Examen

(8 octobre 2002)

Nom :
Prénom :
Section :

- Veuillez commencer par écrire en lettres *majuscules* votre NOM, PRÉNOM et SECTION sur *toutes* les feuilles.
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Ne confondez pas la *rédaction* de vos réponses avec celle de vos brouillons!
- La grandeur des espaces laissés après les questions vous donne une *indication* sur la *longueur des réponses* attendue.
- N'employez pas le dos de la feuille d'une autre question pour finir votre réponse!

Question 1. Étudiez la convergence de la série

$$\sum_{n=1}^{+\infty} \frac{(2\mathbf{i}-1)^{2n} 4^{n-1}}{5^n (2n)!} .$$

Analyse mathématique I			Nom :
Examen	(8 octobre 2002)		Prénom :
			Section :

Question 2. Considérons l'équation différentielle suivante :

$$\partial^2 u - 3\partial u = x + 2e^{-2x}. (*)$$

- Calculez toutes les solutions de cette équation.
- Existe-t-il une ou plusieurs solutions u de l'équation (*) qui vérifient u(0) = u(1) et $\partial_x u(0) = \partial_x u(1)$? Si oui, donnez les toutes. *Justifiez votre réponse*.

Analyse ma	athématique I	Nom :
Examen (8 octobre 2002)		Prénom :
		Section :

Question 2 (suite). Poursuivez votre réponse sur cette page si nécessaire.

Examen (8 octobre 2002)

Nom :
Prénom :
Section:

Question 3. Soient E et F les sous-ensembles de $\mathbb R$ définis par

$$E := \{x : x \neq 0 \text{ et } |1/x| \le 2\}, \qquad F := \{x^2 - 4x : x \in]-1, 2[\}.$$

Donnez, s'ils existent, $\sup E$, $\max E$, $\sup F$, $\max F$.

Examen (8 octobre 2002)

Nom :
Prénom :
Section:

Question 4. Donnez le développement de Taylor d'ordre 3 en x=0 en termes de petit o de la fonction

$$f(x) := \exp\left(\frac{\sin x}{1 - 3x}\right).$$

Utilisez l'approximation Taylorienne ci-dessus pour calculer la limite :

$$\lim_{x \to 0} \frac{f(x) - (x+1)}{x \cos x - \ln(1+x)}$$

Justifiez en détail vos calculs.

Analyse ma	athématique I	Nom :
Examen (8 octobre 2002)		Prénom :
		Section :

Question 4 (suite). Poursuivez votre réponse sur cette page si nécessaire.

Analyse m	nathématique I	Nom:
Examen	(8 octobre 2002)	Prénom :
		Section :

Question 5. Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites convergeant respectivement vers a et b. Montrez, à partir de la définition « en ε », que $x_n \cdot (y_n-1) \xrightarrow[n \to \infty]{} a \cdot (b-1)$.

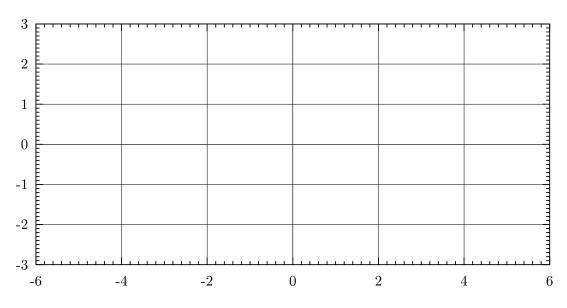
Examen

(8 octobre 2002)

Nom :	 	 	
Prénom :	 	 	_
Section :			

Question 6. Soit $f: \mathbb{R} \to \mathbb{R}: x \mapsto e^{-x^2}$.

 \blacksquare Représentez f sur le graphique ci-dessous.



■ Argumentez brièvement le fait que f soit continue en tout point $x \in \mathbb{R}$.

■ Montrez que l'ensemble $E:=\{\mathrm{e}^{-x^2}:x\in\mathbb{R}\}\cup\{0\}$ est fermé. Justifiez en détail.

Analyse m	athématique I	Nom:
Examen (8 octobre 2002)		Prénom :
		Section :

Question 6 (suite).

 \blacksquare E est-il compact ? *Justifiez*.

Examen

(8 octobre 2002)

Nom :		_		_	 _	
Prénom :	 	_	 		 	 _
Section :						

Question 7. Soient f et g les deux fonctions définies par

$$f: \mathbb{R}^2 \hookrightarrow \mathbb{R}^4 : (x, y) \mapsto \left(x^2 - 3x, e^{x - y}, y^3, \frac{x}{y}\right)$$
$$g: \mathbb{R}^4 \to \mathbb{R}^3 : (x_1, x_2, x_3, x_4) \mapsto \left(1, (x_1 - x_3)^2, x_2 \cdot x_4\right).$$

Calculez $\partial(g \circ f)(a,a) : \mathbb{R}^2 \to \mathbb{R}^3$ où $a \in \mathbb{R}$.

Analyse ma	athématique I	Nom :
Examen (8 octobre 2002)		Prénom :
		Section :

Question 7 (suite). Poursuivez votre réponse sur cette page si nécessaire.

Analyse mathématique I		Nom:	
Examen (8 octobre 2002)		Prénom :	
			Section :
Question fausses (a une cote n	et b sont de	ez, en cochant la case adéquate, si les prop ux nombres réels arbitraires). <i>Toute mauva</i>	
Vrai :	Faux :	$\sqrt{a^2} = a$	
Vrai :	Faux :	$a^2 \leqslant a ^2$	
Vrai :	Faux :	si $a \le b$, alors $a^2 \le b^2$	
Vrai :	Faux :	si $a^2 \leqslant b^2$, alors $a \leqslant b$	
Vrai :	Faux :	$ a \leqslant b$ si et seulement si $-b \leqslant a$ et $a \leqslant b$	
Vrai :	Faux :	$1/a \leqslant 1$	
Vrai :	Faux :	si $a \in]0,1]$, alors $1/a \leqslant 1$	
Vrai :	Faux :	${\mathbb R}$ est un ensemble borné.	
Vrai :	Faux :	\varnothing est un ensemble compact de \mathbb{R}^2 .	
Vrai :	Faux :	Si une fonction est dérivable alors elle est	continue.
Vrai :	Faux :	Une équation cartésienne de la tangente a point $(x_0, f(x_0))$ s'écrit $f(x) = f(x_0) + \partial f(x_0)$	· ·
Vrai : 🗌	Faux :	$\lim_{x \to 0} \frac{ x }{x} = 1$ grâce à la règle de l'Hospital.	
Vrai :	Faux :	Si $f: \mathbb{R} \to \mathbb{R}$ est une fonction continue, al	ors
		$\forall a, b \in \mathbb{R}, \ \forall y \in [f(a), f(b)],$	$\exists x \in [a,b], \ f(x) = y.$
Vrai :	Faux :	Si $f:[a,b] o \mathbb{R}$ est une fonction continue	e, alors
		$\forall x \in [a,b], \ \exists \rho > 0, \ \exists K > 0, \ \forall y \in [a,b]$	$[b], y-x \leqslant \rho \Rightarrow f(y) \leqslant K.$
Vrai :	Faux :	La fonction $f:\mathbb{R} \to \mathbb{R}$ définie par	
		$f(x) = \begin{cases} 1 & \text{s} \\ \frac{\sin x}{x} & \text{s} \end{cases}$	$\sin x = 0$ sinon
		est continue.	
Vrai :	Faux :	La somme de deux fonctions continues es	t une fonction continue.
Vrai :	Faux :	Si $(x_n) \subseteq [-1,2]$, alors il existe une sousque $y_n \to y^*$.	suite (y_n) de (x_n) et $y^* \in \mathbb{R}$ telle
Vrai :	Faux :	Les seules solutions $u \in \mathscr{C}^{n+1}(\mathbb{R}, \mathbb{R})$ de $\widehat{\partial}$ degré au plus n .	$0^{n+1}u = 0$ sont les polynômes de
Vrai :	Faux :	Si la dérivée d'une fonction est nulle en u atteint son maximum ou son minimum.	un point, c'est que cette fonction
Vrai :	Faux :	Le suprémum d'un ensemble $E\subseteq\mathbb{R}$ appa	rtient à cet ensemble si et seule-

ment si *E* est fermé.