Analyse mathématique I (A)

Examen (2 juin 2017)

Nom :		
Prénom :		
Section : Mathématique		

Lisez ces quelques consignes avant de commencer l'examen.

- Veuillez commencer par écrire en lettres MAJUSCULES votre nom et prénom sur *toutes* les feuilles. Les feuilles qui ne respectent pas ces consignes seront pénalisées.
- L'usage de la calculatrice n'est pas autorisé.
- L'examen dure 4 heures.
- Veuillez vous assurer que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez pas la feuille d'une autre question pour finir votre réponse!

Question 1. Calculez, s'ils existent, $\sup A$, $\min A$, $\inf B$ et $\max B$. Expliquez votre démarche et énoncez les résultats que vous utilisez.

$$A := \left\{ 5 + 4\cos\left(\frac{2}{n}\right) \mid n \in \mathbb{N}_0 \right\} \qquad B := \left\{ \frac{4n^2 + 5}{7n^3 + 4} \mid n \in \mathbb{N} \right\}.$$

Analyse mathématique I (partie A)		Nom:
Examen	(2 juin 2017)	Prénom :
		Section : Mathématique

Question 1 (suite). Poursuivez votre réponse sur cette page.

Examen

Nom:

Section : Mathématique

Question 2. Calculez, si elle existe, la limite au sens large de chacune des suites suivantes. Détaillez vos calculs et énoncez les résultats que vous utilisez.

(2 juin 2017)

$$x_n = \frac{3n + \pi \cos(n) + 5n^2}{4n^3 + 5n^2 + 6}$$

$$y_n = \frac{3^n n^2 + \cos(n) + 5}{2^n n + 3}$$

$$z_n = \frac{2n^3 + 5n^2 + (-1)^n}{\sin^2(n) + 6n}$$

$$v_n = \frac{(-1)^{n+1}n^3 + 1}{n-42}$$

$$w_n = \frac{-3n^3 + 5n^2 + 3n + 1}{n + \cos^2(n) + 1}$$

Analyse mathématique I (partie A)		Nom:
Examen	(2 juin 2017)	Prénom :
		Section : Mathématique

Question 2 (suite). Poursuivez votre réponse sur cette page.

Ana	lyse mathématique I (partie A)	Nom :
Exar	nen (2 juin 2017)	Prénom :
		Section : Mathématique
pense	stion 3. Pour chacune des affirmations suivantes, coche ez qu'elle est vraie ou fausse. Justifiez par une preuve ou ur Vrai : \square Faux : \square Soient $A \subseteq \mathbb{R}$ et $\lambda > 0$. On a que n tanément auquel cas $\min(\lambda A) = \lambda \min(A)$ où, pour rappel	n contre-exemple. $\min(\lambda A)$ et $\min(A)$ existent simul-
(b)	Vrai : \square Faux : \square Soient $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Si $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ convergent au s	
(c)	Vrai : \square Faux : \square Soit $A \subseteq \mathbb{R}$ un ensemble non-vide et \mathbb{R} est une application croissante et continue alors $f(\sup(A))$	

Examen (2 juin 2017)

Nom:
Prénom :
Section : Mathématique

Question 3 (suite).

(d) Vrai :
$$\square$$
 Faux : \square Soient $A, B \subseteq \mathbb{R}$. Si $\sup(A) = \inf(B)$ alors $\forall \varepsilon > 0, \exists x \in A, \exists y \in B, |x - y| < \varepsilon$.

(e) Vrai :
$$\square$$
 Faux : \square La suite $\left(\left(\frac{-4\alpha^2+3\alpha+1}{\alpha-1}\right)^n\right)_{n\in\mathbb{N}}$ converge au sens large quel que soit $\alpha\in]-\infty,0[$.

Examen (2 juin 2017)

Nom :
Prénom :
Section : Mathématique

Question 4.

- (a) Soient une suite $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ et $a\in\mathbb{R}$. Définissez « $(x_n)_{n\in\mathbb{N}}$ converge vers a ».
- (b) En utilisant la définition donnée en (a), montrez que $\frac{2n^2 + (-1)^n + \cos(n)}{4n^3 + 5n + 1} \rightarrow 0$. La qualité de votre rédaction est importante.
- (c) Soit $a \in \mathbb{R}$. La définition que vous avez donnée en (a) est-elle équivalente à

$$\forall p \in \mathbb{N} \setminus \{0\}, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N^2, \ |x_n - a| \leqslant \frac{1}{p^2 + p}? \tag{1}$$

Analyse mathématique I (partie A)		Nom:
Examen	(2 juin 2017)	Prénom :
		Section : Mathématique

Question 4 (suite). Poursuivez votre réponse sur cette page.

Examen (2 juin 2017)

Nom :
Prénom :
Section · Mathématique

Question 5. Soient (x_n) , (y_n) deux suites de nombres réels. On dit que (x_n) et (y_n) sont deux suites *adjacentes* si elles vérifient les deux conditions suivantes :

(2)

$$x_n - y_n \to 0. (3)$$

- (a) Montrez que les suites de nombres réels $x_n = \sum_{k=1}^n \frac{1}{k^2}$ et $y_n = x_n + \frac{1}{n}$ sont adjacentes.
- (b) Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites adjacentes. Supposons que $(x_n)_{n\in\mathbb{N}}$ est croissante et $(y_n)_{n\in\mathbb{N}}$ est décroissante.
 - (i) Déterminez si la suite $(x_n y_n)_{n \in \mathbb{N}}$ est monotone.
 - (ii) Montrez que $\forall n \in \mathbb{N}, x_n y_n \leq 0.$
 - (iii) En déduire la convergence au sens strict des suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$.
 - (iv) Que peut-on dire de la limite de deux suites adjacentes?
 - (v) Peut-on en déduire que (x_n^3) et (y_n^3) sont aussi adjacentes? Justifiez votre réponse.

Analyse mathématique I (partie A)		Nom:
Examen	(2 juin 2017)	Prénom :
		Section : Mathématique

Question 5 (suite). Poursuivez votre réponse sur cette page.