# Analyse mathématique I (B)

#### Examen

(2 septembre 2015)

| Nom:      |   |
|-----------|---|
| Prénom :  | _ |
| Section : |   |

- Veuillez commencer par écrire en lettres majuscules vos NOM, PRÉNOM et SECTION sur *toutes* les feuilles.
- L'examen dure 4 heures.
- Veuillez vous assurer que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justifications dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Déterminez l'ensemble des solutions réelles de l'équation :

$$\partial_t^2 u(t) + 2\partial_t u(t) - 15u(t) = e^{5t} + \cos(3t).$$



| Analyse math | ématique I (partie B) | Nom:      |
|--------------|-----------------------|-----------|
| Examen       | (2 septembre 2015)    | Prénom :  |
|              |                       | Section : |

Question 1 (suite). Poursuivez votre réponse sur cette page.

## Analyse mathématique I (partie B)

Examen

(2 septembre 2015)

| Nom :     | <br> | <br> |
|-----------|------|------|
| Prénom :  | <br> | <br> |
| Section : |      |      |

Question 2. Calculez le développement de Taylor d'ordre 3 en x=0 avec un reste exprimé en terme de petit o de la fonction  $f: \mathbb{R} \to \mathbb{R}$  définie par :

$$f(x) = \left[ \exp\left(\frac{\sin(x^2)}{1 + \sin(x)}\right) \right]^2.$$

Expliquez et justifiez vos calculs. Déduisez-en la valeur de la limite  $\lim_{x\to 0} \frac{f(x)-1}{\cos(x)-1}$ .

#### Analyse mathématique I (partie B)

Examen

(2 septembre 2015)

| Nom :     |  | <br> |      | <br>_ |
|-----------|--|------|------|-------|
| Prénom :  |  |      | <br> | <br>  |
| Section : |  |      |      |       |

Question 3. On considere l'application  $f : \mathbb{R} \to \mathbb{R}$  définie par

$$f(x) = \begin{cases} \lambda(\cos(x) - 1) & \text{si } x < 0\\ e^{x^2} - 1 & \text{si } x \in [0, 1]\\ -\lambda(x - 1)(x - 4) + e - 1 & \text{si } x > 1, \end{cases}$$

où  $\lambda \in \mathbb{R}$  est un paramètre.

- (a) Déterminez la ou les valeurs de  $\lambda$  pour lesquelles f est continue sur son domaine de définition. Ceci implique que, pour les valeurs de  $\lambda$  données, la continuité de f doit être établie.
- (b) Déterminez la ou les valeurs de  $\lambda$  pour lesquelles f est dérivable sur son domaine de définition

Justifiez en détail toutes vos affirmations.

| Analyse mathé | ématique I (partie B) | Nom :     |
|---------------|-----------------------|-----------|
| Examen        | (2 septembre 2015)    | Prénom :  |
|               |                       | Section : |

Question 3 (suite). Poursuivez votre réponse sur cette page.

| Analyse mathématiq | ue I (partie B)    | Nom :     |
|--------------------|--------------------|-----------|
| Examen             | (2 septembre 2015) | Prénom :  |
|                    |                    | Section : |

Question 4. Soit l'équation  $\sinh(x) = -\lambda x^2 + 1$ , où  $\lambda$  est un paramètre réel. Montrez rigoureusement que cette équation possède une unique solution dans  $]0, +\infty[$  quel que soit  $\lambda \geqslant 0$ . Expliquez votre démarche, détaillez vos calculs et énoncez les résultats utilisés.

/4

### Analyse mathématique I (partie B)

Examen

(2 septembre 2015)

| Nom :     | <br> | <br> |   |
|-----------|------|------|---|
| Prénom :  | <br> | <br> | _ |
| Section : |      |      |   |

Question 5. Soit l'application  $f : \mathbb{R} \to \mathbb{R}$  définie par

$$f(x) = \begin{cases} |x| + x & \text{si } x \leq 1, \\ 2\sqrt{x} & \text{si } x > 1. \end{cases}$$

En utilisant la définition en  $\varepsilon$ - $\delta$ , montrez que f est continue sur son domaine de définition.

| Analyse mathém | atique I (partie B) | Nom:      |   |
|----------------|---------------------|-----------|---|
| Examen         | (2 septembre 2015)  | Prénom :  |   |
|                |                     | Section : | ı |

Question 6. Soient  $a,b \in \mathbb{R}$  tels que a < b et  $f:[a,b] \to \mathbb{R}$  une application de classe  $\mathscr{C}^1$  sur [a,b]. Montrez que f est de Lipschitz, c'est-à-dire qu'il existe  $K \in \mathbb{R}^{\geqslant 0}$  tel que pour tout  $x,y \in [a,b]$ ,  $|f(x)-f(y)| \leqslant K|x-y|$ .

/4