Analyse mathématique I(A)

Examen

(31 août 2015)

Nom:
Prénom :
Section : Mathématique

Lisez ces quelques consignes avant de commencer l'examen.

- Veuillez commencer par écrire en lettres MAJUSCULES votre nom et prénom sur *toutes* les feuilles. Les feuilles qui ne respectent pas ces consignes seront pénalisées.
- L'usage de la calculatrice n'est pas autorisé.
- L'examen dure 4 heures.
- Veuillez vous assurer que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Calculez, si elle existe, la limite au sens large de chacune des suites suivantes. Détaillez vos calculs et énoncez les résultats que vous utilisez.

$$x_n = \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$

$$z_n = \frac{2n\left(1 + \frac{(-1)^n}{2n}\right)}{5n\left(1 + \frac{(-1)^{n+1}}{5n}\right)}$$

$$y_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

$$u_n = \frac{n^3 \left(1 + \frac{5}{n^2}\right)}{4n^2 \left(1 + \frac{\sin n}{4n^2} + \frac{\ln n}{4n^2}\right)}$$

Analyse mathématique I (partie A)			Nom:
Examen	(31 août 2015)		Prénom :
			Section : Mathématique

Question 1 (suite). Poursuivez votre réponse sur cette page.

Analyse mathématique I (partie A)

Examen	(31 août 201
_/\d	(0. 404. 20.

Nom :			
Prénom :			
Cootion . Moth	. <i>á</i>	_+:	

Question 2.

- (a) Soient une suite $(x_n)_{n\in I}\subseteq \mathbb{R}$. Définissez « $(x_n)_{n\in I}$ converge vers $+\infty$ ».
- (b) En utilisant la définition donnée en (a), montrez que $\frac{5n^3 + \cos\sqrt{n}}{n^2} \to +\infty$. La qualité de votre rédaction est importante.
- (c) La définition que vous avez donnée en (a) est-elle équivalente à

$$\forall R' < 0, \ \exists n_1 \in \mathbb{N}, \ \forall n \geqslant n_1, \ x_n > R' \ ? \tag{1}$$

Justifiez votre réponse par une preuve ou un contre-exemple.

Analyse mathématique I (partie A)			Nom:
Examen	(31 août 2015)		Prénom :
			Section : Mathématique

Question 2 (suite). Poursuivez votre réponse sur cette page.

Analyse m	athématio	Nom:	
Examen		(31 août 2015)	Prénom :
			Section : Mathématique
			antes, cochez la case adéquate selon que vous preuve ou un contre-exemple.
(a) Vrai :	Faux :	Si un sous-ensemble nor $\inf A \in A$.	n-vide A de $\mathbb R$ est borné inférieurement alors
(b) Vrai :	Faux :	Soient $a,b \in \mathbb{R}$. Si deux si	uites de nombres réels $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont

 $\forall n \in \mathbb{N}, u_n \leqslant a \text{ et } v_n \leqslant b, \text{ et } u_n + v_n \to a + b,$

telles que :

alors $u_n \to a$ et $v_n \to b$.

Analyse mathématique I (partie A)			Nom:	
Examen		(31 août 2015)		Prénom :
				Section : Mathématique
Question 3 (suite).			
(c) Vrai :	Faux :	Si une suite de nom	nbres réels $(x_n)_{n\in\mathbb{N}}$	converge, alors $ x_n - x_{n+1} \to 0$

(d) Vrai : \square Faux : \square Si $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ sont convergentes alors $(x_n)_{n\in\mathbb{N}}$ converge.

Analyse mathématique I (partie A)

Examen (31 août 2015)

Nom :
Prénom :
Section : Mathématique

Question 4.

- (a) Soient $A \subseteq \mathbb{R}$ et $a \in \mathbb{R}$. Définissez « a est le maximum de A ».
- (b) Soient A un sous-ensemble non-vide et borné de \mathbb{R} . En partant du fait que le suprémum de A est le minimum des majorants de A, montrez que

$$\forall \varepsilon > 0, \exists a \in A, \sup A < a + \varepsilon.$$

(c) Calculez le suprémum et l'infimum des ensembles suivants. Expliquez votre démarche et énoncez les résultats que vous utilisez.

$$A := \left\{ \frac{1}{\ln(1-x^2)} \mid x \in]-1, 1[, x \neq 0 \right\}, \qquad B := \left\{ 2^{-n} \mid n \in \mathbb{N} \right\}.$$

Analyse mathématique	Nom :	
Examen	(31 août 2015)	Prénom :
		Section : Mathématique

Question 4 (suite). Poursuivez votre réponse sur cette page.

Analyse mathématique I (partie A)

Examen (31 août 2015)

Nom :
Prénom :
Section : Mathématique

Question 5. Soient a et b deux réels strictement positifs.

- (a) Montrez que $\sqrt{ab} \leqslant \frac{a+b}{2}$.
- (b) En supposant que $a \le b$, montrez que $a \le \frac{a+b}{2} \le b$ et $a \le \sqrt{ab} \le b$.
- (c) Soient u_0 et v_0 deux réels strictement positifs tels que $u_0 < v_0$. On définit les deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ de la façon suivante :

$$\begin{cases} u_{n+1} = \sqrt{u_n v_n}, \\ v_{n+1} = \frac{u_n + v_n}{2}. \end{cases}$$

- (i) Montrez que $u_n \leqslant v_n$ quel que soit $n \in \mathbb{N}$.
- (ii) Montrez que (v_n) est une suite décroissante.
- (iii) Montrez que (u_n) est une suite croissante.
- (iv) Déduisez que les suites (u_n) et (v_n) sont convergentes et montrez que leur limite est la même. On note cette valeur $agm(u_0, v_0)$.
- (v) Montrez que $u_0 < \operatorname{agm}(u_0, v_0) < v_0$.

Analyse mathématique I (partie A)			Nom:
Examen	(31 août 2015)		Prénom :
			Section : Mathématique

Question 5 (suite). Poursuivez votre réponse sur cette page.