash equilibrium.

In order to show this theorem, we can reuse the proofs of Propo-

sitions 4.4.6, 4.4.11 and 4.4.12, depending on the cost function of the

considered player. But we must be cautious in the proof of Propo-

sition 4.4.6: when we write ρ with the prefix h, we must now write

ρ = h〈σ?j , (σ?i |h)i∈Π\{j}〉v, because here the strategies σ?i (i 6= j) may

need memory. Then, Equation (4.9) becomes

Costj(h〈σ?j , (σ?i |h)i∈Π\{j}〉v) = a+ b · Costj(〈σ?j , (σ?i |h)i∈Π\{j}〉v),

and Equation (4.10) becomes

Valj(v) = sup
σ{j∈ΣMax

Costj(〈σ?j , σ{j〉v) ≥ Costj(〈σ?j , (σ?i |h)i∈Π\{j}〉v).

Then, the rest of the proof remains the same.
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4.4.2 Applications

In this section, we exhibit several classes of classical objectives that

can be encoded in our general setting. The list we propose is far from

being exhaustive.

Qualitative Objectives

A qualitative objective can naturally be encoded via a cost function

Costi : Plays → {−1, 1}, where −1 (resp. 1) means that the play is

won (resp. lost) by player i. 16 If we assume that the objective is Borel,

then the cost function is coalition-determined, as a consequence of the

Borel determinacy theorem (see Theorem 2.2.6). By applying Proposi-

tion 4.4.11, we obtain the existence of a Nash equilibrium for qualitative

games with prefix-independent 17 Borel objectives. Let us notice that this

result is already present in [GU08].

When considering more specific subclasses of qualitative games with

prefix-independent objectives enjoying a positional determinacy result,

such as parity games (see Theorem 2.2.15), we can apply Proposition 4.4.6

and ensure existence of a Nash equilibrium whose memory is (at most)

linear.

Furthermore, one can prove that the cost function encoding a qual-

itative reachability or safety objective is prefix-linear in any cost game.

As reachability games and safety games are positionally determined (see

Theorem 2.2.15), Proposition 4.4.6 also applies to cost games with such

objectives.

Classical Quantitative Objectives

If we consider the particular cost functions of Definition 2.3.3, The-

orem 2.3.10 implies that the cost functions RPMin, DPMin, APMin and

PRAvgMin are positionally coalition-determined in any cost game. Then,

16. Note that we here minimise costs, that is why the cost function is defined in the

opposite way to the gain function of Equation (2.2) on page 29.
17. A qualitative objective Win ⊆ V ω is prefix-independent if and only if for every

path ρ = ρ0ρ1 . . . ∈ V ω , we have that ρ ∈ Win iff for every n ∈ N, ρnρn+1 . . . ∈ Win

(same idea as in the quantitative case, see Definition 4.4.1).
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if we show that they are also prefix-linear, Corollary 4.4.15 will follow

from Proposition 4.4.6.

Corollary 4.4.15. In every initialised multiplayer cost game where each

cost function is RPMin, DPMin, APMin or PRAvgMin, there exists a Nash

equilibrium with memory (at most) |V |+ |Π|.

In particular, this result applies in multiplayer quantitative reachabil-

ity games, as they are multiplayer cost games where each cost function

is RPMin for some goal sets (Ri)i∈Π. Note that the existence of finite-

memory Nash equilibria in such games has already been established in

Theorem 4.1.5. Nevertheless, the Nash equilibrium given for its proof

needs a memory (at most) exponential in the size of the cost game (see

Remark 4.1.9). Thus, Corollary 4.4.15 significantly improves the com-

plexity of the strategies constructed in the case of multiplayer quantita-

tive reachability games.

Proof of Corollary 4.4.15. Let G be a a multiplayer cost game where each

cost function is RPMin, DPMin, APMin or PRAvgMin. Let us show that

these cost functions are prefix-linear in G. Given j ∈ Π, v ∈ V and

hv ∈ Hist, we consider the four possible cases for Costj . For the sake

of simplicity, we write hv := h0 . . . hk with k ∈ N, hk = v and hl ∈ V
for l = 0, . . . , k. Let φ : E → R be a price function and ϑ : E → R
be a diverging reward function. To avoid heavy notations, we do not

explicitly show the dependency between j and φ, ϑ, R in the first case or

λ in the second case. That is, we write φ, ϑ, R and λ for φj , ϑj , Rj and

λj , respectively.

1. Case Costj = RPMin for a given goal set R ⊆ V :

Let us distinguish two situations. If there exists l ∈ {0, . . . , k}
such that hl ∈ R, then we set a :=

∑n
i=1 φ(hi−1, hi) ∈ R and

b := 0 ∈ R+, where n is the least index such that hn ∈ R. Let

ρ be a play with First(ρ) = v, then it implies that RPMin(hρ) =∑n
i=1 φ(hi−1, hi) = a + b · RPMin(ρ) (with the convention that 0 ·

+∞ = 0).

If there does not exist l ∈ {0, . . . , k} such that hl ∈ R, then we

set a :=
∑k
i=1 φ(hi−1, hi) ∈ R and b := 1 ∈ R+. Let ρ = ρ0ρ1 . . .
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be a play such that First(ρ) = v. If RPMin(ρ) is infinite, then

RPMin(hρ) = +∞ = a + b · RPMin(ρ). Otherwise, if n is the least

index in N such that ρn ∈ R, then we have that:

RPMin(hρ) =

k∑
i=1

φ(hi−1, hi) +

n∑
i=1

φ(ρi−1, ρi)

= a+ b · RPMin(ρ).

2. Case Costj = DPMin(λ) for a given discount factor λ ∈ ]0, 1[:

We set a := (1 − λ)
∑k
i=1 λ

i−1φ(hi−1, hi) ∈ R and b := λk ∈ R+.

Given a play ρ = ρ0ρ1 . . . such that First(ρ) = v and η := hρ ∈ Plays

(with η = η0η1 . . .), we have that:

DPMin(λ)(hρ) = DPMin(λ)(η)

= (1− λ)

+∞∑
i=1

λi−1φ(ηi−1, ηi)

= (1− λ)

k∑
i=1

λi−1φ(ηi−1, ηi)

+(1− λ)

+∞∑
i=k+1

λi−1φ(ηi−1, ηi)

= (1− λ)

k∑
i=1

λi−1φ(hi−1, hi)

+λk(1− λ)

+∞∑
i=1

λi−1φ(ρi−1, ρi)

= a+ b ·DPMin(λ)(ρ) .

3. Case Costj = APMin:

We set a := 0 ∈ R and b := 1 ∈ R+. Given ρ ∈ Plays such that

First(ρ) = v and η := hρ ∈ Plays (with η = η0η1 . . .), we show that:

APMin(hρ) = APMin(η) = APMin(ρ) .

If APMin(η) = APMin(ρ) = +∞ or −∞, the desired result obvi-

ously holds. Otherwise, let us set xn := 1
n

∑n
i=1 φ(ηi−1, ηi) and
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yn := 1
n

∑n
i=1 φ(ρi−1, ρi), for all n ∈ N0. By properties of the limit

superior and definition of the APMin function, it holds that:

lim sup
n→+∞

(xn − yn) ≥ APMin(η)−APMin(ρ) ≥ lim inf
n→+∞

(xn − yn) .

It remains to prove that the sequence (xn − yn)n∈N converges to 0.

For all n > k, we have that:

|xn − yn| =

∣∣∣∣∣ 1n ·
(

n∑
i=1

φ(ηi−1, ηi)−
k+n∑
i=k+1

φ(ηi−1, ηi)

)∣∣∣∣∣
=

1

n
·

∣∣∣∣∣
k∑
i=1

φ(ηi−1, ηi)−
n+k∑
i=n+1

φ(ηi−1, ηi)

∣∣∣∣∣ .

As the absolute value is bounded independently of n (let us remind

that E is finite), we can conclude that (xn − yn)n∈N converges to

0, and so APMin(η) = APMin(ρ).

4. Case Costj = PRAvgMin:

We set a := 0 ∈ R and b := 1 ∈ R+. Given ρ ∈ Plays such that

First(ρ) = v and η := hρ ∈ Plays (with η = η0η1 . . .), we show that:

PRAvgMin(hρ) = PRAvgMin(η) = PRAvgMin(ρ) .
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Thanks to several properties of lim sup, we have that:

PRAvgMin(ρ) = lim sup
n→+∞

∑n
i=1 φ(ρi−1, ρi)∑n
i=1 ϑ(ρi−1, ρi)

= lim sup
n→+∞

∑n
i=1 φ(ηk+i−1, ηk+i)∑n
i=1 ϑ(ηk+i−1, ηk+i)

= lim sup
n→+∞

∑n+k
i=1 φ(ηi−1, ηi)−

∑k
i=1 φ(ηi−1, ηi)∑n+k

i=1 ϑ(ηi−1, ηi)−
∑k
i=1 ϑ(ηi−1, ηi)

= lim sup
n→+∞

∑n+k
i=1 φ(ηi−1, ηi)∑n+k

i=1 ϑ(ηi−1, ηi)−
∑k
i=1 ϑ(ηi−1, ηi)

= lim sup
n→+∞

∑n+k
i=1 φ(ηi−1, ηi)∑n+k
i=1 ϑ(ηi−1, ηi)

·

(
1−

∑k
i=1 ϑ(ηi−1, ηi)∑n+k
i=1 ϑ(ηi−1, ηi)

)−1

= lim sup
n→+∞

∑n+k
i=1 φ(ηi−1, ηi)∑n+k
i=1 ϑ(ηi−1, ηi)

= lim sup
n→+∞

∑n
i=1 φ(ηi−1, ηi)∑n
i=1 ϑ(ηi−1, ηi)

= PRAvgMin(η) = PRAvgMin(hρ) .

Line 4 comes from the fact that the reward function ϑ is diverging,

and from the following property: if limn→+∞ bn = b ∈ R, then

lim supn→+∞(an+bn) = (lim supn→+∞ an)+b. Line 5 is implied by

this property: if limn→+∞ bn = b > 0, then lim supn→+∞(an ·bn) =

(lim supn→+∞ an) · b.
Note that, if the history h is empty, then k = 0 and, in all cases, a is

equal to 0 and b to 1. This actually implies that Costi(hρ) = Costi(ρ)

holds.

Moreover, the cost functions RPMin, DPMin, APMin and PRAvgMin

are positionally coalition-determined in G. Indeed, given a player i ∈ Π,

if Costi = RPMin, then we take GainiMax = RPMax. We do the same for

the other cases by defining the gain function GainiMax for the coalition as

the counterpart of Costi in Definition 2.3.3. By Theorem 2.3.10, the Min-

Max cost game Gi = (Ai,Costi,GainiMax) is determined and has positional

optimal strategies. Then, Proposition 4.4.6 applies and concludes the

proof.
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Combining Qualitative and Quantitative Objectives

Multiplayer cost games also allow to encode games combining both

qualitative and quantitative objectives in one objective, such as mean-

payoff parity games [CHJ05]. In our framework, where each player aims

at minimising his cost, the mean-payoff parity objective could be encoded

as follows: Costi(ρ) = APMin(ρ) if the parity condition is satisfied, +∞
otherwise.

The determinacy of mean-payoff parity games, together with the ex-

istence of optimal strategies (that could require infinite memory), have

been proved in [CHJ05]. This result implies that a cost function encoding

a mean-payoff parity objective is coalition-determined. Moreover, such

objective is prefix-independent. By applying Proposition 4.4.11, we ob-

tain the existence of a Nash equilibrium for multiplayer cost games with

mean-payoff parity objectives. As far as we know, this is the first result

about the existence of a Nash equilibrium in cost games with mean-payoff

parity objectives.

Remark 4.4.16. Let us emphasise that Theorem 4.4.14 applies to cost

games where the players have different kinds of cost functions (as in

Example 2.3.15 on page 48). In particular, one player could have a quali-

tative Büchi objective, a second player a price-per-reward-average objec-

tive, a third player a mean-payoff parity objective,. . .
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Chapter 5

Secure Equilibrium

In this chapter, based on [BBD12, BBDG13], we first extend the con-

cept of secure equilibrium to the quantitative framework (in Section 5.1),

and then we study this notion in quantitative reachability games (in Sec-

tion 5.2).

5.1 Definition

The concept of secure equilibrium has already been defined for qual-

itative non-zero-sum games in Section 2.2.2. We here naturally extend 1

this notion to the quantitative framework. We first begin with the defi-

nition of a secure strategy profile, which generalises Definition 2.2.28.

Definition 5.1.1. Given a multiplayer cost game G = (Π,A, (Costi)i∈Π)

and an initial vertex v0 ∈ V , a strategy profile (σi)i∈Π of G is called secure

in (G, v0) if, for every player j ∈ Π and every strategy σ′j of player j, we

have that

Costj(ρ
′) ≤ Costj(ρ) ⇒

((
∀i 6= j Costi(ρ

′) ≤ Costi(ρ)
)

∨
(
∃i 6= j Costi(ρ

′) < Costi(ρ)
))
,

1. In fact, the inequalities comparing the gains of the players in Definitions 2.2.35

and 2.2.38 are just reversed, as we here consider cost functions to minimise.

119
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where ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

.

Exactly like in the qualitative case, a secure profile ensures that any

deviation of a player that does not put him at a disadvantage cannot put

the other players at a disadvantage either, if they follow the contract.

Then, the definition of secure equilibrium follows.

Definition 5.1.2. Given a multiplayer cost game (G, v0), a strategy pro-

file of G is a secure equilibrium of (G, v0) if it is a Nash equilibrium and

it is secure in (G, v0).

We also give an equivalent characterisation for secure equilibria, based

on binary relations (≺i)i∈Π on cost profiles. These relations are defined in

the same idea as in the qualitative case (see Equation (2.5)). Given j ∈ Π

and two cost profiles (xi)i∈Π, (yi)i∈Π:

(xi)i∈Π ≺j (yi)i∈Π iff
(
xj > yj

)
∨ (5.1)(

xj = yj ∧ (∀i 6= j xi ≤ yi) ∧ (∃i 6= j xi < yi)
)
.

We then say that player j prefers (yi)i∈Π to (xi)i∈Π. In other words,

player j prefers a cost profile to another one either if he has a strictly

lower cost, or if he keeps the same cost, the other players have a greater

cost, and at least one has a strictly greater cost.

Definition 5.1.3. Given a multiplayer cost game (G, v0), a strategy pro-

file (σi)i∈Π of G is a secure equilibrium of (G, v0) if, for every

player j ∈ Π, there does not exist any strategy σ′j of player j such that:

Cost(ρ) ≺j Cost(ρ′) ,

where ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

.

In other words, player j has no incentive to deviate w.r.t. relation ≺j .

Definition 5.1.4. Given a strategy profile (σi)i∈Π, a strategy σ′j of

player j is called a ≺j-profitable deviation for player j w.r.t. (σi)i∈Π

in (G, v0) if Cost(〈(σi)i∈Π〉v0
) ≺j Cost(〈σ′j , σ−j〉v0

).

Then, a strategy profile (σi)i∈Π is a secure equilibrium if no player j

has a ≺j-profitable deviation.
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Example 5.1.5. Let G = ({1, 2},A, (R1,R2)) be the two-player quanti-

tative reachability game whose arena A is depicted below and where

R1 = {C} and R2 = {D} (same game as in Example 4.1.2 on page 62).

AB D

C

The memoryless strategy profile (σ′1, σ2), such that σ′1(A) = B and

σ2(B) = C, is a Nash equilibrium in (G, A), with outcome (ABC)ω and

cost profile (2,+∞) (see Example 4.1.2). However, it is not a secure

equilibrium in (G, A). Indeed, player 2 has a ≺2-profitable deviation: for

instance, the memoryless strategy σ′2 of player 2 defined by σ′2(B) = A.

Indeed, the outcome of (σ′1, σ
′
2) in (G, A) is the play (AB)ω, with cost

profile (+∞,+∞), and (2,+∞) ≺2 (+∞,+∞).

In fact, any secure equilibrium in (G, A) must be of type ∅. For

example, the memoryless strategy profile (σ′1, σ
′
2) is a secure equilibrium

in this game.

5.2 Quantitative Reachability Objectives

In this section, we study the existence of secure equilibria in quanti-

tative reachability games. In Section 5.2.1, we show, in particular, that

there always exists a secure equilibrium in the two-player case. To our

knowledge, it is still an open problem in the multiplayer case. Neverthe-

less, in Section 5.2.2, we prove that one can decide in ExpSpace whether

there exists a secure equilibrium in an initialised multiplayer quantitative

reachability game.

We remind that the definition of quantitative reachability games and

some related notations can be found in Section 4.1.1.
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5.2.1 Two-Player Case

In Section 4.1.4, we positively solved Problems 1 and 2 for Nash equi-

libria in multiplayer quantitative reachability games. We here solve these

two problems for secure equilibria, but in the two-player case only. The

main results are stated in Theorems 5.2.1 and 5.2.2 below. In this section,

we exclusively consider two-player games.

Theorem 5.2.1. In every initialised two-player quantitative reachability

game, there exists a finite-memory secure equilibrium.

Theorem 5.2.2. Given a secure equilibrium in an initialised two-player

quantitative reachability game, there exists a finite-memory secure equi-

librium of the same type.

Note that Theorem 5.2.2 is generalised to the multiplayer case in the

next section (see Theorem 5.2.8).

The proof of Theorem 5.2.1 is based on the same ideas as for the

proof of Theorem 4.1.5 (existence of a Nash equilibrium in quantitative

reachability games). Given a two-player game (G, v0) played on a finite

graph G, we unravel the graph from v0, as in Section 4.1.3, to get an

equivalent game T played on the infinite tree T . We first show that while

choosing suitable preference relations, Kuhn’s theorem (Theorem 2.3.22)

implies the existence of a secure equilibrium in the game Truncd(T ) played

on the finite tree Truncd(T ), for any depth d. By choosing an adequate

depth d, Proposition 5.2.4 enables to extend this secure equilibrium to a

secure equilibrium in T , and thus in G.

To be able to apply Kuhn’s theorem, we define the following preference

relation -j for player j = 1, 2, based on the relation ≺j of Equation (5.1).

Given two cost profiles (x1, x2) and (y1, y2):

(x1, x2) -j (y1, y2) iff
(
(x1, x2) ≺j (y1, y2) ∨ (x1 = y1 ∧ x2 = y2)

)
. (5.2)

The relations -1 and -2 are clearly preference relations 2. One can also

be easily convinced that a strategy profile (σ1, σ2) is a secure equilibrium

in (G, v0) if for all strategies σ′1 of player 1, Cost(ρ′) -1 Cost(ρ), where

2. Remark that -j is a kind of lexicographic order on (N∪ {+∞})× (N∪ {+∞}).
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ρ = 〈σ1, σ2〉v0
and ρ′ = 〈σ′1, σ2〉v0

, and symmetrically for all strategies σ′2
of player 2.

Note that we will see in Section 7.2 that these statements do not hold

anymore in the multiplayer case.

Since -1 and -2 are preference relations in two-player games, we get

the next corollary by Kuhn’s theorem (Theorem 2.3.22).

Corollary 5.2.3. In every two-player cost game whose graph is a finite

tree, there exists a secure equilibrium.

Now that we can guarantee the existence of a secure equilibrium

in a two-player quantitative reachability game played on a finite tree

Truncd(T ), it remains to show how to lift it to the game played on the in-

finite tree T . The next proposition states that it is possible to extend a se-

cure equilibrium in Truncd(T ) to a secure equilibrium in the game T with

the same type, if the depth d is greater or equal to (|Π|+1)·2·|V | = 6·|V |
(since we consider two-player games). It also says that we can construct

a secure equilibrium in Truncd(T ) from a secure equilibrium in T , while

keeping the same type. Recall that the type of a strategy profile in an

initialised game is the set of players such that its outcome visits their

goal sets.

Proposition 5.2.4. Let (G, v0) be a two-player quantitative reachability

game and T be the corresponding game played on the unravelling of G

from v0.

(i) If there exists a secure equilibrium of a certain type in the game T ,

then there exists a secure equilibrium of the same type in the game

Truncd(T ), for some depth d ≥ 6 · |V |.

(ii) If there exists a secure equilibrium of a certain type in the game

Truncd(T ), where d ≥ 6 · |V |, then there exists a finite-memory

secure equilibrium of the same type in the game T .

To prove Proposition 5.2.4, we need the following technical lemma

whose hypotheses are the same as in Lemma 4.1.7. As a reminder, this

lemma roughly says that, given a Nash equilibrium in Truncd(T ), if its

outcome has a prefix that fulfils some conditions, then the coalition of
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the players i 6= j can play together to prevent player j from reaching his

goal set Rj , from any vertex of this prefix.

Lemma 5.2.5. Let (G, v0) be a two-player quantitative reachability game,

and T be the corresponding game played on the unravelling of G from v0.

For any depth d ∈ N, let (σ1, σ2) be a secure equilibrium in Truncd(T ),

and ρ the (finite) outcome of (σ1, σ2). Assume that ρ has a prefix αβγ,

where α, β, γ ∈ V +, such that

Visit(α) = Visit(αβγ)

Last(α) = Last(αβ)

|αβ| ≤ l · |V |
|αβγ| = (l + 1) · |V |

for some l ≥ 1. Then we have(
Visit(α) 6= ∅ ∨ Visit(ρ) 6= {1, 2}

)
⇒ Visit(α) = Visit(ρ).

In particular, Lemma 5.2.5 implies that if α visits none of the goal

sets, then ρ visits either both goal sets or none. Notice that in the case of

Nash equilibria, we can have situations contradicting Lemma 5.2.5, and

in particular the previous situation, as it can be seen in Example 4.1.11

(on page 75).

Proof of Lemma 5.2.5. Let us suppose that the hypotheses of the lemma

are fulfilled, and, by contradiction, we assume that
(
Visit(α) 6= ∅ ∨

Visit(ρ) 6= {1, 2}
)
∧ Visit(α) 6= Visit(ρ). The last conjunct implies

that 2 ∈ Visit(ρ) \ Visit(α) or 1 ∈ Visit(ρ) \ Visit(α). We consider the first

case (the other one is symmetric). Then, by the first conjunct, we

have that 1 ∈ Visit(α) or 1 6∈ Visit(ρ) (otherwise, Visit(α) = ∅ and

Visit(ρ) = {1, 2}).
As α does not visit R2, by Lemma 4.1.7, player 1 wins the game G2

from v := Last(α), that is, has a memoryless winning strategy µv1,2 from

this vertex, which prevents player 2 from reaching his goal set R2. Then,

if player 1 plays according to σ1 until depth |α|, and then switches to µv1,2
from v = Last(α), this strategy is a ≺1-profitable deviation for player 1



5.2 — Quantitative Reachability Objectives 125

w.r.t. (σ1, σ2). Indeed, if 1 ∈ Visit(α), player 1 manages to increase

player 2’s cost while keeping his own cost. On the other hand, if 1 6∈
Visit(ρ), either player 1 succeeds in reaching his goal set while deviating

(i.e. strictly decreases his cost), or he does not reach it (then gets the

same cost as in ρ) but succeeds in increasing player 2’s cost. We get

thus a contradiction with the fact that (σ1, σ2) is a secure equilibrium

in Truncd(T ).

We can now give the proof of Proposition 5.2.4. The idea for showing

case (i) is to look at the outcome π of the secure equilibrium in T , and

consider the minimal depth d needed to visit all the goal sets of the

players in Visit(π). Then, the secure equilibrium in Truncd(T ) is defined

exactly as the secure equilibrium of T .

The proof of case (ii) works pretty much as the one of Proposi-

tion 4.1.6 (whereas the latter proposition does not preserve the type of

the Nash equilibrium). Thanks to Lemma 5.2.5, the proof reduces into

only two cases depending on when the goal sets are visited along the

outcome of the secure equilibrium in Truncd(T ). In the most interesting

case, a well-chosen prefix αβ, where β can be repeated (as a cycle), is

first extracted from this outcome, and the outcome of the required se-

cure equilibrium in T will be equal to αβω. As soon as a player deviates

from this play, the other player punishes him, but the way to define the

punishment is here more involved than in the proof of Proposition 4.1.6.

Before entering the details, let us remind the following notation: for

any play ρ = ρ0ρ1 . . . of G and any player i ∈ {1, 2}, we write Indexi(ρ)

for the least index l such that ρl ∈ Ri if it exists, or −1 if not 3.

Proof of Proposition 5.2.4. First, let us begin with the proof of (i). Sup-

pose that there exists a secure equilibrium (τ1, τ2) in T . We denote its

outcome by π. Let us set d := max{6 · |V |, Index1(π), Index2(π)}, and de-

fine (σ1, σ2) as the strategy profile in Truncd(T ) corresponding to the

strategies (τ1, τ2) restricted to the finite tree Truncd(T ). Clearly, the out-

come ρ of (σ1, σ2) is a prefix of π, and Visit(ρ) = Visit(π), so (σ1, σ2) and

3. We are conscious that it is counter-intuitive to use the particular value −1, but

it is helpful in the proofs.
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(τ1, τ2) are of the same type. It remains to show that (σ1, σ2) is a secure

equilibrium in Truncd(T ).

Assume by contradiction that player 1 has a ≺1-profitable devia-

tion σ′1 w.r.t. (σ1, σ2) (the case of player 2 is symmetric). We write ρ′ for

the outcome of (σ′1, σ2) in Truncd(T ). There are two cases to consider:

either player 1 manages to decrease his cost in ρ′ w.r.t. ρ, or he pays the

same cost as in ρ but he is able to increase the cost of player 2 in ρ′ w.r.t. ρ.

In both cases, if player 1 plays according to σ′1 in T until depth d and

then arbitrarily, one can easily be convinced that we get a ≺1-profitable

deviation 4 w.r.t. (τ1, τ2) in T . This leads to a contradiction.

Now let us proceed to the proof of (ii). Let (σ1, σ2) be a secure equi-

librium in the game Truncd(T ), where d ≥ 6 · |V |, and ρ be its outcome.

We define the prefixes pq and αβγ as in the proof of Proposition 4.1.6 on

page 73 (see Figure 4.3 on page 75).

By Lemma 5.2.5, there are only two cases to consider:

(a) Visit(α) = ∅ and Visit(ρ) = {1, 2};
(b) Visit(α) = Visit(ρ).

We define a different secure equilibrium in T according to the case.

Let us start with case (a): Visit(α) = ∅ and Visit(ρ) = {1, 2}. We

define the following strategy profile: for every history h ∈ Histi,

τi(h) :=

{
σi(h) if |h| < max{Index1(ρ), Index2(ρ)},
arbitrary otherwise.

where i = 1, 2, and arbitrary means that the next vertex is chosen arbi-

trarily, but in a memoryless way. Note that the outcome of (τ1, τ2) is

of the form α′(β′)ω where Visit(α′) = Visit(ρ) = {1, 2} and β′ is a cycle.

So, (τ1, τ2) has the same type as (σ1, σ2). It remains to prove that (τ1, τ2)

is a finite-memory secure equilibrium in T .

Assume by contradiction that player 1 has a ≺1-profitable devia-

tion τ ′1 w.r.t. (τ1, τ2) in T (the case for player 2 is symmetric). The

strategy σ′1 equal to τ ′1 in Truncd(T ) is clearly a ≺1-profitable deviation

4. Notice that in the second case, when ρ and ρ′ do not visit R1 in Truncd(T ),

player 1 may reach his goal set in T when deviating in this way, and this would be

profitable for him in this game.
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w.r.t. (σ1, σ2), which is a contradiction with the fact that (σ1, σ2) is a

secure equilibrium in Truncd(T ). Indeed, we have that Type(τ1, τ2) =

Type(σ1, σ2) = {1, 2}, and the outcomes of the strategy profiles (τ1, τ2)

and (σ1, σ2), as well as the outcomes of (τ ′1, τ2) and (σ′1, σ2), coincide

until a depth ≥ max{Index1(ρ), Index2(ρ)}. So, if player 1 strictly lowers

his cost thanks to τ ′1 in T , then he also strictly lowers his cost thanks

to σ′1 in Truncd(T ). In the same way, if player 1 gets the same cost but

strictly increases player 2’s cost while deviating according to τ ′1 in T ,

then deviating according to σ′1 in Truncd(T ) induces the same effect on

the players’ costs in this game.

Moreover, (τ1, τ2) is obviously a finite-memory strategy profile (for

more details, see the proof of Lemma 4.1.8).

Now we consider case (b): Visit(α) = Visit(ρ). Like in the proof of

Lemma 4.1.8, we consider the infinite play αβω in the game T . The basic

idea of the strategy profile (τ1, τ2) is the following: player 2 (resp. 1) plays

according to αβω and punishes player 1 (resp. 2) if he deviates from αβω,

in the following way. Suppose that player 1 deviates (the case for player 2

is similar). Then player 2 plays according to σ2 until depth |α|, and after

that, he plays arbitrarily if α visits R1, otherwise he plays according to a

memoryless strategy given by Lemma 4.1.7 that prevents player 1 from

reaching his goal set.

In order to describe the secure equilibrium in T , we define the same

punishment function P as in the proof of Lemma 4.1.8: for v0, we define

P (v0) = ⊥, and for every history hv ∈ Hist (v ∈ V ) starting in v0, we let:

P (hv) :=


⊥ if P (h) = ⊥ and hv < αβω,

i if P (h) = ⊥, hv 6< αβω and h ∈ Histi,

P (h) otherwise (P (h) 6= ⊥).

The definition of the secure equilibrium (τ1, τ2) in T is as follows: for
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every history h of (G, v0) ending in a vertex of Vi,

τi(h) :=



v if P (h) = ⊥ (h < αβω); such that hv < αβω,

σi(h) if P (h) 6= ⊥, i, and |h| ≤ |α|,
µvi,P (h)(v

′) if P (h) 6= ⊥, i, |h| > |α| and P (h) 6∈ Visit(α),

s.t. h = h′vh′′v′ (v, v′ ∈ V ) and |h′| = |α|,
arbitrary otherwise,

where i = 1, 2, and arbitrary means that the next vertex is chosen

arbitrarily (in a memoryless way). Notice that in the third case, the

strategy µvi,P (h) is the memoryless winning strategy of player i given by

Lemma 4.1.7 (P (h) 6∈ Visit(α)) when considering the history h′v (see h′

above).

Clearly, the outcome of (τ1, τ2) is the play αβω, and the type of (τ1, τ2)

is equal to Visit(α) = Visit(ρ), the type of (σ1, σ2). Moreover, as done in

the proof of Lemma 4.1.8, (τ1, τ2) is a finite-memory strategy profile.

Remark that the definition of the strategy profile (τ1, τ2) is a little

different from the one in the proof of Lemma 4.1.8 because here, if player 1

deviates (for example), then player 2 has to prevent him from reaching his

goal set R1 (faster), or having the same cost but succeeding in increasing

player 2’s cost.

It remains to show that (τ1, τ2) is a secure equilibrium in the game T .

Assume by contradiction that there exists a ≺1-profitable deviation τ ′1
for player 1 w.r.t. (τ1, τ2). The case of a ≺2-profitable deviation τ ′2
for player 2 is similar. We construct a play ρ′ in Truncd(T ) as follows:

player 1 plays according to the strategy τ ′1 restricted to Truncd(T ) (de-

noted by σ′1) and player 2 plays according to σ2. Thus the play ρ′ coincide

with the play π′ = 〈τ ′1, τ2〉v0
at least until depth |α| (by definition of τ2);

it can differ afterwards. We let:

ρ = 〈σ1, σ2〉v0
of cost profile (x1, x2)

ρ′ = 〈σ′1, σ2〉v0 of cost profile (x′1, x
′
2)

π = 〈τ1, τ2〉v0
of cost profile (y1, y2)

π′ = 〈τ ′1, τ2〉v0 of cost profile (y′1, y
′
2).

The situation is depicted in Figure 5.1.
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Figure 5.1: Plays ρ and π, and their respective deviations ρ′ and π′.

By contradiction, we assumed that τ ′1 is a ≺1-profitable deviation for

player 1 w.r.t. (τ1, τ2), i.e. (y1, y2) ≺1 (y′1, y
′
2). Now we are going to show

that (x1, x2) ≺1 (x′1, x
′
2), meaning that σ′1 is a ≺1-profitable deviation for

player 1 w.r.t. (σ1, σ2) in Truncd(T ). This will lead to the contradiction.

As τ ′1 is a ≺1-profitable deviation w.r.t. (τ1, τ2), one of the following three

cases stands.

(1) y′1 < y1 < +∞.

As π = αβω, it means that α visits R1, and then:

y′1 < y1 = x1 ≤ |α|.

As y′1 < |α|, we have x′1 = y′1 (as ρ′ and π′ coincide until depth |α|).
Therefore x′1 < x1, and (x1, x2) ≺1 (x′1, x

′
2).

(2) y′1 < y1 = +∞.

If y′1 ≤ |α|, we have x′1 = y′1 (by the same argument as before).

As Visit(α) = Visit(ρ), we have x1 = y1 = +∞ and x′1 < x1 (and so

(x1, x2) ≺1 (x′1, x
′
2)).
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We show that the case y′1 > |α| is impossible. By definition of τ2,

the play π′ is consistent with σ2 until depth |α|, and then with µv2,1
(as y1 = +∞). By Lemma 4.1.7, the play π′ can not visit R1 after

a depth > |α|.

(3) y1 = y′1 and y2 < y′2.

Note that this implies y2 < +∞ and x2 = y2 (as π = αβω). Since ρ′

and π′ coincide until depth |α|, y2 < y′2 and x2 = y2 ≤ |α|, we have

x2 = y2 < x′2

showing that the cost of player 2 is increased. In order to ensure

that σ′1 is a ≺1-profitable deviation, it remains to show that either

player 1 keeps the same cost, or he decreases his cost.

If y′1 = y1 < +∞, it follows as in the first case that:

y1 = x1 ≤ |α| and x′1 = y′1.

Therefore x1 = x′1, i.e. player 1 has the same cost in ρ and ρ′. And

so, (x1, x2) ≺1 (x′1, x
′
2).

On the contrary, if y′1 = y1 = +∞, it follows that x1 = +∞
(as Visit(α) = Visit(ρ)). And so, we have that x′1 < +∞ = x1, or

x′1 = x1. But in both cases, it holds that (x1, x2) ≺1 (x′1, x
′
2).

In conclusion, we constructed a ≺1-profitable deviation σ′1 w.r.t. (σ1, σ2)

in Truncd(T ), and then we get a contradiction.

Remark 5.2.6. Let us notice that in case (i) of Proposition 5.2.4, the

proof remains valid if we take d = max{0, Index1(π), Index2(π)}. Thus,

in the statement of case (i), the constraint d ≥ 6 · |V | can be replaced by

d ∈ N.

We can now proceed to the proof of Theorem 5.2.1, which states

the existence of a finite-memory secure equilibrium in every two-player

quantitative reachability game.

Proof of Theorem 5.2.1. Let (G, v0) be a two-player quantitative reacha-

bility game and T be the corresponding game played on the unravelling
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of G from v0. Let us set d := 6 · |V | and apply Corollary 5.2.3 on

the game Truncd(T ). Then we get a secure equilibrium in this game.

By Proposition 5.2.4, there exists a finite-memory secure equilibrium

in G.

Finally, we prove Theorem 5.2.2, which asserts that, if there exists a

secure equilibrium in an initialised two-player quantitative reachability

game, then there exists a finite-memory secure equilibrium of the same

type.

Proof of Theorem 5.2.2. Let (G, v0) be a two-player quantitative reacha-

bility game and T be the corresponding game played on the unravelling

of G from v0. Let (τ1, τ2) be a secure equilibrium in (G, v0). By the first

part of Proposition 5.2.4, there exists a secure equilibrium of the same

type in the game Truncd(T ), for a certain depth d ≥ 6 · |V |. If we ap-

ply the second part of Proposition 5.2.4, we get a finite-memory secure

equilibrium of the same type as (τ1, τ2) in (G, v0).

The proof of Theorem 5.2.2 is based on Proposition 5.2.4 which,

roughly speaking, ensures that every secure equilibrium of Truncd(T ) can

be lifted to a secure equilibrium of the same type in T , and conversely.

Notice that Proposition 5.2.4 has no counterpart for Nash equilibria, since

we can not guarantee that the type can be preserved, as it can be seen

from Example 4.1.11 (on page 75). This approach makes the proof of

Theorem 5.2.2 rather different than the proof of Theorem 4.1.12 (which

states that, given a Nash equilibrium in an initialised multiplayer quan-

titative reachability game, there exists a finite-memory Nash equilibrium

of the same type).

Notice that Proposition 5.2.4 stands for two-player games because its

proof uses Lemma 5.2.5 that has only been proved in the two-player case.

5.2.2 Multiplayer Case

In this section, we study Problems 1 and 2 in the context of secure

equilibria and multiplayer games. Both problems have been positively

solved in Section 5.2.1 for two-player games only. To the best of our
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knowledge, the existence of secure equilibria in the multiplayer framework

is still an open problem. We here provide an algorithm that decides the

existence of a secure equilibrium in multiplayer quantitative reachability

games.

Theorem 5.2.7. In every initialised multiplayer quantitative reachabil-

ity game, one can decide whether there exists a secure equilibrium in

ExpSpace.

We also show that if there exists a secure equilibrium, then there

exists one that is finite-memory and has the same type.

Theorem 5.2.8. If there exists a secure equilibrium in an initialised mul-

tiplayer quantitative reachability game, then there exists a finite-memory

secure equilibrium of the same type.

This theorem gives a counterpart to Theorem 4.1.12, which states the

same result but for Nash equilibria.

The proof of Theorem 5.2.7 is inspired from ideas developed in Sec-

tions 4.1.4 and 5.2.1. The key point is to show that the existence of a

secure equilibrium in a quantitative reachability game (G, v0) is equivalent

to the existence of a secure equilibrium (with two additional properties)

in the finite game Truncd(T ) for a well-chosen depth d. The existence of

the latter equilibrium is decidable. Notice that we can show 5 that a se-

cure equilibrium always exists in Truncd(T ); however, we do not know if

there always exists a secure equilibrium with the two required additional

properties in Truncd(T ).

Let us formally introduce these two properties. The first one requires

that the secure equilibrium is goal-optimised, meaning that all the goal

sets visited along its outcome are visited for the first time before a certain

given depth. For any game G played on a graph with |V | vertices by |Π|
players, we fix the following constant: dgoal(G) := 2 · |Π| · |V |.

Definition 5.2.9. Given a quantitative reachability game (G, v0) and

a strategy profile (σi)i∈Π in G, with outcome ρ, we say that (σi)i∈Π is

5. See Section 7.2 and Corollary 7.2.2 for the existence of a stronger solution con-

cept in multiplayer cost games played on finite trees.
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goal-optimised if and only if for all i ∈ Π such that Costi(ρ) < +∞, we

have that Costi(ρ) < dgoal(G).

The second property asks for a secure equilibrium that is deviation-

optimised, meaning that whenever a player deviates from its outcome, he

realises within a certain given number of steps that his deviation is not

profitable for him.

Definition 5.2.10. Given a quantitative reachability game (G, v0) and

a secure equilibrium (σi)i∈Π in G, with outcome ρ, we say that (σi)i∈Π

is deviation-optimised if and only if for every player j ∈ Π and every

strategy σ′j of player j, we have that

Cost(ρ<ddev ) 6≺j Cost(ρ′<ddev ),

where ddev = max{Costi(ρ) | Costi(ρ) < +∞}+ |V | and ρ′ = 〈σ′j , σ−j〉v0
.

Remark that Definitions 5.2.9 and 5.2.10 extend to games Truncd(T )

where d ≥ dgoal(G).

We can now state the key proposition for proving Theorems 5.2.7

and 5.2.8.

Proposition 5.2.11. Let (G, v0) be a multiplayer quantitative reachabil-

ity game and T be the corresponding game played on the unravelling of G

from v0. We set d := dgoal(G) + 3 · |V |.
1. If there exists a goal-optimised and deviation-optimised secure equi-

librium in Truncd(T ), then there exists a finite-memory secure equi-

librium in (G, v0).

2. If there exists a secure equilibrium in (G, v0), then there exists a se-

cure equilibrium in Truncd(T ) that is goal-optimised and deviation-

optimised.

At this stage, it is difficult to give some intuition about the choice

of the values dgoal(G), ddev and d = dgoal(G) + 3 · |V |. These values are

linked to the proofs contained in this section.

The proof of Proposition 5.2.11 is long and technical, it will be done

thereafter. We first prove Theorems 5.2.7 and 5.2.8 thanks to this propo-

sition.
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Proof of Theorem 5.2.7. Proposition 5.2.11 implies that there exists a se-

cure equilibrium in (G, v0) iff there exists a goal-optimised and deviation-

optimised secure equilibrium in Truncd(T ), with d = dgoal(G) + 3 · |V |.
The latter property is decidable in NExpSpace (in |V | and |Π|). Indeed,

the size of Truncd(T ) is exponential in the size of G. Guessing a strat-

egy profile (σi)i∈Π in this tree also needs an exponential size (in the size

of G). Then we can test in exponential size (in the size of G) whether

(σi)i∈Π is a goal-optimised and deviation-optimised secure equilibrium

in Truncd(T ). By Savitch’s theorem, deciding the existence of a secure

equilibria is thus in ExpSpace.

Proof of Theorem 5.2.8. This theorem is a direct consequence of Propo-

sition 5.2.11. Indeed, consider a secure equilibrium in a game (G, v0).

We first apply Proposition 5.2.11 (Part (ii)) to this strategy profile to

get a goal-optimised and deviation-optimised secure equilibrium (σi)i∈Π

in Truncd(T ), for d = dgoal(G)+3·|V |. Then, we apply Proposition 5.2.11

(Part (i)) to the equilibrium (σi)i∈Π, to get a finite-memory secure equi-

librium back in (G, v0). Moreover, Remarks 5.2.13 and 5.2.21 imply that

this secure equilibrium has the same type as the initial one.

The next two sections are devoted to the proof of the two parts of

Proposition 5.2.11.

Part (i) of Proposition 5.2.11

This section is devoted to the proof of Proposition 5.2.11, Part (i).

We begin with a useful characterisation of a deviation-optimised secure

equilibrium.

Lemma 5.2.12. With the previous notations of Definition 5.2.10, a se-

cure equilibrium (σi)i∈Π is deviation-optimised if and only if for every

player j ∈ Π and every strategy σ′j of player j, if

1. Costj(ρ) = Costj(ρ
′),

2. ∀ i ∈ Π such that Costi(ρ) < +∞, we have that Costi(ρ) ≤ Costi(ρ
′),

3. ∃ i ∈ Π Costi(ρ) < Costi(ρ
′),

then there exists l ∈ Π such that Costl(ρ) = +∞ and Costl(ρ
′) < ddev.
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Proof. Let us first assume that (σi)i∈Π is a deviation-optimised secure

equilibrium whose outcome is denoted by ρ. Given any player j ∈ Π,

let σ′j be a strategy fulfilling the hypotheses of the lemma and ρ′ the

outcome given by 〈σ′j , σ−j〉v0
. Let us denote respectively by (xi)i∈Π and

(yi)i∈Π the cost profiles of the histories ρ<ddev and ρ′<ddev .

Notice that by definition of ddev, Costi(ρ) = xi for all i ∈ Π. For ρ′, we

have Costi(ρ
′) = yi provided Costi(ρ

′) < ddev. Otherwise, it may happen

that yi = +∞ and Costi(ρ
′) < +∞. So, it holds that Costi(ρ

′) ≤ yi for

all i ∈ Π. These observations will be often used in the sequel of the proof.

By hypothesis, we know that Cost(ρ<ddev ) 6≺j Cost(ρ′<ddev ), which

means:(
xj ≤ yj

)
∧
(
xj 6= yj ∨ (∃i ∈ Π xi > yi) ∨ (∀i ∈ Π xi ≥ yi)

)
. (5.3)

By hypothesis (i), it holds that xj = yj . By hypothesis (iii), we cannot

have: ∀i ∈ Π, xi ≥ yi. Therefore to satisfy Equation (5.3), there must

exist a player i such that xi > yi. If Costi(ρ) < +∞, then by definition of

ddev, Costi(ρ) = xi > yi = Costi(ρ
′) in contradiction with hypothesis (ii).

Therefore Costi(ρ) = +∞. From xi > yi, it follows that Costi(ρ
′) < ddev,

which concludes the first implication of the proof.

For the converse, let us now assume that (σi)i∈Π is a secure equi-

librium that fulfils the property stated in Lemma 5.2.12. We will prove

that it is deviation-optimised, that is, for any player j ∈ Π, and any

deviation σ′j of player j, we have that Cost(ρ<ddev ) 6≺j Cost(ρ′<ddev ), with

ρ = 〈(σi)i∈Π〉v0
and ρ′ = 〈σ′j , σ−j〉v0

. By denoting respectively by (xi)i∈Π

and (yi)i∈Π the cost profiles of ρ<ddev and ρ′<ddev , it is equivalent to prove

Equation (5.3).

Since (σi)i∈Π is a secure equilibrium, we know that σ′j is not a ≺j-
profitable deviation. In particular, player j can not strictly decrease his

cost along ρ′, and thus xj ≤ yj . It remains to prove that the second

conjunct of Equation (5.3) is true. For this, we first show that as soon as

one of the hypotheses among (i), (ii) or (iii) is not fulfilled, this conjunct

is satisfied.

– If Costj(ρ) < Costj(ρ
′), by choice of ddev, we also have that xj < yj .

Moreover, the case Costj(ρ) > Costj(ρ
′) is not possible as (σi)i∈Π
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is a secure equilibrium.

– If there exists i ∈ Π such that Costi(ρ) < +∞ and Costi(ρ) >

Costi(ρ
′), then xi > yi.

– If for all i ∈ Π, Costi(ρ) ≥ Costi(ρ
′), we also have that xi ≥ yi, for

all i ∈ Π.

Thus the remaining deviations to consider fulfil hypotheses (i), (ii) and

(iii). In this case, there exists l ∈ Π such that Costl(ρ) = +∞ and

Costl(ρ
′) < ddev. In particular we have that xl > yl, and the second

conjunct of Equation (5.3) is true.

The ideas of the proof for Part (i) of Proposition 5.2.11 are as follows.

Suppose that there exists a goal-optimised and deviation-optimised secure

equilibrium (σi)i∈Π in Truncd(T ), for d = dgoal(G) + 3 · |V |. In order to

get from (σi)i∈Π a finite-memory secure equilibrium in (G, v0), we use a

similar construction as in the proof of Proposition 5.2.4, where it is shown,

in the context of two-player games, how to extend a secure equilibrium

in a finite truncation of (G, v0) to a secure equilibrium in (G, v0). The

rough idea is as follows. Due to the hypotheses, the outcome π of (σi)i∈Π

has a prefix αβ such that all goal sets visited by π are already visited

by α, and such that β can be repeated (as a cycle). The required secure

equilibrium is specified such that its outcome is equal to αβω and any

deviating player is punished by the coalition of the other players in a way

that this deviation is not profitable for him. This secure equilibrium can

be constructed in a way to be finite-memory.

Proof of Proposition 5.2.11, Part (i). Let G = (Π,A, (Ri)i∈Π) be a mul-

tiplayer quantitative game, and let us set Π = {1, . . . , n}. Let (τi)i∈Π be

a goal-optimised and deviation-optimised secure equilibrium in the game

Truncd(T ) and π its outcome. Since |π| = dgoal(G) + 3 · |V |, we can write

π = αβγ with α, β ∈ V +, γ ∈ V ∗

Last(α) = Last(αβ)

|α| ≥ dgoal(G) + |V |
|αβ| ≤ dgoal(G) + 2 · |V | .
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We have that Visit(α) = Visit(αβγ) (no new goal set is visited after α)

because |α| ≥ dgoal(G) and (τi)i∈Π is goal-optimised. This enables us

to use Lemma 4.1.7 as follows. Let j ∈ Π be such that α does not

visit Rj , and suppose that player j deviates from the history α. This

lemma states that for all histories hv consistent with τ−j and such that

|hv| ≤ |αβ|, then the coalition formed by all the players i ∈ Π \ {j} can

play to prevent player j from reaching his goal set Rj from vertex v. It

means that this coalition has a memoryless winning strategy µv{j from

vertex v in the zero-sum qualitative reachability game Gj = (Aj ,Rj),
where Aj = (V, (Vj , V \ Vj), E), and player j aims at reaching Rj while

the coalition Π\{j} wants to prevent this (see Theorem 2.2.15). For each

player i 6= j, let µvi,j be the memoryless strategy of player i in G induced

by µv{j .

We define a finite-memory secure equilibrium in the game T using the

same idea as in the proof of Proposition 5.2.4. The idea is to specify the

required secure equilibrium as follows: each player i plays according to

αβω (which is the outcome of this equilibrium) and punishes player j 6= i

if he deviates from αβω, by playing according to τi until depth |α|, and

after that, by playing arbitrarily if α visits Rj , and according to µvi,j
otherwise (where v is the vertex visited at depth |α| when deviating).

Formally we first need to specify a punishment function P . For the

initial vertex v0, we define P (v0) = ⊥ and for all histories hv ∈ Hist such

that h ∈ Histi, we let:

P (hv) :=


⊥ if P (h) = ⊥ and hv < αβω,

i if P (h) = ⊥ and hv 6< αβω,

P (h) otherwise (P (h) 6= ⊥).

Then the definition of the secure equilibrium (σi)i∈Π in T is as follows.
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For all i ∈ Π and h ∈ Histi,

σi(h) :=



v if P (h) = ⊥ (h < αβω); such that hv < αβω,

τi(h) if P (h) 6= ⊥, i and |h| ≤ |α|,
µvi,P (h)(v

′) if P (h) 6= ⊥, i, |h| > |α|, and P (h) 6∈ Visit(α);

s.t. h = h′vh′′v′ (v, v′ ∈ V ), |h′| = |α|,
and h′v consistent with τ−j ,

arbitrary otherwise,

where arbitrary means that the next vertex is chosen arbitrarily (in a

memoryless way). Clearly the outcome of (σi)i∈Π is the play αβω.

Let us show that (σi)i∈Π is a secure equilibrium in the game T . As-

sume by contradiction that there exists a ≺j-profitable deviation σ′j for

player j w.r.t. (σi)i∈Π in T . Let τ ′j be the strategy σ′j restricted to

Truncd(T ). We are going to show that τ ′j is a ≺j-profitable deviation for

player j w.r.t. (τi)i∈Π in Truncd(T ), which is impossible by hypothesis.

Here are some useful notations:

π = 〈(τi)i∈Π〉v0
of cost profile (x1, . . . , xn)

π′ = 〈τ ′j , τ−j〉v0
of cost profile (x′1, . . . , x

′
n)

ρ = 〈(σi)i∈Π〉v0 of cost profile (y1, . . . , yn)

ρ′ = 〈σ′j , σ−j〉v0
of cost profile (y′1, . . . , y

′
n).

Notice that the play π′ coincide with the play ρ′ at least until depth |α|
(by definition of τ ′j and σ−j); they can differ afterwards. Clearly π and ρ

coincide at least until depth |αβ|. The situation is depicted in Figure 5.2.

As σ′j is a ≺j-profitable deviation for player j w.r.t. (σi)i∈Π, we have

that

(y1, . . . , yn) ≺j (y′1, . . . , y
′
n). (5.4)

Let us show that τ ′j is a ≺j-profitable deviation for player j w.r.t. (τi)i∈Π,

i.e.,

(x1, . . . , xn) ≺j (x′1, . . . , x
′
n).

By Equation (5.4), one of the next three cases stands.
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Figure 5.2: Plays π and ρ, and their respective deviations π′ and ρ′.

(1) y′j < yj < +∞.

As ρ = αβω and Visit(α) = Visit(αβγ), it means that α visits

Rj , and then yj = xj . Since y′j < |α|, we also have x′j = y′j
(as π′ and ρ′ coincide until depth |α|). Therefore x′j < xj , and

(x1, . . . , xn) ≺j (x′1, . . . , x
′
n).

(2) y′j < yj = +∞.

If y′j ≤ |α|, we have again x′j = y′j . Since Visit(α) = Visit(π), it

follows that xj = yj = +∞. Thus x′j < xj , and so (x1, . . . , xn) ≺j
(x′1, . . . , x

′
n).

We show that the case y′j > |α| is impossible. By definition of σ−j ,

the play ρ′ is consistent with τ−j until depth |α|, and then with µv{j
from ρ′|α| (as yj = +∞). The play ρ′ cannot visit Rj after a depth

> |α| by definition of µv{j .

(3) yj = y′j , ∀i ∈ Π yi ≤ y′i and ∃ i ∈ Π yi < y′i.

The fact that yj = y′j implies yj = xj ≥ x′j (as Visit(α) = Visit(π)).

If x′j < xj , then (x1, . . . , xn) ≺j (x′1, . . . , x
′
n).
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We show that the case x′j = xj is impossible. We can show that

for all i ∈ Π such that xi < +∞, we have xi ≤ x′i, and that

there exists i ∈ Π such that xi < x′i. Since (τi)i∈Π is deviation-

optimised, Lemma 5.2.12 implies that there exists some l ∈ Π such

that xl = +∞, and x′l < ddev = max{xi | xi < +∞} + |V |. As

(τi)i∈Π is also goal-optimised, we have that ddev ≤ dgoal(G) + |V | ≤
|α|. As ρ′ is consistent with τ−j until depth |α|, it follows that

y′l = x′l < yl = xl = +∞. Thus case (3) is impossible.

Therefore, each case is either impossible or shows that (xi)i∈Π ≺j
(x′i)i∈Π. This is in contradiction with (τi)i∈Π being a secure equilibrium

in Truncd(T ), and therefore, (σi)i∈Π is a secure equilibrium in T , thus in

(G, v0).

It remains to show that (σi)i∈Π is a finite-memory strategy profile.

This proof is very similar to the proof of Proposition 5.2.4 and thus

is not given in details. Roughly speaking, a finite amount of memory is

enough to produce the outcome αβω; outside of this outcome it is enough

to remember how (σi)i∈Π is defined for histories up to length |α| (after

depth |α|, memoryless strategies are used).

Remark 5.2.13. This proof shows in fact a little stronger result: if there

exists a goal-optimised and deviation-optimised secure equilibrium in

Truncd(T ), then there exists a finite-memory secure equilibrium in (G, v0)

with the same cost profile.

Part (ii) of Proposition 5.2.11

Part (ii) of Proposition 5.2.11 states that if there exists a secure equi-

librium in a quantitative reachability game (G, v0), then there exists a

goal-optimised and deviation-optimised secure equilibrium in Truncd(T ),

for d = dgoal(G) + 3 · |V |. The proof needs several steps. Suppose that

there exists a secure equilibrium (σi)i∈Π in (G, v0). The first step consists

in transforming (σi)i∈Π into a goal-optimised and deviation-optimised se-

cure equilibrium in (G, v0) (Proposition 5.2.14); the second step in show-

ing that its restriction to Truncd(T ) with d = dgoal(G) + 3 · |V | is still a

goal-optimised and deviation-optimised secure equilibrium in Truncd(T ).
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Proposition 5.2.14. If there exists a secure equilibrium in an initialised

multiplayer quantitative reachability game, then there exists one which is

goal-optimised and deviation-optimised.

To get a goal-optimised equilibrium, the idea is to eliminate some un-

necessary cycles (see Definition 4.1.13). Such an idea has already been de-

veloped in Lemma 4.1.14 for Nash equilibria. Unfortunately, this lemma

cannot be applied for secure equilibria (as shown in Example 5.2.15).

Adapting it to the context of secure equilibria is not trivial, the under-

lying constructions are more involved: we need to modify the strategies

of the coalition against a deviating player. By using specific punishing

strategies for the coalitions, we are then able to get a goal-optimised

equilibrium that is also deviation-optimised, due to the particular form

of these strategies.

Example 5.2.15. Let us consider the three-player quantitative reachability

game whose arena is depicted in Figure 5.3, where the initial vertex is A,

V1 = {A,C,D}, V2 = {B}, V3 = ∅, R1 = R2 = {A} and R3 = {D}.
The number 4 labelling the edge (A,D) is a shortcut to indicate that

there are in fact four consecutive edges from A to D (through three

intermediate vertices), and similarly for the number 2 on the edge (B,D).

The strategy profile (σ1, σ2) defined 6 below is a secure equilibrium from A

whose outcome is ABCBDω and cost profile is (0, 0, 5):

σ1(h) =

{
B if h = A or ABC

D otherwise
; σ2(h′) =

{
C if h′ = AB

D otherwise

for every history h (resp. h′) ending in V1 (resp. V2).

Let us notice that the cycle BCB of the outcome ABCBDω is an

unnecessary cycle (see Definition 4.1.13). If we modify (σ1, σ2) in order

to remove this cycle, as done in Lemma 4.1.14 for Nash equilibria, the

resulting strategy profile is a Nash equilibrium with outcome ABDω and

cost profile (0, 0, 3), however it is no longer a secure equilibrium. Indeed,

player 1 has a ≺1-profitable deviation by choosing the edge (A,D) instead

of (A,B), which leads to a cost of 4 for player 3 (instead of 3). In the

6. We do not have to choose a strategy for player 3 since V3 = ∅.
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A B C

D

4 2

Figure 5.3: A three-player game with R1 = R2 = {A} and R3 = {D}.

sequel, we show how to modify the approach of Lemma 4.1.14 in a way

to keep the property of secure equilibrium.

In order to prove Proposition 5.2.14, we need three lemmas: Lem-

mas 5.2.17, 5.2.18 and 5.2.19. Given a secure equilibrium, Lemma 5.2.17

describes some particular memoryless strategies for the coalition when a

player deviates. Lemma 5.2.18 (counterpart of Lemma 4.1.14 for secure

equilibria) states that we can remove a cycle from the outcome of a secure

equilibrium, but the strategies have to be somewhat modified with these

specific coalition strategies. This lemma is used in the proof of Propo-

sition 5.2.14 to get a goal-optimised secure equilibrium. Lemma 5.2.19

states that we can also get a deviation-optimised secure equilibrium.

Memoryless coalition strategies. Given a secure equilibrium in a

quantitative reachability game (G, v0), we here prove the existence of

interesting memoryless strategies for the coalition against a deviating

player.

Let us first introduce the definition of a j-promising history for some

deviating player j. Intuitively player j deviates from a strategy profile

(σi)i∈Π and constructs a history h consistent with σ−j . This history h

is called j-promising w.r.t. (σi)i∈Π if player j does not know yet if this

deviation will be ≺j-profitable for him w.r.t. (σi)i∈Π, but he can still

hope that it will be, without knowing what he will play after h.

Definition 5.2.16. Let (σi)i∈Π be a strategy profile in a quantitative

reachability game (G, v0), with cost profile (xi)i∈Π. Let us assume that
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Π = {1, . . . , n} and

x1 ≤ . . . ≤ xk < xk+1 ≤ . . . ≤ xn

where 0 ≤ k < n. Let h be a history of (G, v0) such that xk ≤ |h| < xk+1.

For any player j ∈ Π, we say that h is j-promising w.r.t. (σi)i∈Π if h

is consistent with σ−j and if

– in the case where xk+1 < +∞:

– if j ≤ k, we have that Costj(h) = xj and ∀ i ∈ Π Costi(h) ≥ xi,
– if j > k, we have that Costj(h) = +∞;

– in the case where xk+1 = +∞:

Costj(h) = xj , ∀ i ∈ Π Costi(h) ≥ xi and ∃ i ∈ Π Costi(h) > xi.

In the case where xk+1 < +∞ and j ≤ k, along h, player j has been

able to get the same cost as along ρ (Costj(h) = xj) and to not decrease

the cost of the other players (Costi(h) ≥ xi). After h, he hopes to be

able to play such that the resulting deviation hρ′ will satisfy (xi)i∈Π ≺j
Cost(hρ′). In the case where j > k, player j has not visited his goal set

along h, so he does not know yet if his deviation will be ≺j-profitable for

him. However he hopes to visit it early enough after h along hρ′, such

that Costj(hρ
′) < xj , or to get the same cost while increasing the cost of

the other players in a way that (xi)i∈Π ≺j Cost(hρ′).

In the case where xk+1 = +∞, the history ρ≤|h| has visited all the

goal sets Ri such that Costi(ρ) < +∞. Thus player j could have a ≺j-
profitable deviation hρ′ if he can avoid visiting the goal sets Ri, where

i ≥ k + 1 (i 6= j).

Given a j-promising history h of player j, the next lemma describes

the existence of interesting memoryless strategies of the coalition Π \ {j}
from Last(h). For that purpose, the lemma considers particular zero-sum

qualitative reachability under safety games G−j = (A−j ,R−j ,S−j), where

A−j = (V, (V \Vj , Vj), E), and the coalition Π\{j} aims at reaching R−j

while staying in S−j , whereas player j wants to prevent this.

Lemma 5.2.17. Let G = (Π,A, (Ri)i∈Π) be a quantitative reachabil-

ity game, and let (σi)i∈Π be a secure equilibrium in (G, v0) with cost

profile (xi)i∈Π. Let h be a j-promising history w.r.t. (σi)i∈Π for some
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player j ∈ Π. We assume that Π = {1, . . . , n}. If

x1 ≤ . . . ≤ xk ≤ |h| < |h|+ |V | ≤ xk+1 ≤ . . . ≤ xl < +∞
and xl+1 = . . . = xn = +∞,

where 0 ≤ k ≤ l ≤ n, then the coalition Π\{j} has a memoryless winning

strategy µv{j from v = Last(h) in the zero-sum qualitative reachability

under safety game G−j = (A−j ,R−j ,S−j), where R−j and S−j are defined

as follows:

- if j ≤ k, then R−j = ∪i>kRi, S−j = V ,

- if k < j ≤ l, then R−j = V , S−j = V \ Rj,

- if l < j ∧ Cost(ρ≤|h|) �j Cost(h), then R−j = ∪i>k
i6=j

Ri, S−j = V \ Rj,

- if l < j ∧ Cost(ρ≤|h|) 6�j Cost(h), then R−j = V , S−j = V \ Rj.

In this lemma, either all goal sets are visited by ρ and l = n, or l < n

and the last visited goal set is Rl. Also notice that R−j 6= ∅ in all cases.

Indeed, k 6= n as h is j-promising, and then the set R−j in the case j ≤ k
of this lemma is not empty. In the third case, it is not empty either,

otherwise we would have k + 1 = l + 1 = n = j but such a situation is

impossible because h is j-promising w.r.t. (σi)i∈Π (see the last case of

Definition 5.2.16) and (σi)i∈Π is a secure equilibrium.

Proof of Lemma 5.2.17. Suppose that the hypotheses of the lemma are

satisfied. By contradiction, let us assume that the coalition Π \ {j} has

no winning strategy from vertex v in the game G−j = (A−j ,R−j ,S−j), i.e.

no winning strategy from v to reach R−j while staying in S−j . By Theo-

rem 2.2.15, it implies that player j has a memoryless winning strategy µvj
from v to stay outside R−j or to reach V \S−j . Recall that h is consistent

with σ−j as it is j-promising w.r.t. (σi)i∈Π. Let ρ′ be the play with pre-

fix h that is consistent with σ−j , and with µvj from v (see Figure 5.4). In

the four cases of the lemma, we then prove that (xi)i∈Π ≺j (Costi(ρ
′))i∈Π,

meaning that player j has a ≺j-profitable deviation w.r.t. (σi)i∈Π, which

is impossible.

– Case j ≤ k.

The strategy µvj enables to avoid all goal sets Ri where i > k. As h is

j-promising, we have that Costj(h) = xj and ∀i ∈ Π, Costi(h) ≥ xi.
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Figure 5.4: Play ρ and its deviation ρ′ with prefix h.

By construction of ρ′ and as xk ≤ |h| < xk+1, we have that

Costj(ρ
′) = Costj(h) = xj ,

∀i ≤ k, Costi(ρ
′) ≥ xi,

∀i > k, Costi(ρ
′) = +∞.

Then for all i ∈ Π, we have that Costi(ρ
′) ≥ xi. It remains to

show that the cost of one player is strictly increased in ρ′ compared

with ρ. In the case where xk+1 < +∞, i.e. k < l, we have in

particular that xl < +∞ and Costl(ρ
′) = +∞. And in the case

where xk+1 = +∞ (k = l), we have that (xi)i∈Π ≺j Cost(h) (by

definition of j-promising), i.e. there exists i ∈ Π such that xi <

Costi(h). Either Costi(h) = Costi(ρ
′) and then xi < Costi(ρ

′), or

Costi(h) = +∞ > Costi(ρ
′) and so xi ≤ |h| < Costi(ρ

′). In both

cases, it implies that (xi)i∈Π ≺j (Costi(ρ
′))i∈Π.

– Case k < j ≤ l.
As µvj is memoryless, this strategy enables player j to reach his goal

set Rj from v within |V | steps. Thus, we have that

Costj(ρ
′) < |h|+ |V | ≤ xk+1 ≤ xj

since k < j ≤ l, and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π.
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– Case l < j and Cost(ρ≤|h|) �j Cost(h).

The strategy µvj enables to avoid all goal sets Ri where i > k and

i 6= j, or to visit the goal set Rj . On one hand, if ρ′ visits Rj , then

Costj(ρ
′) < +∞ = xj

as j > l, and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π. On the other hand, if

ρ′ does not visit Rj , then ρ′ does not visit either any Ri with i > k.

Since Cost(ρ≤|h|) �j Cost(h), the situation is quite similar to the

first case, and we can deduce that

Costj(ρ
′) = xj = +∞,

∀i ≤ k, Costi(ρ
′) ≥ xi,

∀i > k, Costi(ρ
′) = +∞.

Thus, for all i ∈ Π, we have that Costi(ρ
′) ≥ xi. Moreover, exactly

like in the case j ≤ k, we can show that there exists i ∈ Π such that

xi < Costi(ρ
′). Then it implies that (xi)i∈Π ≺j (Costi(ρ

′))i∈Π.

– Case l < j and Cost(ρ≤|h|) 6�j Cost(h).

Like in the second case, the strategy µvj enables player j to reach

his goal set Rj from v. Then we have that

Costj(ρ
′) < +∞ = xj

and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π.

Removing a cycle. The next lemma states that it is possible to modify

the strategy profile of a secure equilibrium in a way to eliminate an

unnecessary cycle 7 in its outcome. In the notations of this lemma, notice

that β is the eliminated cycle (condition Last(α) = Last(αβ)), notice also

that a new goal set is visited after αβγ (condition Visit(ρ) 6= Visit(α)).

The elimination of the cycle is possible by modifying the strategies of the

coalitions into strategies as described in Lemma 5.2.17.

7. See Definition 4.1.13.
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Lemma 5.2.18. Let (σi)i∈Π be a secure equilibrium in a quantitative

reachability game (G, v0), with outcome ρ. Suppose that ρ = αβγρ̃, with

α, β, γ ∈ V +, |γ| ≥ |V | and ρ̃ ∈ V ω, such that

Visit(α) = Visit(αβγ)

Visit(ρ) 6= Visit(α)

Last(α) = Last(αβ).

Then there exists a secure equilibrium in (G, v0) with outcome αγρ̃.

Proof. Suppose that the hypotheses of the lemma are fulfilled. We denote

by (xi)i∈Π the cost profile of ρ. Let us assume w.l.o.g. that Π = {1, . . . , n}
and

x1 ≤ . . . ≤ xk ≤ |α| < |αβγ| ≤ xk+1 ≤ . . . ≤ xl < +∞
and xl+1 = . . . = xn = +∞,

where 0 ≤ k < l ≤ n (remark that k < l as Visit(ρ) 6= Visit(α)).

Let us define the required secure equilibrium (τi)i∈Π with the aim to

get the outcome αγρ̃ by eliminating β in ρ. For every i ∈ Π and every

history h ∈ Histi, we set

τi(h) :=


σi(αβδ) if h = αδ for δ ∈ V ∗,
µvi,P (h)(h) if α 6≤ h, P (h) 6= ⊥, i and ∃h′v ≤ h s.t. h′v is

P (h)-promising w.r.t. (σi)i∈Π and |h′v| = |α|,
σi(h) otherwise.

In this definition, the punishment function P is defined as in the proof of

Proposition 5.2.11, Part (i) (adapted to the play αγρ̃). Moreover, when

a player j deviates, each player i 6= j plays according to σi, except in

the case of a j-promising history h of length |α| from which he plays

according to µv{j , with v = Last(h) (see Lemma 5.2.17). Notation µvi,j
means the memoryless strategy of player i induced by µv{j .

We observe that the outcome of (τi)i∈Π is the play π = αγρ̃ (see

Figures 5.5 and 5.6). Let us write its cost profile as (y1, . . . , yn). It
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follows that for all i ∈ Π, yi ≤ xi. More precisely,

- if i ≤ k, then yi = xi; (5.5)

- if k < i ≤ l, then yi = xi − (|β|+ 1); (5.6)

- if i > l, then yi = xi = +∞. (5.7)

ρ=〈(σi)i∈Π〉v0
ρ′2

α

β

γρ̃

Figure 5.5: Play ρ.

π=〈(τi)i∈Π〉v0

π′
1

π′
2

α

γρ̃

Figure 5.6: Play π and deviations.

Assume that there exists a≺j-profitable deviation τ ′j for player j w.r.t.

(τi)i∈Π. Let π′ be the outcome of the strategy profile (τ ′j , τ−j) from v0,

and (y′1, . . . , y
′
n) its cost profile. Then we know that (y1, . . . , yn) ≺j

(y′1, . . . , y
′
n). Two possible situations occur according to where player j

deviates from π. We show that the first situation is impossible. In

the second one, we construct a ≺j-profitable deviation σ′j for player j

w.r.t. (σi)i∈Π, and then get a contradiction with (σi)i∈Π being a secure

equilibrium.

(i) The history α is not a prefix of π′ (see the play π′1 in Figure 5.6).

Let us consider the prefix h of π′ of length |α|. We first state

that h cannot visit Rj in a way that Costj(h) < xj , because h is

consistent with σ−j (by definition of (τi)i∈Π), and (σi)i∈Π is a secure

equilibrium. Therefore, h is a j-promising history w.r.t. (σi)i∈Π,
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as τ ′j is a ≺j-profitable deviation w.r.t. (τi)i∈Π. By definition of

(τi)i∈Π, π′ is consistent with µv{j from v = Last(h). We consider

the four possible cases of Lemma 5.2.17:

– j ≤ k.

We have that yj = y′j . The coalition Π \ {j} forces the play π′

to visit Ri, for a certain i > k (let us remind that k < n), before

depth |α| + |V | as µv{j is memoryless. And so, y′i < |α| + |V | ≤
|α| + |γ| ≤ yk+1 ≤ yi (as |αβγ| ≤ xk+1 and by Equation (5.6)).

This contradicts the fact that (y1, . . . , yn) ≺j (y′1, . . . , y
′
n).

– k < j ≤ l.
The coalition Π\{j} prevents the play π′ from visiting Rj , and so,

y′j = +∞. As yj < +∞, it cannot be the case that (y1, . . . , yn) ≺j
(y′1, . . . , y

′
n).

– l < j and Cost(ρ≤|h|) �j Cost(h).

The coalition Π \ {j} forces the play π′ to visit Ri, for a certain

i > k, i 6= j, before depth |α| + |V |, while avoiding the visit of

Rj (then, yj = y′j = +∞). As in the first case, this leads to a

contradiction with the fact that (y1, . . . , yn) ≺j (y′1, . . . , y
′
n).

– l < j and Cost(ρ≤|h|) 6�j Cost(h).

Like in the second case, the coalition Π \ {j} prevents the play

π′ from visiting Rj , and so, yj = y′j = +∞. Moreover, the

hypothesis Cost(ρ≤|h|) 6�j Cost(h) implies that (y1, . . . , yn) ≺j
(y′1, . . . , y

′
n) cannot be true.

(ii) The history α is a prefix of π′ (see the play π′2 in Figure 5.6).

We define for all histories h ∈ Histj :

σ′j(h) :=

{
σj(h) if αβ 6≤ h,

τ ′j(αδ) if h = αβδ.

Let us set ρ′ = 〈σ′j , σ−j〉v0
of cost profile (x′1, . . . , x

′
n). As player j

deviates after α with the strategy τ ′j , one can prove that

π′ = απ̃′ and ρ′ = αβπ̃′
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by definition of (τi)i∈Π (see the play ρ′2 in Figure 5.5). Since

Visit(α) = Visit(αβ), Equations (5.5), (5.6) and (5.7) also stand

by replacing xi with x′i and yi with y′i (but the value of l might be

different). Then

(x1, . . . , xn) ≺j (x′1, . . . , x
′
n) iff (y1, . . . , yn) ≺j (y′1, . . . , y

′
n),

which proves that σ′j is a ≺j-profitable deviation for player j w.r.t.

(σi)i∈Π, and this is a contradiction.

Goal- and deviation-optimised secure equilibrium. The following

lemma uses the ideas developed in the proof of Lemma 5.2.18 to show

that any secure equilibrium can be transformed into one that is deviation-

optimised. It is the last step before proving Proposition 5.2.14, and finally

Part (ii) of Proposition 5.2.11.

Lemma 5.2.19. If there exists a secure equilibrium in an initialised

quantitative reachability game, then there exists a deviation-optimised se-

cure equilibrium with the same outcome.

Proof. Let (σi)i∈Π be a secure equilibrium in a quantitative reachability

game (G, v0) with outcome ρ, and let α be the prefix of ρ of length

max{Costi(ρ) | Costi(ρ) < +∞}. It follows that Visit(ρ) = Visit(α).

Then, we define the required secure equilibrium (τi)i∈Π exactly like in the

proof of Lemma 5.2.18. We only remove the first line of the definition:

τi(h) = σi(αβδ) if h = αδ. One can be convinced that (τi)i∈Π and (σi)i∈Π

have the same outcome ρ. We prove in the exact same way that (τi)i∈Π

is a secure equilibrium in (G, v0) (here, k = l).

Let us now show that (τi)i∈Π is deviation-optimised by means of

Lemma 5.2.12. Let τ ′j be a strategy of some player j such that the play

ρ′ = 〈τ ′j , τ−j〉v0
verifies

(i) Costj(ρ) = Costj(ρ
′),

(ii) ∀ i ∈ Π such that Costi(ρ) < +∞, it holds that Costi(ρ) ≤ Costi(ρ
′),

(iii) ∃ i ∈ Π Costi(ρ) < Costi(ρ
′).



5.2 — Quantitative Reachability Objectives 151

We must prove that there exists l ∈ Π such that Costl(ρ) = +∞ and

Costl(ρ
′) ≤ ddev = max{Costi(ρ) | Costi(ρ) < +∞} + |V |. Notice that

Cost(ρ) = Cost(α).

On one hand, suppose that Cost(α) 6≺j Cost(ρ′≤|α|). By (i), (ii) and

(iii), the only possibility is to have some l such that Costl(α) = +∞ and

Costl(ρ
′
≤|α|) < +∞, that is, Costl(ρ) = +∞ and Costl(ρ

′) ≤ |α| < ddev.

On the other hand, if Cost(α) ≺j Cost(ρ′≤|α|), then according to the

last case of Definition 5.2.16, ρ′≤|α| is j-promising w.r.t. (σi)i∈Π. In-

deed, ρ′≤|α| is consistent with σ−j , and there exists i ∈ Π such that

Costi(ρ) = +∞ (otherwise it would contradict the fact that (σi)i∈Π is a

secure equilibrium). By definition of (τi)i∈Π, ρ′ is thus consistent with µv{j
from vertex v = ρ′|α|. Thus, by Lemma 5.2.17 (first case or third case),

there exists l such that Costl(ρ) = +∞ and Costl(ρ
′) < |α| + |V | = ddev

(as µv{j is memoryless).

In both cases, by Lemma 5.2.12, we proved that (τi)i∈Π is deviation-

optimised.

We are now able to prove Proposition 5.2.14, which states that if there

exists a secure equilibrium in a quantitative reachability game, then there

exists one which is goal-optimised and deviation-optimised.

Proof of Proposition 5.2.14. Let (σi)i∈Π be a secure equilibrium in a mul-

tiplayer quantitative reachability game (G, v0) with outcome ρ and cost

profile (xi)i∈Π. Let us assume w.l.o.g. that Π = {1, . . . , n} and

x1 ≤ . . . ≤ xl < xl+1 = . . . = xn = +∞

where 0 ≤ l ≤ n. Let us set x0 = 0. For all k ∈ {0, 1, . . . , l− 1} such that

(xk+1 − xk) ≥ 2 · |V | and while it is still the case, we apply the following

procedure to get a goal-optimised secure equilibrium.

Consider such a k ∈ {0, 1, . . . , l − 1}. Then, we can write ρ = αβγρ̃,

with α, β, γ ∈ V +, |γ| ≥ |V | and ρ̃ ∈ V ω, and such that

xk ≤ |αβγ| ≤ xk+1

Visit(α) = Visit(αβγ) = {1, . . . , k}
Last(α) = Last(αβ).
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Let us remark that Visit(ρ) 6= Visit(α) as k < l. By Lemma 5.2.18,

there exists a secure equilibrium in (G, v0) with outcome αγρ̃. Its cost

profile (yi)i∈Π is such that

yi = xi for i ≤ k ,
yi < xi for k < i ≤ l ,
yi = xi = +∞ for i > l .

By applying finitely many times this procedure, we can assume w.l.o.g.

that (σi)i∈Π is a secure equilibrium with a cost profile (x1, . . . , xn) such

that
xi < i · 2 · |V | for i ≤ l ,
xi = +∞ for i > l ,

meaning that (σi)i∈Π is a goal-optimised secure equilibrium.

Moreover, by Lemma 5.2.19, there exists a deviation-optimised secure

equilibrium with the same outcome, i.e. a goal-optimised and deviation-

optimised secure equilibrium. And this concludes the proof.

Remark 5.2.20. Regarding the costs, this proof shows that if there exists

a secure equilibrium with cost profile (ai)i∈Π in a game (G, v0), then

there exists a goal-optimised and deviation-optimised secure equilibrium

with cost profile (bi)i∈Π in (G, v0), such that for all i ∈ Π, bi ≤ ai. In

particular, the cost profile is usually not preserved.

Finally, on the basis of Proposition 5.2.14, we are able to prove

Part (ii) of Proposition 5.2.11: if there exists a secure equilibrium in

a quantitative reachability (G, v0), then there exists a goal-optimised and

deviation-optimised secure equilibrium in Truncd(T ), for d = dgoal(G) +

3 · |V |.

Proof of Proposition 5.2.11, Part (ii). Let G = (Π,A, (Ri)i∈Π) be a mul-

tiplayer quantitative game, and let (σi)i∈Π be a secure equilibrium in

the game (G, v0) with outcome ρ. By Proposition 5.2.14, we can sup-

pose w.l.o.g. that (σi)i∈Π is goal-optimised and deviation-optimised. Let

us define the strategy profile (τi)i∈Π in Truncd(T ) as the strategy pro-

file (σi)i∈Π restricted to the finite tree Truncd(T ). We prove that (τi)i∈Π
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is a secure equilibrium in Truncd(T ), which is clearly goal-optimised

(d > dgoal(G)).

For a contradiction, assume that player j has a ≺j-profitable devia-

tion τ ′j w.r.t. (τi)i∈Π. Let us denote π = 〈(τi)i∈Π〉v0
and π′ = 〈τ ′j , τ−j〉v0

in Truncd(T ). We extend arbitrarily τ ′j in T , into a strategy denoted σ′j ,

and let ρ′ = 〈σ′j , σ−j〉v0 . Let us remark that π (resp. π′) is a prefix

of ρ (resp. ρ′) of length d > dgoal(G), and thus, in particular Cost(ρ) =

Cost(π). Moreover, it is impossible that Costj(π) > Costj(π
′), otherwise

we would have Costj(ρ) > Costj(ρ
′) and so, get a contradiction with the

fact that (σi)i∈Π is a secure equilibrium in T . Then, player j gets the

same cost Costj(π) = Costj(π
′) and(

∀i ∈ Π Costi(π) ≤ Costi(π
′)
)
∧

(
∃i ∈ Π Costi(π) < Costi(π

′)
)
.

We now show that Costj(ρ) = Costj(ρ
′). In the case where Costj(π) =

Costj(π
′) = +∞ (= Costj(ρ)), we must have Costj(ρ

′) = +∞. Otherwise,

it would contradict the fact that (σi)i∈Π is a secure equilibrium in T . In

the case where Costj(π) = Costj(π
′) < +∞, then Costj(ρ) = Costj(ρ

′)

(as π and π′ are prefixes of ρ and ρ′ respectively). Moreover, since τ ′j is

a ≺j-profitable deviation w.r.t. (τi)i∈Π, it follows that for all i ∈ Π such

that Costi(ρ) < +∞, we have that Costi(ρ) ≤ Costi(ρ
′), and there exists

i ∈ Π such that Costi(ρ) < Costi(ρ
′). As (σi)i∈Π is deviation-optimised,

Lemma 5.2.12 implies that there exists some l ∈ Π such that Costl(ρ) =

+∞ and Costl(ρ
′) < ddev = max{Costi(ρ) | Costi(ρ) < +∞} + |V |. As

ddev ≤ dgoal(G) + |V | < d, we have that Costl(π) = Costl(ρ) = +∞ and

Costl(π
′) = Costl(ρ

′) < ddev. This gives a contradiction with the fact that

τ ′j is a ≺j-profitable deviation w.r.t. (τi)i∈Π in Truncd(T ). Therefore,

(τi)i∈Π is a secure equilibrium in this game. On the other hand, the

previous argument also shows that (τi)i∈Π is deviation-optimised.

Remark 5.2.21. This proof shows in particular that if there exists a goal-

optimised and deviation-optimised secure equilibrium in (G, v0), then

there exists a goal-optimised and deviation-optimised secure equilibrium

in Truncd(T ) with the same cost profile. Together with Remark 5.2.20,

we then proved the following result: if there exists a secure equilibrium

with cost profile (ai)i∈Π in (G, v0), then there exists a goal-optimised
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and deviation-optimised secure equilibrium with cost profile (bi)i∈Π in

Truncd(T ), such that for all i ∈ Π, bi ≤ ai.

Remarks 5.2.13 and 5.2.21 imply the proposition below.

Proposition 5.2.22. Given an initialised multiplayer quantitative reach-

ability game and a tuple of thresholds (ti)i∈Π ∈ (R ∪ {+∞})|Π|, one can

decide in ExpSpace whether there exists a secure equilibrium with cost

profile (ci)i∈Π such that for all i ∈ Π, ci ≤ ti.

The decision problem related to Proposition 5.2.22 is equivalent to

decide whether there exists a goal-optimised and deviation-optimised

secure equilibrium with cost profile (ai)i∈Π in Truncd(T ) where d =

dgoal(G) + 3 · |V |, such that for all i ∈ Π, ai ≤ ti. Notice that d does not

depend on (ti)i∈Π.

Remark 5.2.23. Proposition 4.1.4 states that any Nash equilibrium in a

multiplayer quantitative reachability game (G, v0) is also a Nash equi-

librium in the corresponding qualitative game (G, v0) (see Section 4.1.2

for more details). However, this proposition is false for secure equilib-

ria. To see that, let us consider the two-player quantitative reachability

game G = ({1, 2},A, (R1,R2)) whose arena A is depicted in Figure 5.7,

and such that R1 = {B,E} and R2 = {C} (same game as in Exam-

ple 4.1.3 on page 64).

A

B

D

C

E

Figure 5.7: A two-player quantitative reachability game.

Let σ1 be the positional strategy of player 1 defined by σ1(A) = B.

The strategy σ1 with outcome ABCω in (G, A) is a secure equilibrium

in the quantitative game (G, A) but not in the qualitative game (G, A),

since player 1 can reach his goal set and prevent player 2 from reaching

his if he chooses the edge (A,D).
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In particular, this means that existence of secure equilibria in multi-

player quantitative games would not directly imply the same result in the

corresponding multiplayer qualitative games. Recall that both results are

open problems to our knowledge.

Remark 5.2.24. The results we obtained about secure equilibria also hold

in games with general quantitative reachability objectives where there is a

unique non-zero natural price on every edge. Indeed, it suffices to replace

any edge of price c ∈ N0 by a path of length c composed of c new edges

(of price 1), and then apply our results on this new game.

However, the existence of a secure equilibrium in initialised (two-

player) quantitative reachability games with tuples of prices on edges is

an open problem.

Remark 5.2.25. It would be tempting to try to prove the existence of

secure equilibria in general cost games with the same techniques as the

ones used in Section 4.4. However, our definition of the Nash equilibrium

in the proof of Proposition 4.4.6, 8 is (in general) not a secure equilibrium.

To see this, let us consider the two-player quantitative reachability game

(G, A), whose arena is depicted in Figure 5.8, and where R1 = {A,C} and

R2 = {C}. Note that player 2 does not really play in G, only player 1 has

a choice to make: he can choose the edge (B,C) or the edge (B,D).

A

B

C D

Figure 5.8: Quantitative reachability game with R1 = {A,C}, R2 = {C}.

We have seen in Section 4.4 that the cost functions of quantitative

reachability games are always prefix-linear and positionally coalition-

8. As a reminder, Proposition 4.4.6 states that there exists a Nash equilibrium in

every initialised multiplayer cost game where each cost function is prefix-linear and

positionally coalition-determined.
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determined, we can then follow the proof of Proposition 4.4.6. We study

the two Min-Max cost games G1 and G2 (as described in Definition 4.4.4).

Let σ?1 be a positional strategy of player 1 in G1 such that σ?1(B) = C,

and σ?{2
be a positional strategy of player 1 in G2 such that σ?{2

(B) = D.

These strategies are optimal in the two respective games. Then, we de-

fine a Nash equilibrium in (G, A) in the same way as in the proof of

Proposition 4.4.6. It means here that player 1 chooses the edge (B,C)

(according to σ?1). 9 Actually, this is not a secure equilibrium in (G, A)

because player 1 can strictly increase player 2’s cost while keeping his

own cost, by choosing the edge (B,D) instead of (B,C).

9. In this example, the strategy σ?
{2

is useless since player 2 has no choice to make

in this game, and then can not deviate from a strategy.



Chapter 6

Subgame Perfect

Equilibrium

In this chapter, based on [BBDG12, BBDG13], we show the existence

of a subgame perfect equilibrium in quantitative reachability games (see

Section 6.1), and then in quantitative reachability games with tuples of

prices on edges (see Section 6.2).

The definition of subgame perfect equilibrium in multiplayer cost

games, as well as some related notations, are given in Section 2.3.2 (see

Definition 2.3.20, in particular). We also remind that the definition of

quantitative reachability games (with tuples of prices on edges) and some

related notations can be found in Section 4.1.1 (4.3).

6.1 Quantitative Reachability Objectives

In this section, we show the existence of subgame perfect equilibria in

multiplayer quantitative reachability games. We then positively answer

Problem 3 for subgame perfect equilibria.

Theorem 6.1.1. In every initialised multiplayer quantitative reachability

game, there exists a subgame perfect equilibrium.

157
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The proof uses techniques completely different from the ones given in

Chapters 4 and 5 for the existence of Nash and secure equilibria. The

way of defining a subgame perfect equilibrium in the game is similar to

the one of the proof of Theorem 2.3.24 ([FL83, Har85]). But the way of

proving that it is indeed a subgame perfect equilibrium is different, as

any cost function RPMin encoding a quantitative reachability objective

is not real-valued (which is one of the hypotheses of Theorem 2.3.24).

Let (G, v0) be a game and T be the corresponding game played on

the unravelling of G from v0. Kuhn’s theorem (and in particular Corol-

lary 2.3.23) guarantees the existence of a subgame perfect equilibrium in

each finite game Truncn(T ) for every depth n ∈ N. Given a sequence of

such equilibria, the key point is to derive the existence of a subgame per-

fect equilibrium in the infinite game T . This is possible by the following

lemma.

Lemma 6.1.2. Let (G, v0) be a multiplayer cost game, and T be the

corresponding game played on the unravelling of G from v0. Let (σn)n∈N
be a sequence of strategy profiles such that for every n ∈ N, σn is a

strategy profile in the truncated game Truncn(T ). Then there exists a

strategy profile σ? in the game T with the property:

∀ d ∈ N, ∃n ≥ d, σ? and σn coincide on histories of length up to d.

(6.1)

Proof. We give a tree structure, denoted by Γ, to the set of all strategy

profiles in the games Truncn(T ), n ∈ N: the nodes of Γ are the strategy

profiles, and we draw an edge from a strategy profile σ in Truncn(T ) to

a strategy profile σ′ in Truncn+1(T ) if and only if σ is the restriction of

σ′ to histories of length less than n. It means that the nodes at depth d

correspond to strategy profiles of Truncd(T ). We then consider the tree

Γ′ derived from Γ where we only keep the nodes σn, n ∈ N, and their

ancestors. Since Γ′ has finite outdegree, it has an infinite path by König’s

lemma. This path goes through infinitely many nodes that are ancestors

of nodes in the set {σn, n ∈ N}. Therefore there exists a strategy profile

σ? in the infinite game T (given by the previous infinite path in Γ′) with

property (6.1).
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Before proving Theorem 6.1.1, let us introduce the following notation.

Given a strategy profile σ = (σi)i∈Π, we write σ|h for (σi|h)i∈Π, and

h〈σ|h〉v for the play in (G, v0) with prefix h that is consistent with σ|h
from v.

Proof of Theorem 6.1.1. Let G = (Π,A, (Ri)i∈Π) be a multiplayer quan-

titative reachability game, v0 be an initial vertex, and T be the corre-

sponding game played on the unravelling of G from v0. For all n ∈ N,

we consider the finite game Truncn(T ) and get a subgame perfect equi-

librium σn = (σni )i∈Π in this game by Corollary 2.3.23. According to

Lemma 6.1.2, there exists a strategy profile σ? in the game T with prop-

erty (6.1).

It remains to show that σ? is a subgame perfect equilibrium in T , and

thus in (G, v0). Let hv be a history of this game (with v ∈ V ). We have

to prove that σ?|h is a Nash equilibrium in the subgame (T |h, v). As a

contradiction, suppose that there exists a profitable deviation σ′j for some

player j ∈ Π w.r.t. σ?|h in (T |h, v). This means that Costj(ρ) > Costj(ρ
′)

for ρ = h〈σ?|h〉v and ρ′ = h〈σ′j |h, σ?−j |h〉v, that is, ρ′ visits Rj for the first

time at a certain depth d, such that |h| < d < +∞, and ρ visits Rj at a

depth strictly greater than d (see Figure 6.1). Thus:

Costj(ρ) > Costj(ρ
′) = d.

T (T |h,v)

d

n

v

h

ρρ′

Rj

π′ π

Figure 6.1: The game T with its subgame (T |h, v).
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According to property (6.1), there exists n ≥ d such that σ? coincide

with σn on histories of length up to d. It follows that for π = h〈σn|h〉v
and π′ = h〈σ′j |h, σn−j |h〉v, we have that (see Figure 6.1)

Costj(π
′) = Costj(ρ

′) = d and Costj(π) > d,

as π′ and ρ′ coincide up to depth d. And so, σ′j is a profitable deviation

for player j w.r.t. σn|h in (Truncn(T )|h, v), which leads to a contradiction

with the fact that σn is a subgame perfect equilibrium in Truncn(T ) by

hypothesis.

Alternative Proof of Lemma 6.1.2

The compactness of the set of strategy profiles in a finite graph gives

an alternative proof to Lemma 6.1.2. This is the same kind of method

used for the proof of Theorem 2.3.24 ([FL83, Har85]). Roughly, the ideas

to show that this set is a compact space are the following ones. First,

notice that the set of (finite) histories in a finite graph is countable, then,

the set Si of strategies of a player i is homeomorphic to a countable

product of finite sets, which implies that Si is a compact space for the

product topology. By choosing an adequate metric on Si, one can show

that the set S =
∏
i∈Π Si of strategy profiles is a compact metric space.

Thanks to this, we can prove Lemma 6.1.2. Let (σn)n∈N be a sequence

of strategy profiles such that for every n ∈ N, σn is a strategy profile in

the truncated game Truncn(T ). For all n ∈ N and i ∈ Π, we extend the

strategy σni in an arbitrary way to get a strategy defined on every history

of the game G. We then obtain a sequence of strategy profiles of G. By

compactness, there exists a convergent subsequence. If the limit strategy

profile is denoted by σ?, one can show that property (6.1) holds. This

result is also a direct consequence of the compactness of the set of infinite

trees with bounded outdegree [Kec95].

In the vein of such a proof, we give some words about the “convergence

phenomenon” 1 of a sequence (σn)n∈N such that for all n ∈ N, σn is a

1. We studied this “convergence phenomenon” with the hope of adapting the proof

of Theorem 6.1.1 to show the existence of secure equilibria in multiplayer quantitative

reachability games (but finally it did not help).
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subgame perfect equilibrium in the finite game Truncn(T ), derived from

a quantitative reachability game G. For the sake of simplicity, we assume

that the sequence (σn)n∈N is converging, and we denote by σ? the limit

strategy profile in T . Given a play ρ, we say that a player is winning

if ρ visits his goal set. We denote by Ω(σn) (resp. Ω(σ?)) the number

of winning players of the outcome 〈σn〉v0 (resp. 〈σ?〉v0) in Truncn(T )

(resp. in T ). Recall that v0 is the initial vertex of T . Then, it holds

that 0 ≤ Ω(σn),Ω(σ?) ≤ |Π|, where |Π| is the number of players in the

game. A question we can ask is: does the sequence (Ω(σn))n∈N converge

to Ω(σ?)? First, it is important to notice that this sequence does not

always converge.

Example 6.1.3. Let us consider the two-player quantitative reachability

game G = ({1, 2},A, (R1,R2)), whose arena A is depicted in Figure 6.2

(player 1 controls both vertices), and such that R1 = {A} and R2 = {B}.
Let us fix the initial vertex A.

A B

Figure 6.2: Quantitative reachability game with R1 = {A} and R2 = {B}.

For every n ∈ N0 that is even, let σn1 be the strategy defined, for any

history h ending in A, by

σn1 (h) =

{
A if h = Aj , with j < n,

B otherwise.
(6.2)

For every odd natural n, σn1 is a positional strategy defined by σn1 (A) = A.

Then, if n is even (resp. odd), the outcome of σn1 is AnB (resp. An+1)

in Truncn(T ). Moreover, σn1 is a subgame perfect equilibrium in this

game, for all n ∈ N0, and the sequence (σn1 )n∈N converges to the positional

strategy defined by σ?1(A) = A. But the sequence (Ω(σn1 ))n∈N does not

converge, since Ω(σn1 ) = 2 if n is even, and Ω(σn1 ) = 1 otherwise.

In fact, the answer to the question “if the sequence (Ω(σn))n∈N is

converging, does it converge to Ω(σ?)?” is still no, as shown by the

following example.
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Example 6.1.4. Let us come back to the two-player quantitative reach-

ability game G = ({1, 2},A, (R1,R2)) of Example 6.1.3. For all n ∈ N0,

let σ̃n1 be the strategy defined as in Equation (6.2). This strategy is

a subgame perfect equilibrium in Truncn(T ) with outcome AnB. One

can show that the sequence (σ̃n1 )n∈N converges to σ?1 , where σ?1 is the

positional strategy given by σ?1(A) = A. But we have that Ω(σ̃n1 ) = 2

for all n ∈ N0, and Ω(σ?1) = 1, which implies that (Ω(σ̃n1 ))n∈N does not

converge to Ω(σ?1).

Nevertheless, the next property holds.

Proposition 6.1.5. For all n ∈ N, let σn be a subgame perfect equilib-

rium in Truncn(T ). We assume that (σn)n∈N converges to the strategy

profile σ? of T . If (Ω(σn))n∈N converges to some value l, then Ω(σ?) ≤ l.

Proof. By contradiction, assume that Ω(σ?) > l. As (Ω(σn))n∈N con-

verges to l and can only take a finite number of values, then (Ω(σn))n∈N is

ultimately constant: there exists n0 ∈ N such that for all n ≥ n0, Ω(σn) =

l. According to Property (6.1), with d = n0, there exists n1 ≥ n0 such

that σ? coincide with σn1 on histories of length up to n0. Then Ω(σn1) =

l < Ω(σ?). It implies that the outcome of σ? visits the goal set of a player

for the first time at some depth n′0 > n0. We repeat the argument (with

d = n′0, and so on) until we get a contradiction with the fact that Ω(σ?)

is finite.

If we assume that the strategy profile σn maximises the number of

winning players in Truncn(T ) for all n ∈ N, Example 6.1.4 shows that the

answer to the question “if the sequence (Ω(σn))n∈N is converging, does

it converge to Ω(σ?)?” is still no. On the other hand, if we minimise the

number of winning players, the answer is yes.

Proposition 6.1.6. For all n ∈ N, let σn be a subgame perfect equi-

librium in Truncn(T ) that minimises the number of winning players.

We assume that (σn)n∈N converges to the strategy profile σ? of T . If

(Ω(σn))n∈N converges to some value l, then Ω(σ?) = l.

Proof. By Proposition 6.1.5, we know that Ω(σ?) ≤ l. It then remains to

show the other inequality.
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By the same arguments as before, (Ω(σn))n∈N is ultimately constant:

there exists n0 ∈ N such that for all n ≥ n0, Ω(σn) = l. By contradiction,

assume that Ω(σ?) < l. Let us consider the strategy profile σ? restricted

to the game Truncn0
(T ), and denote it by σ?[n0]. One can show that

this is a subgame perfect equilibrium in this game. Indeed, a profitable

deviation in Truncn0(T ) would imply a profitable deviation in T , and

then contradicts the fact that σ? is a subgame perfect equilibrium in T
(see the proof of Theorem 6.1.1).

By hypothesis, we have that Ω(σ?) < l = Ω(σn0). As Ω(σ?[n0]) ≤
Ω(σ?), it contradicts the fact that σn0 is a subgame perfect equilibrium

in Truncn0
(T ) that minimises the number of winning players.

We now state a property which somewhat binds the sets of winning

players Type(σn) and Type(σ?). Recall that Type(σ) ⊆ Π and notice that

|Type(σ)| = Ω(σ) for any strategy profile σ, when the same initial vertex

is fixed.

Proposition 6.1.7. For all n ∈ N, let σn be a subgame perfect equilib-

rium in Truncn(T ) that minimises the number of winning players. We

assume that for all n ∈ N, Type(σn) = T for a certain 2 set T ⊆ Π

of players, and that (σn)n∈N converges to the strategy profile σ? of T .

Then, Type(σ?) = T.

Proof. First assume by contradiction that Type(σ?) 6⊆ T. Then, there

exists j ∈ Type(σ?) such that j 6∈ T. Let d be the depth at which the

outcome of σ? visits Rj for the first time. According to Property (6.1),

there exists n ≥ d such that σ? coincide with σn on histories of length

up to d, which contradicts the facts that Type(σn) = T and j 6∈ T. Then,

Type(σ?) ⊆ T.

By Proposition 6.1.6, it holds that |Type(σ?)| = |T|, since (Ω(σn))n∈N
converges to |T| (recall that Ω(σn) = |Type(σn)| and Type(σn) = T for

all n ∈ N). Then, Type(σ?) = T.

Remark 6.1.8. The problem of deciding, given an initialised multiplayer

quantitative reachability game, and thresholds (ti)i∈Π ∈ (R ∪ {+∞})|Π|,

2. It is possible since Type(σn) ⊆ Π and |Π| < +∞.
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whether there exists a subgame perfect equilibrium with cost profile at

most (ti)i∈Π, is NP-hard (this can be derived from the proof of [Umm05,

Proposition 6.29]).

6.2 General Quantitative Reachability Ob-

jectives

As an extension to multiplayer quantitative reachability games, we

consider multiplayer quantitative reachability games with tuples of prices

on edges (as defined in Section 4.3). In this framework, we also prove

the existence of a subgame perfect equilibrium. The proof is similar to

the one of Theorem 6.1.1, the only difference lies in the choice of the

considered depth d of the game Truncd(T ).

Theorem 6.2.1. In every initialised multiplayer quantitative reachabil-

ity game with tuples of prices on edges, there exists a subgame perfect

equilibrium.

Let us introduce some notations that will be useful for the proof

of this theorem. We define cmin := mini∈Π mine∈E Costi(e), cmax :=

maxi∈Π maxe∈E Costi(e) and K :=
⌈
cmax

cmin

⌉
. It is clear that cmin, cmax > 0

and K ≥ 1.

Proof of Theorem 6.2.1. Let G = (Π,A, (φi)i∈Π, (Ri)i∈Π) be some multi-

player quantitative reachability game with tuples of prices on edges, and

T be the corresponding game played on the unravelling of G from an ini-

tial vertex v0. For all n ∈ N, we consider the finite game Truncn(T ) and

get a subgame perfect equilibrium σn = (σni )i∈Π in this game by Corol-

lary 2.3.23. According to Lemma 6.1.2, there exists a strategy profile σ?

in the game T with property (6.1).

We then show that σ? is a subgame perfect equilibrium in T , and

thus in (G, v0). Let hv be a history of this game (v ∈ V ). We have

to prove that σ?|h is a Nash equilibrium in the subgame (T |h, v). As a

contradiction, suppose that there exists a profitable deviation σ′j for some

player j ∈ Π w.r.t. σ?|h in (T |h, v). This means that Costj(ρ) > Costj(ρ
′)
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for ρ = h〈σ?|h〉v and ρ′ = h〈σ′j |h, σ?−j |h〉v. Thus ρ′ visits Rj for the first

time at a certain depth d′, such that |h| < d′ < +∞.

We define some depth d depending on the fact that ρ visits Rj or not.

d =

{
max{d′, d′′} if ρ visits Rj for the first time at depth d′′,

d′ · K if ρ does not visit Rj .

According to property (6.1), there exists n ≥ d such that σ? coincide

with σn on histories of length up to d. For π = h〈σn|h〉v and π′ =

h〈σ′j |h, σn−j |h〉v, since d ≥ d′, it follows that:

Costj(π
′) = Costj(ρ

′).

If ρ visits Rj , then it holds that Costj(π) = Costj(ρ) by definition of

d, and so Costj(π) > Costj(π
′). If ρ does not visit Rj , then the following

inequalities hold:

Costj(π
′) ≤ d′ · cmax ≤ d · cmin < Costj(π).

The first inequality comes from the fact that π′ visits Rj at depth d′, the

second one from the definition of d, and the last one from the fact that

if π visits Rj , it must happen after depth d (as ρ does not visit Rj).

In both cases Costj(π) > Costj(π
′), and we conclude that σ′j is a prof-

itable deviation for player j w.r.t. σn|h in (Truncn(T )|h, v), which leads

to a contradiction with the fact that σn is a subgame perfect equilibrium

in Truncn(T ) by hypothesis.

Remark 6.2.2. One can transform the cost functions (Costi)i∈Π of quan-

titative reachability games in the following way: for any player i and any

play ρ,

Cost′i(ρ) =

{
1− 1

c+1 if Costi(ρ) = c ∈ R+,

1 if Costi(ρ) = +∞.

These new cost functions (Cost′i)i∈Π are real-valued and continuous. Fur-

thermore, a subgame perfect equilibrium in a game with the cost func-

tions (Costi)i∈Π is a subgame perfect equilibrium in this game with the

new cost functions (Cost′i)i∈Π, and conversely. Then, Theorems 6.1.1

and 6.2.1 are consequences of Theorem 2.3.24 ([FL83, Har85]).
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Remark 6.2.3. One could be tempted to prove the existence of sub-

game perfect equilibria in general cost games with the same techniques

as the ones used in Section 4.4. But like for secure equilibria (see Re-

mark 5.2.25), the proof of Proposition 4.4.6 does not directly induce the

existence of subgame perfect equilibria in multiplayer cost games: our

definition of the Nash equilibrium in this proof is (in general) not a sub-

game perfect equilibrium. Let us show this with the following example.

We consider the two-player quantitative reachability game (G, A),

whose arena is depicted in Figure 6.3, and where R1 = R2 = {D,E}.

A

B C

D E F

Figure 6.3: Quantitative reachability game with R1 = R2 = {D,E}.

Since the cost functions of quantitative reachability games are always

prefix-linear and positionally coalition-determined (see Section 4.4), we

can follow the proof of Proposition 4.4.6. So, we study the two Min-Max

cost games G1 and G2 (as described in Definition 4.4.4). In the game G1,

we define two positional strategies σ?1 and σ?{1
for player Min (player 1

in G) and player Max (player 2 in G) respectively, as: σ?1(C) = E and

σ?{1
(A) = C. One can be convinced that σ?1 and σ?{1

are optimal strategies

in G1. In the game G2, we define two positional strategies σ?2 and σ?{2
for

player Min (player 2 in G) and player Max (player 1 in G) respectively,

as: σ?2(A) = B and σ?{2
(C) = F . We claim that these two strategies are

optimal in G2.

If we define a Nash equilibrium (τ1, τ2) in (G, A) exactly as in the

proof of Proposition 4.4.6, depending 3 on these strategies σ?1 , σ?{1
, σ?2

and σ?{2
, then (τ1, τ2) is not a subgame perfect equilibrium in (G, A).

3. As a reminder, τ1 prescribes to play according to σ?
1 , and switch to σ?

{2
if player 2

deviates. And symmetrically for the strategy τ2 of player 2.
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Indeed, (τ1|A, τ2|A) is not a Nash equilibrium in the subgame (G|A, C):

player 1 punishes player 2 by choosing the edge (C,F ) (according to σ?{2
)

whereas player 1 could pay a smaller cost by choosing the edge (C,E).

Furthermore, this Nash equilibrium also gives a counter-example of

subgame perfect equilibrium for other classical punishments (see [OR94],

e.g., punish the last player who has deviated and only for a finite number

of steps).
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Chapter 7

Subgame Perfect Secure

Equilibrium

In this chapter, based on [BBDG13], we first introduce the new con-

cept of subgame perfect secure equilibrium (in Section 7.1). Then we

study this notion in cost games played on finite trees (Section 7.2), and

in quantitative reachability games (in Section 7.3).

7.1 Definition

The concept of subgame perfect secure equilibrium is a new notion

that combines both concepts of subgame perfect equilibrium and secure

equilibrium in the following way. A strategy profile is a subgame perfect

secure equilibrium in a game if it is a secure equilibrium in every subgame.

Let us remind that the definition of subgame in multiplayer cost

games, as well as some related notations, are given in Section 2.3.2 (see

just before Definition 2.3.20). We here give the definition of secure equi-

librium in a subgame.

Given a history hv of a cost game (G, v0) (with v ∈ V ), we say that

(σi|h)i∈Π is a secure equilibrium in the subgame (G|h, v) if, for every

player j ∈ Π, there does not exist any strategy σ′j of player j such that:

169
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Cost|h(〈(σi|h)i∈Π〉v) ≺j Cost|h(〈σ′j |h, σ−j |h〉v), 1 or in an equivalent way,

Cost(h〈(σi|h)i∈Π〉v) ≺j Cost(h〈σ′j |h, σ−j |h〉v).

Definition 7.1.1. Given a multiplayer cost game (G, v0), a strategy

profile (σi)i∈Π of G is a subgame perfect secure equilibrium of (G, v0)

if (σi|h)i∈Π is a secure equilibrium in (G|h, v), for every history hv of

(G, v0), with v ∈ V .

Notice that a subgame perfect secure equilibrium is a secure equilib-

rium, as well as a subgame perfect equilibrium.

In order to understand the differences between the various notions

of equilibria, we provide three simple examples of games limited to two

players and to finite trees.

Example 7.1.2. Let G = ({1, 2},A, (R1,R2)) be the two-player quanti-

tative reachability game whose arena is depicted in Figure 7.1 (V1 =

{A,D,E, F} and V2 = {B,C}), and where R1 = {D,F} and R2 = {F}.
The number 2 labelling the edge (B,D) is a shortcut to indicate that

there are in fact two consecutive edges from B to D (through one in-

termediate vertex). We also consider two other two-player quantitative

reachability games G′ and G′′, whose arenas are depicted in Figure 7.2

(notice that the number 2 has disappeared from the edge (B,D)) and

in Figure 7.3 respectively. For the game G′, the players’ goal sets are

R′1 = {D,F} and R′2 = {F}, and for the game G′′, the players’ goal sets

are R′′1 = {D,F} and R′′2 = {E,F}.

A

B C

D E F

2

Figure 7.1: Game G.

A

B C

D E F

Figure 7.2: Game G′.

A

B C

D E F

Figure 7.3: Game G′′.

In the games G, G′ and G′′, we define 2 two positional strategies σ1, σ′1

1. For a play ρ, we denote by Cost|h(ρ) the cost profile (Costi|h(ρ))i∈Π.
2. Notice that the players’ possible choices to make in the arenas of the games G,
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of player 1 and two positional strategies σ2, σ′2 of player 2 in the following

way: σ1(A) = B, σ′1(A) = C, σ2(C) = E and σ′2(C) = F .

In (G, A), one can easily check that the strategy profile (σ1, σ2) is

a secure equilibrium (and thus a Nash equilibrium) with cost profile

(3,+∞). Such a secure equilibrium exists because player 2 threatens

player 1 to choose the edge (C,E) (thus preventing player 1 from having

a cost of 2). But this threat is not credible for player 2 since by acting

this way, player 2 gets an infinite cost instead of a cost of 2 (that he

could obtain by reaching F ). For this reason, (σ1, σ2) is not a subgame

perfect equilibrium (and thus not a subgame perfect secure equilibrium).

However, one can check that the strategy profile (σ′1, σ
′
2) is a subgame

perfect secure equilibrium.

In (G′, A), one can verify that the strategy profile (σ′1, σ
′
2) is a sub-

game perfect equilibrium which is not a secure equilibrium (and thus

not a subgame perfect secure equilibrium). A subgame perfect secure

equilibrium for (G′, A) is given by the strategy profile (σ1, σ
′
2).

In (G′′, A), one can check that the strategy profile (σ1, σ
′
2) is both a

subgame perfect equilibrium and a secure equilibrium. However it is not a

subgame perfect secure equilibrium. In particular, this shows that being

a subgame perfect secure equilibrium is not equivalent to be a subgame

perfect equilibrium and a secure equilibrium. On the other hand, (σ1, σ2)

is a subgame perfect secure equilibrium in (G′′, A).

A part of our work is to investigate interesting concepts of equilibria in

multiplayer cost games. In particular, in quantitative reachability games,

each player aims at reaching his goal set as soon as possible. Having that

in mind, a play where a goal set is visited for the first time after cycles

were no new goal set is visited does not seem to be a desirable behaviour

(recall Definition 4.1.13 of unnecessary cycle). It appears thus reason-

able to seek equilibrium concepts with outcomes that do not present this

undesirable feature.

Example 7.1.3. Let us exhibit an example of this phenomenon on the

two-player quantitative reachability game (G, A) whose arena is depicted

in Figure 7.4, and where R1 = {A} and R2 = {B}. For n > 1, let us

G′ and G′′ are the same.
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consider the play AnBω. Along this play, the cycles An−1, for n > 1,

are unnecessary cycles. Indeed, once R1 is visited (in A), looping n times

in A just delays the apparition of R2 (in B). However, for each n > 1,

one can build a subgame perfect equilibrium (σn1 , σ2) whose outcome is

AnBω and cost profile is (0, n), as follows:

σn1 (h) =

{
A if h = Aj , with j < n,

B otherwise.

This allows us to conclude that the notion of subgame perfect equilibrium

does not prevent the existence of outcomes with unnecessary cycles. We

can notice that, for any n > 1, (σn1 , σ2) is not a secure equilibrium (and

thus not a subgame perfect secure equilibrium) in (G, A). However, we

will see in the next example that secure equilibria can also allow this kind

of undesirable behaviours.

A B

Figure 7.4: Subgame perfect equi-

librium with outcome AnBω.

A B C

Figure 7.5: Secure equilibrium

with outcome AnBCω.

Let us consider the two-player quantitative reachability game (G′, A)

whose arena is depicted in Figure 7.5, and where R′1 = R′2 = {C}. For

n > 1, the cycles An−1 are unnecessary along the play AnBCω. However,

for each n > 1, we can build a secure equilibrium (σn1 , σ
n
2 ) whose outcome

is AnBCω and cost profile is (n+ 1, n+ 1), as follows:

σn1 (h) =

{
A if h = Aj , with j < n,

B otherwise,
; σn2 (h) =

{
C if h = AnB,

A otherwise.

For each n > 1, the fact that (σn1 , σ
n
2 ) is a secure equilibrium in (G′, A)

is based on the following threat of player 2 against player 1: player 2

pretends that he will only decide to visit vertex C if player 1 has visited

vertex A exactly n times. This behaviour is not credible since player 2’s

interest is to reach vertex C as soon as possible. In other words, we
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have that (σn1 , σ
n
2 ) is not a subgame perfect equilibrium (and thus not a

subgame perfect secure equilibrium) in (G′, A).

Note that in (G, A), the only subgame perfect secure equilibrium is

the one where player 1 always chooses the edge (A,A), leading to the out-

come Aω and cost profile (0,+∞). In (G′, A), the strategy profile where

player 1 always chooses the edge (A,B) and player 2 always chooses the

edge (B,C) is the only subgame perfect secure equilibrium. Its outcome

is the play ABCω and its cost profile is (2, 2).

These examples motivate the introduction of the notion of subgame

perfect secure equilibrium. We believe that this notion can help in

avoiding the undesirable behaviours of unnecessary cycles in quantita-

tive reachability games (but it is an open problem). More generally,

a deeper understanding of the studied equilibria whose outcomes have

unnecessary cycles could be very useful.

7.2 Games with Various Objectives Played

on Finite Trees

In this section, we state that there always exists a subgame perfect

secure equilibrium in a multiplayer cost game whose graph is a finite tree.

This in fact follows from a variant of Kuhn’s theorem (Theorem 2.3.22).

Given two cost profiles x and y, let -j be the relation defined by

x -j y iff x ≺j y or x = y, where ≺j is the relation of Equation (5.1)

(used in the definition of secure equilibrium). One can show that in the

two-player case (see Equation (5.2)), -j is a preference relation (it is

total, reflexive and transitive). However, when there are more than two

players, -j is no longer total 3, so Kuhn’s theorem can not be applied.

Nevertheless, it is proved in [LR09] that, when the binary relations on cost

profiles are only transitive, Kuhn’s theorem can be rewritten as follows.

Theorem 7.2.1 ([LR09]). Given a multiplayer cost game G = (Π,A,
(Costi)i∈Π) whose graph is a finite tree, and a transitive binary rela-

tion ≺i on cost profiles for each player i ∈ Π, there exists a strategy

3. For example, (0, 1, 0) 6-1 (0, 0, 1) and (0, 0, 1) 6-1 (0, 1, 0).
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profile (σi)i∈Π such that for every history hv in G, with v ∈ V , and for

every player j ∈ Π, there does not exist a strategy σ′j of player j, such

that

Cost(ρ) ≺j Cost(ρ′)

where ρ = h〈(σi|h)i∈Π〉v and ρ′ = h〈σ′j |h, σ−j |h〉v.

As one can show the transitivity of each relation ≺j of Equation (5.1)

(used in the definition of secure equilibrium), the next corollary holds.

Corollary 7.2.2. In every multiplayer cost game whose graph is a finite

tree, there exists a subgame perfect secure equilibrium.

7.3 Quantitative Reachability Objectives

In this section, we show the existence of a subgame perfect secure equi-

librium in every initialised two-player quantitative reachability game. We

then positively answer Problem 3 for subgame perfect secure equilibria,

but in the two-player case only. The multiplayer case is still an open

problem.

Theorem 7.3.1. In every initialised two-player quantitative reachability

game, there exists a subgame perfect secure equilibrium.

The main ideas of the proof are similar to the ones for Theorem 6.1.1

(stating the existence of a subgame perfect equilibrium in quantitative

reachability games).

Proof of Theorem 7.3.1. Let G = ({1, 2},A, (R1,R2)) be a two-player

quantitative reachability game, v0 be an initial vertex, and T be the

corresponding game played on the unravelling of G from v0. For every

n ∈ N, we consider the finite game Truncn(T ) and get a subgame perfect

secure equilibrium σn = (σn1 , σ
n
2 ) in this game by Corollary 7.2.2. Ac-

cording to Lemma 6.1.2 (on page 158), there exists a strategy profile σ?

in the game T such that σ? has property (6.1).

We show that σ? = (σ?1 , σ
?
2) is a subgame perfect secure equilibrium

in T , and thus in (G, v0). Let hv be a history of this game (v ∈ V ). We
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have to prove that σ?|h is a secure equilibrium in the subgame (T |h, v).

As a contradiction, suppose that there exists a ≺j-profitable deviation σ′j
for some player j ∈ {1, 2} w.r.t. σ?|h in (T |h, v). Let us assume w.l.o.g.

that j = 1. As σ?|h is a Nash equilibrium in (T |h, v) (see the proof of

Theorem 6.1.1), we know that

Cost1(ρ) = Cost1(ρ′) and Cost2(ρ) < Cost2(ρ′) (7.1)

where ρ = h〈σ?1 |h, σ?2 |h〉v and ρ′ = h〈σ′1|h, σ?2 |h〉v. Thus it implies that

Cost2(ρ) is finite. Let d be the maximum between Cost1(ρ) and Cost2(ρ) if

Cost1(ρ) is finite, or Cost2(ρ) otherwise. Remark that d > |h|. According

to property (6.1), there exists n ≥ d such that the strategy profiles σ?

and σn coincide on histories of length up to d.

Let us show that σ′1 would then be a ≺1-profitable deviation for

player 1 w.r.t. σn|h in (Truncn(T )|h, v). In this aim we first prove that

Cost2(π) < Cost2(π′) (7.2)

where π = h〈σn1 |h, σn2 |h〉v and π′ = h〈σ′1|h, σn2 |h〉v are finite plays in

Truncn(T ) (see Figure 7.6). By definition of d and according to prop-

erty (6.1), we have that Cost2(π) = Cost2(ρ) ≤ d. If Cost2(ρ′) =

Cost2(π′), Equation (7.1) implies that Cost2(π) < Cost2(π′). Otherwise,

we have that Cost2(π′) > d as ρ′ and π′ coincide until depth d (by prop-

erty (6.1)), and then Cost2(π) ≤ d < Cost2(π′).

We now consider Cost1(π) and Cost1(π′). Let us study the next two

cases.

– If Cost1(ρ) < +∞, then we have that

Cost1(π) = Cost1(π′) (7.3)

because Cost1(ρ′) = Cost1(ρ) = Cost1(π) = Cost1(π′) ≤ d by Equa-

tion (7.1), property (6.1) and definition of d.

– If Cost1(ρ) = +∞, then we show that Cost1(π) = +∞, and as a

consequence we get that

Cost1(π) ≥ Cost1(π′). (7.4)

As a contradiction suppose that Cost1(π) < +∞. Let ρd be the

first vertex of ρ that belongs to R2 (we remind that Cost2(ρ) = d).
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T (T |h,v)

d

n

v

h

ρ

R2

ρ′

π′ π

Figure 7.6: The game T with its subgame (T |h, v).

We consider the (zero-sum qualitative) reachability game G1 =

(A1,R1), where A1 = (V, (V1, V2), E), and player 1 aims at reaching

R1 while player 2 wants to prevent this. Suppose that player 1 has

a winning strategy to reach his goal from vertex ρd in the game G1.

Then this contradicts the fact that σ? is a subgame perfect equi-

librium in T (see the proof of Theorem 6.1.1). Therefore, by de-

terminacy of G1 (Theorem 2.2.15), player 2 has a winning strat-

egy from vertex ρd to prevent player 1 from reaching R1. But in

this case, this strategy is a ≺2-profitable deviation w.r.t. σn|h in

(Truncn(T )|h, v), because player 2 can keep his cost while strictly

increasing player 1’s cost. This is impossible as σn is a subgame

perfect secure equilibrium in Truncn(T ). Thus, we must have that

Cost1(π) = +∞.

In all possible situations, we proved that σ′1 is a ≺1-profitable deviation

for player 1 w.r.t. σn|h in (Truncn(T )|h, v) because either Cost1(π) =

Cost1(π′) and Cost2(π) < Cost2(π′), or Cost1(π) > Cost1(π′) (see (7.2–

7.4)). So we get a contradiction with the fact that σn is a subgame perfect

secure equilibrium in Truncn(T ) by hypothesis.

Unfortunately the proof does not seem to extend to the multiplayer

case. Indeed we face the same kind of problems encountered in Sec-

tion 5.2.1, where the existence of secure equilibria is proved for two-player
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games and left open for multiplayer games.

Remark 7.3.2. The existence of a subgame perfect secure equilibrium also

holds in initialised two-player games with general quantitative reachabil-

ity objectives where there is a unique non-zero natural price on every

edge. Indeed, it suffices to replace any edge of price c ∈ N0 by a path

of length c composed of c new edges (of price 1), and then apply Theo-

rem 7.3.1 on this new game.

However, the existence of a subgame perfect secure equilibrium in ini-

tialised (two-player) quantitative reachability games with tuples of prices

on edges is an open problem.

Remark 7.3.3. We know (see Remark 5.2.23 on page 154) that a secure

equilibrium in a quantitative reachability game (G, v0) is (in general) not

a secure equilibrium in the corresponding qualitative game (G, v0). Then,

Theorem 7.3.1 does not directly imply the existence of a subgame perfect

secure equilibrium in two-player qualitative non-zero-sum games with

reachability objectives. To our knowledge, the existence of a subgame

perfect secure equilibrium in qualitative non-zero-sum games is an open

question.
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Chapter 8

Conclusion and Future

Work

Let us conclude this thesis with a summary of our results and several

perspectives for future work.

In Chapter 4, we stated the existence of a Nash equilibrium in large

classes of multiplayer cost games. In Chapter 5, we considered the notion

of secure equilibria in the quantitative framework, and proved the exis-

tence of secure equilibria in two-player quantitative reachability games.

In Chapter 6, we gave an alternative proof to [FL83, Har85] for the ex-

istence of subgame perfect equilibria in quantitative reachability games.

Finally, in Chapter 7, we introduced the new concept of subgame perfect

secure equilibrium, and showed its existence in two-player quantitative

reachability games.

Table 8.1 gives an overview of existence results for these four kinds of

equilibria in several classes of cost games. In this table, ’NE’ (resp. ’SE’,

’SPE’, ’SPSE’) means ’Nash (resp. secure, subgame perfect, subgame

perfect secure) equilibrium’. Moreover, an entry with a “Yes” and a

reference implies that the existence result of the corresponding kind of

equilibrium in the corresponding class of cost games has been proved, in

the given reference(s). If “Yes” is in bold, then it corresponds to one of the

179
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results of this thesis. An entry “???” means that it is an open problem

to our knowledge. Concerning the existence of secure (resp. subgame

perfect secure) equilibria in cost games with real-valued, continuous cost

functions (and then, in multiplayer quantitative reachability games), the

entry is “Yes?” (resp. “Yes??”) because after some discussions with

János Flesch, Jeroen Kuipers, Gijs Schoenmakers, and Koos Vrieze (from

Maastricht university), we think that they have a sketch of proof (resp.

some roads to explore) for this result.

Table 8.1: Results and open questions.

Existence of

NE SE SPE SPSE

Two-player

quantitative

reachability

games

Yes

[BBD10,

BBD12]

Yes

[BBD10,

BBD12]

Yes

[BBDG12,

BBDG13]

Yes

[BBDG12,

BBDG13]

Multiplayer

quantitative

reachability

games

Yes

[BBD10,

BBD12]

Yes? Yes

[BBDG12,

BBDG13]

Yes??

Cost games as

in Theo-

rem 4.4.14

Yes

[BDS13]

??? ??? ???

Cost games

with

real-valued,

continuous

cost functions

Yes

[FL83,

Har85]

Yes? Yes

[FL83,

Har85]

Yes??

A first step to extend the results of Section 5.2 (and 7.3) could be to

study the existence of (subgame perfect) secure equilibria in multiplayer

quantitative reachability games, and in quantitative reachability games

with tuples of prices on edges. A possible extension of the results of

Section 4.4 could be to know if secure (subgame perfect, subgame perfect
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secure) equilibria always exist in (some subclasses of) the classes of cost

games we defined in this section.

On the other hand, we do not know much about the new concept

of subgame perfect secure equilibrium. It could be investigated further

to find some properties that it satisfies. 1 Moreover, the definition of

subgame perfect secure equilibrium naturally applies in the qualitative

framework, and so, the existence of this equilibrium in qualitative games

could be explored.

More generally, the results of this thesis can be extended into two main

directions. The first one is about the game model : changes can be made

in relation to the arena, the cost functions, the type of strategies,. . . The

second direction concerns the solution concept : study other equilibria or

other kinds of notions.

Regarding the game model, we could assume some hypotheses about

the game graph and see if some proofs could not be simpler or generalised.

In order to extend the results of Section 4.4, a potential future work

could be to identify other classes of multiplayer cost games where exis-

tence of (simple) Nash equilibria holds. Another possibility consists in

fixing some particular cost functions. For example, the objective of a

player could be a boolean combination of reachability and safety objec-

tives, and a multi-dimensional cost function could be considered.

In this work, we have only considered pure strategies, but mixed

strategies could be an interesting road to explore. In the same way,

the game model could benefit from randomised aspects, while allowing

for efficient verification and synthesis algorithms. It could also be ap-

pealing to see how our techniques apply to different kinds of models, like

timed games [BBM10a], or concurrent games [UW11, KLŠT12]. Very

recently, new quantitative objectives have been introduced in [CDRR13],

but only zero-sum games have been regarded. The study of equilibria in

the non-zero-sum variant of the latter paper is a challenging question.

In the direction of solution concepts, there are also many problems

to study. Solution concepts represent relevant formalisms to express the

1. For example, in Section 7.1, we wonder if this notion could avoid unnecessary

cycles in outcomes in quantitative reachability games.
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properties of game models. Compared to zero-sum games, where giving

one winning strategy is enough, non-zero-sum games have much richer

solution concepts, including (but not exclusively) equilibria. New solu-

tion concepts could be introduced, possibly inspired from verification (in

order to, for instance, express the long-term stability of a system in an

open environment). Since computational tractability is a crucial factor

in verification, the new solution concepts should be decidable.

Whereas some notions of equilibria may fail to capture interesting

properties to be verified on particular computer systems, logical for-

malisms combine rich and adequate expressiveness. Several flavours of

temporal logics for non-zero-sum games have been defined over the last

few years (like the strategy logic [CHP10]). These formalisms have the

required expressiveness, but unfortunately, they do not enjoy efficient al-

gorithms for verification, and do not consider randomised strategies, nor

any quantitative property. It could be promising to explore variations on

these logics in order to arrive to a suitable combination of expressiveness

and tractability.

Once a solution concept has been chosen, a characterisation of the

memory usage could be done, as well as a study of the needed memory

structure (is a finite automaton sufficient to compute the memory of the

strategies, or are more complicated structures necessary?).

Other interesting questions involve decision problems related to games,

and their associated complexity. For example, finding an efficient algo-

rithm to decide, given a game and a tuple of thresholds, whether there

exists a simple 2 equilibrium such that the costs of the players are below

the thresholds.

Another line of research could be the description of the set of all

equilibria outcomes in a game as, for example, the language accepted by

an automaton (like in [KLŠT12]) or maybe a regular expression. It might

also be possible to use tree automata in order to identify equilibria in a

game (in the same spirit as [GU08] for qualitative games). Among the

set of equilibria, we then could find the “best” equilibria according to a

2. In terms of the memory needed by the strategies, the complexity to describe

them,. . .
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certain criterion.

Most of the results in this thesis concern the existence of equilibria.

Some of their proofs are constructive, but others are not. It could be in-

teresting to get an efficient construction of equilibria, and of constrained

equilibria (regarding the costs of the players, the memory needed by the

strategies,. . . ).
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