_			
Exa	\sim	~	_
-x		$\boldsymbol{-}$	1
$-\lambda u$		$\mathbf{\mathcal{L}}$	

(10 janvier 2003)

Nom :					 				
Prénom :	_		_	_			_	_	_
Section:		_				_			

Lisez ces quelques consignes avant de commencer l'examen.

- Veuillez commencer par écrire en lettres MAJUSCULES votre nom, prénom et section sur *toutes* les feuilles.
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Étudiez la convergence de la suite $(x_n)_{n\in\mathbb{N}\setminus\{0\}}$ définie par :

$$x_n = \sqrt{1 + \frac{(-1)^n}{n}}.$$

Justifiez en détail. Toute affirmation non vue au cours doit être démontrée.

Analyse mathématique I Examen (10 janvier 2003) Prénom : ______ Section : ______

Question 2. Soit $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Supposons que $(x_n)_{n\in\mathbb{N}}$ converge vers 2. Montrez, en utilisant la définition en termes de ε , que la suite $(y_n)_{n\in\mathbb{N}}$ définie par

$$y_n := -2x_n + 3$$

converge vers -1.

Examen (10 janvier 2003)

Nom :	 	 	 	 _
Prénom :	 	 	 	 _
Section :				

Question 3. Étudiez la convergence de la suite $(v_n)_{n\geqslant 1}$ définie par

$$v_1 = 2,$$
 $v_{n+1} = 3 - \frac{1}{v_n}$ si $n \ge 1$.

Calculez sa limite, si elle existe.

Examen (10 janvier 2003)

Nom :	 	 	 	
Prénom : _		 		_
Section :				

Question 4. Soit l'ensemble

$$E := \left\{ 2 - \frac{3^n}{(n+1)!} : n \in \mathbb{N} \right\}.$$

Calculez, s'ils existent, $\inf E$, $\min E$, $\sup E$, $\max E$. Toutes vos réponses doivent être justifiées.

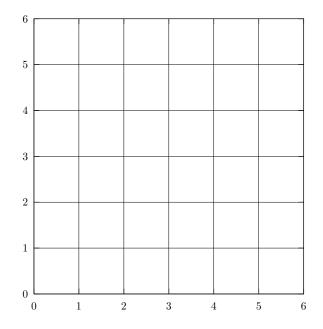
Examen (10 janvier 2003)

Nom :	
Prénom :	
Section :	

Question 5. Notons E la fonction définie par

$$E: \mathbb{R} \to \mathbb{R}: x \mapsto \lfloor x \rfloor$$

- Calculez E(2,34), E(9/2), E(0,18) et E(4).
- Représentez la fonction E sur l'intervalle [0,6].



■ Définissez, de deux manières équivalentes, le fait que $\lim_{x\to a} f(x) = b$.

■ Montrez que $\lim_{x\to 2} E(x)$ n'existe pas.

Analyse m	athématique I	Nom:
Examen	(10 janvier 2003)	Prénom :
		Section :
seul mot de fr	Écrivez avec des quantificateurs les propriét ançais.) $A \subseteq \mathbb{R}$ n'est pas borné supérieurement :	és suivantes. (Il ne doit plus rester un
$ (x_n)_{n \in I} \text{ ne } c$	converge pas :	
$ (x_n)_{n \in I} \operatorname{con} $	verge vers –∞ :	
$ (x_n)_{n \in I} $ n'e	st pas bornée :	
	constante pour n assez grand :	
■ La fonction	$oldsymbol{arphi}: \mathbb{N} ightarrow \mathbb{N}$ est strictement croissante :	
$lacksquare a \in \mathbb{R} \text{ est le}$	e suprémum de $A\subseteq \mathbb{R}$:	

■ La fonction $f : \mathbb{R} \to \mathbb{R}$ est continue :

Analyse	mathéma	atique I	Nom :
Examen	(10 jai	nvier 2003)	Prénom :
			Section :
pensez qu	'elle est vrai	hacune des affirmations suivantes, cochez e ou fausse. Justifiez par un bref argument loivent être clairement identifiés.	
Vrai :	Faux :	Le maximum d'un ensemble fini existe to	ujours.
Vrai :	Faux :	Toute suite de rationnels converge dans ${\mathbb R}$	
Vrai :	Faux :	Si une suite est croissante, alors elle conve	erge au sens large.
	. .		
Vrai :	Faux :	Un ensemble $A \subseteq \mathbb{R}$ est borné si et seulemet inférieurement.	ent si il est borné supérieurement

Analyse	mathém	atique I	Nom :
Examen	(10 ja	nvier 2003)	Prénom :
			Section :
Question	7 (suite).		
		Si $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converge, alors elle est tell	$le que x_n - x_{n+1} \to 0.$
Vrai :	Faux :	Il est possible que le suprémum d'un ense	mble A appartienne à A .
Vrai :	Faux :	Toute suite convergente est bornée.	
Vrai · 🗀	Faux ·	Toute suite hornée est convergente	
Vrai :	Faux :	Toute suite bornée est convergente.	

Analyse	mathéma	Nom :	
Examen	(10 ja	nvier 2003)	Prénom :
			Section :
Question	7 (suite).		
Vrai :	Faux :	La somme $f + g$ de deux fonctions non-co	ontinues f et g est discontinue.
Vrai :	Faux :	La somme $f + g$ d'une fonction continue g est nécessairement discontinue.	f et d'une fonction discontinue g
		est necessairement discontinue.	

Question 8. Soient f et g deux fonctions continues d'un intervalle $[a,b] \subseteq \mathbb{R}$ vers \mathbb{R} . Prouvez que si f(a) < g(a) et f(b) > g(b), alors il existe un $\xi \in]a,b[$ tel que $f(\xi) = g(\xi)$. Énoncez tous les résultats du cours que vous utilisez.

Analyse mathématique I Examen (10 janvier 2003) Prénom: Section:

Question 9. Soit $(x_n)_{n \in I}$ une suite de nombres réels. Considérons les trois propositions suivantes

$$(x_n)$$
 converge: $\exists a \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |x_n - a| \leqslant \varepsilon$ (1)

$$\exists b \in \mathbb{R}, \ \forall \zeta \geqslant 0, \ \exists m_0 \in \mathbb{N}, \ \forall m \geqslant m_0, \ |x_m - b| \leqslant \zeta$$
 (2)

$$(x_n)$$
 est ultimement constante : $\exists c \in \mathbb{R}, \ \exists p_0 \in \mathbb{N}, \ \forall p \geqslant p_0, \ x_p = c$ (3)

Prouvez que $(1) \Leftarrow (2) \Leftrightarrow (3)$. Trouvez un contre exemple qui montre que $(1) \not\Rightarrow (2)$

Analyse m	nathématique I	Nom :
Examen	(10 janvier 2003)	Prénom :
		Section :

Question 9 (suite). Si nécessaire, poursuivez votre réponse sur cette page.

Examen (10 janvier 2003)

Nom :
Prénom :
Section :

Question 10. Soit $\lambda \in \mathbb{R}$ et $(x_n)_{n \in \mathbb{N}}$ la suite définie par

$$x_n := \left(\frac{1}{\lambda - 1}\right)^n$$
.

Pour quelle(s) valeur(s) de λ la suite $(x_n)_{n\in\mathbb{N}}$ converge-t-elle et quelle est alors sa limite ? Justifiez en détail.