Analyse mathématique I (B)

Examen

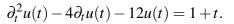
(29 août 2017)

Nom:	_
Prénom :	1
Section :	

Lisez ces quelques consignes avant de commencer l'examen.

- Veuillez commencer par écrire en lettres MAJUSCULES votre nom et prénom sur *toutes* les feuilles. Les feuilles qui ne respectent pas ces consignes seront pénalisées.
- L'usage de la calculatrice n'est pas autorisé.
- L'examen dure 4 heures.
- Veuillez vous assurer que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit convaincre le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction* soignée de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons.
- N'employez *pas* la feuille d'une *autre question* pour finir votre réponse!

Question 1. Considérons l'équation différentielle suivante :



- (a) Déterminez l'ensemble des solutions complexes de cette équation.
- (b) Vérifiez explicitement que les solutions obtenues à la question (a) sont bien des solutions de l'équation.

Analyse mathén	Nom:	
Examen	(29 août 2017)	Prénom :
		Section :

Question 1 (suite). Poursuivez votre réponse sur cette page.

Analyse mathématique I (partie B)

Examen (29 août 2017)

Nom:
Prénom :
Section :

Question 2. Calculez le développement de Taylor d'ordre 3 en x=0 avec un reste exprimé en terme de petit o de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \left(e^{\frac{1}{1+x^2}}\right)^2.$$

Expliquez et justifiez les calculs que vous effectuez. En déduire la valeur de

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x}.$$

Analyse mathén	Nom:	
Examen	(29 août 2017)	Prénom :
		Section :

Question 2 (suite). Poursuivez votre réponse sur cette page.

Analyse mathéma	Nom:	
Examen	(29 août 2017)	Prénom :
		Section :

Question 3. Soit $f: \mathbb{R} \to \mathbb{R}: x \mapsto \cos(x) e^{-\lambda x^2} - \cosh(\lambda x) + 1$, où $\lambda \geqslant 1$. Montrez que l'équation f(x) = 0 a une unique solution dans $[0, +\infty[$. Justifiez rigoureusement toutes vos affirmations.

/5

Analyse mathématique I (partie B)

Examen (29 août 2017)

Nom :
Prénom :
Section :

Question 4. On considère l'application $f : \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \sinh(\lambda x)\lambda^2 & \text{si } x < 0, \\ 2\lambda^3 e^{\sin(x)} & \text{si } x \in [0, 2], \\ \cosh(x^3 + 2) & \text{si } x > 2, \end{cases}$$

où $\lambda \in \mathbb{R}$ est un paramètre.

- (a) Déterminez la ou les valeurs de λ pour lesquelles f est continue sur]0,2[.
- (b) Déterminez la ou les valeurs de λ pour lesquelles f est dérivable en -17.
- (c) Déterminez la ou les valeurs de λ pour lesquelles f est continue en 0.
- (d) Déterminez la ou les valeurs de λ pour lesquelles f est dérivable en 0.

Justifiez en détail toutes vos affirmations.

Analyse mathém	Nom:	
Examen	(29 août 2017)	Prénom :
		Section :

Question 4 (suite). Poursuivez votre réponse sur cette page.

Analyse mathér	matique I (partie B)	Nom:				
Examen (29 août 2017)		Prénom :				
		Section :				
Question 5.		/.				
(a) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et $A \subseteq \mathbb{R}$. Définissez « f est continue sur A » en ε - δ .						

(b) Soit l'application $f: \mathbb{R} \to \mathbb{R}: x \mapsto (x+1)\cos(x)$. En utilisant directement la définition donnée en (a), montrez que f est continue sur son domaine de définition.

¹Ceci implique que les théorèmes sur les limites ne peuvent être employés dans cette question.

A na Exar	ılyse mathématic ^{men}	jue I (partie B) (29 août 2017)	Nom :
			Section :
		nez si les affirmations suivantes nent ou un contre-exemple explici	sont vraies ou fausses. Justifiez votre te.
(a)	Vrai : Faux : f est continue en a.] Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction e	$t \ a \in Dom(f)$. Si $\lim_{x \to a} f(x)$ existe, alors
(b)	Vrai : \square Faux : \square $f: \mathbb{R} \to \mathbb{R}, g \circ f$ est		$\mathbb{R} \to \mathbb{R}$ telle que pour toute application
(c)	Vrai : \Box Faux : \Box bx + cx ² + o(x ²), po	Soit f une application telle query certains $a,b,c \in \mathbb{R}$. Alors $a=$	the $f(x) = 1 + 2x + o(x)$ et $f(x) = a + 1$ et $b = 2$.

Analyse mathématique I (partie B)

Examen (29 août 2017)

Nom :	 		 	
Prénom :	 	 		
Section :				

Question 7. Soient $f_1 : \mathbb{R} \to \mathbb{R}$ et $f_2 : \mathbb{R} \to \mathbb{R}$ deux applications dérivables et $a \in \mathbb{R}$. Notons $f : \mathbb{R} \to \mathbb{R}$ l'application définie par

$$f(x) = \begin{cases} f_1(x) & \text{si } x \leq a, \\ f_2(x) & \text{si } x > a. \end{cases}$$

Donnez une condition nécessaire et suffisante sur f_1 et f_2 pour que f soit dérivable. Démontrez rigoureusement cette affirmation.