Mathématique Élémentaire

Test n° 3

(2 octobre 2006)

Question 1. Calculez

■ Arg
$$\left(\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^7\right) = 7 \operatorname{Arg}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \mod 2\pi = 7\frac{\pi}{3} \mod 2\pi = \frac{\pi}{3}$$

Question 2. Prouvez que $\bar{z} = z^{-1}$ si et seulement si |z| = 1.

 $\overline{z}=z^{-1}$ si et seulement si (définition de l'inverse dans le cas commutatif) $\overline{z} \cdot z = 1$. Dans ce cas, on a $|\overline{z} \cdot z| = |1| = 1$, ou encore $|\overline{z}| \cdot |z| = 1$. Puisque $|\overline{z}| = |z|$, on a $|z|^2 = 1$, ou encore |z| = 1 vu que $|z| \in \mathbb{R}^+$.

Si
$$|z| = 1$$
, puisque $z^{-1} = \frac{\overline{z}}{|z|^2}$, on a $\overline{z} = z^{-1}$.

Question 3. Pour chacune des affirmations suivantes, cochez la case appropriée selon que vous pensez qu'elle est vraie ou fausse. Justifiez votre choix par un bref argument ou un contre-exemple.

(a) $Vrai: \ \ \ \ \ \$ Faux: $\ \ \ \ \ \$ pour tout $x,y,z\in\mathbb{R},\ x\leqslant y\Rightarrow x+z\leqslant y+z$

On a vu que $x \le y$ si et seulement si $y - x \ge 0$. Par conséquent, quel que soit $z \in \mathbb{R}$, on a aussi $(y+z) - (x+z) = y - x \ge 0$ ce qui montre que $x+z \le y+z$.

(b) Vrai: \square Faux: \checkmark pour tout $x, y \in \mathbb{R} \setminus \{0\}, x \leqslant y \Rightarrow \frac{1}{x} \geqslant \frac{1}{y}$

Un contre-exemple est donné par $x=-1\leqslant y=1$ car on n'a pas $\frac{1}{x}=-1\geqslant \frac{1}{y}=1$.

(c) Vrai : \square Faux : \square pour tout $x \in \mathbb{R}^{\geqslant 0}$ et $y \in \mathbb{R}$, $\sqrt{x} \leqslant y \Rightarrow x \leqslant y^2$

Comme par hypothèse on a $\sqrt{x} \le y$ et qu'il est toujours vrai que $\sqrt{x} \ge 0$, y est forcément ≥ 0 . L'élévation au carré de chaque membre préserve donc l'inégalité (car $x \mapsto x^2$ est croissante sur $\mathbb{R}^{\ge 0}$).

(2 octobre 2006)

Correction

(d) Vrai : \blacksquare Faux : \square pour tout $x, y \in \mathbb{R}$, $x \le y \Rightarrow x^3 \le y^3$

La fonction $x \mapsto x^3$ est croissante sur \mathbb{R} .

REMARQUE: On peut bien entendu prouver ceci à partir des principes de base. Pour commencer, remarquons que l'élévation au cube d'un réel ξ préserve le signe de ξ . En effet, si $\xi \geqslant 0$, on a $\xi^2 = \xi \xi \geqslant 0$ et donc $\xi^3 = \xi^2 \xi \geqslant 0$ (car la multiplication de deux nombres positifs est un nombre positif); si x < 0, on a $\xi^2 > 0$ (multiplication de deux négatifs), d'où $\xi^3 < 0$ (multiplication de $\xi^2 > 0$ par $\xi < 0$).

Pour la question initiale, nous allons distinguer trois cas :

- ▶ si $x \le 0 \le y$, alors, par ce qu'on vient de montrer, $x^3 \le 0 \le y^3$ et la thèse est prouvée.
- ▶ si $0 \le x \le y$, alors, en multipliant par $x \ge 0$ (resp. par $y \ge 0$), on obtient $x^2 \le xy$ (resp. $xy \le y^2$). Par transitivité, on a donc $x^2 \le y^2$. En multipliant les membres de cette dernière inégalité par $x \ge 0$, on trouve que $x^3 \le xy^2$. Par ailleurs, en multipliant $xy \le y^2$ par y, on a que $xy^2 \le y^3$. De nouveau, la transitivité implique que $x^3 \le y^3$.
- ▶ si $x \le y \le 0$, on refait le même argument qu'au point précédent, cette fois en inversant les inégalités à chaque multiplication par un nombre négatif (détails laissés au lecteur).

(e) Vrai : \checkmark Faux : \bigcirc pour tout $x, y \in \mathbb{R}$, $x^2 \leqslant y^2 \Rightarrow x \leqslant |y|$

Puisque $0 \leqslant x^2 \leqslant y^2$, on peut prendre la racine carrée des deux membres. La racine carrée étant une fonction croissante, l'inégalité est préservée : $|x| = \sqrt{x^2} \leqslant \sqrt{y^2} = |y|$. Par ailleurs, on a toujours que $x \leqslant |x|$ (si $x \geqslant 0$, on a l'égalité ; si x < 0, on a $x < 0 \leqslant |x|$). Par transitivité, on en déduit que $x \leqslant |y|$ comme recherché.

Question 4. Calculez les puissances entières de $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ (c'est-à-dire z^n pour $n \ge 0$ et z^n pour n < 0). Exprimez les résultats en terme de modulo. Représentez les résultats dans le plan complexe.

 $\frac{1}{2} + i \frac{\sqrt{3}}{2} = \operatorname{cis} \frac{\pi}{3}$ (voir les questions précédentes).

 $\underline{\operatorname{Cas}\, n\geqslant 0}:\operatorname{Donc}\,\left(\operatorname{cis}\frac{\pi}{3}\right)^n$ est égal à $\operatorname{cis}\frac{n\pi}{3},$ c'est-à-dire

■ Si $n = q \cdot 6$ c'est-à-dire $n \mod 6 = 0$:

$$\operatorname{cis}(q2\pi)=1$$

■ Si $n = q \cdot 6 + 1$ c'est-à-dire $n \mod 6 = 1$:

$$\operatorname{cis}\left(q2\pi + \frac{\pi}{3}\right) = \operatorname{cis}\frac{\pi}{3}$$

Correction

Test n° 3

(2 octobre 2006)

■ Si $n = q \cdot 6 + 2$ c'est-à-dire $n \mod 6 = 2$:

$$\operatorname{cis}\left(q2\pi + \frac{2\pi}{3}\right) = \operatorname{cis}\frac{2\pi}{3}$$

■ Si $n = q \cdot 6 + 3$ c'est-à-dire $n \mod 6 = 3$:

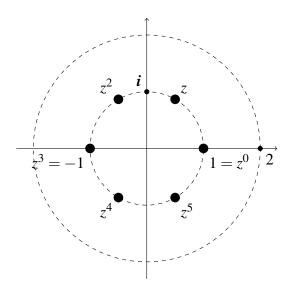
$$\operatorname{cis}\left(q2\pi + \frac{3\pi}{3}\right) = \operatorname{cis}\pi = -1$$

■ Si $n = q \cdot 6 + 4$ c'est-à-dire $n \mod 6 = 4$:

$$\operatorname{cis}\left(q2\pi + \frac{4\pi}{3}\right) = \operatorname{cis}\frac{4\pi}{3}$$

■ Si $n = q \cdot 6 + 5$ c'est-à-dire $n \mod 6 = 5$:

$$\operatorname{cis}\left(q2\pi + \frac{5\pi}{3}\right) = \operatorname{cis}\frac{5\pi}{3}$$



 $\underline{\operatorname{Cas} n = -1} : (\operatorname{cis} \frac{\pi}{3})^{-1} = \overline{\operatorname{cis} \frac{\pi}{3}} \text{ (question 2) car } \left| \operatorname{cis} \frac{\pi}{3} \right| = 1. \text{ Donc } (\operatorname{cis} \frac{\pi}{3})^{-1} = \operatorname{cis} \frac{5\pi}{3}.$ $\underline{\operatorname{Cas} n < 0} : (\operatorname{cis} \frac{\pi}{3})^n = (\operatorname{cis} \frac{5\pi}{3})^{|n|} = \operatorname{cis} |n| \frac{5\pi}{3} = \cdots \text{ (détails laissés au lecteur)}$

Question 5. Résolvez l'inéquation suivante (de manière algébrique):

$$x|x| \leqslant 2x \tag{1}$$

Exprimez vos solutions en complétant l'équivalence suivante :

$$x \ est \ solution \ de \ (1) \Leftrightarrow x \leqslant -2 \ ou \ (0 \leqslant x \ et \ x \leqslant 2)$$

Veillez à détailler et à justifier les différentes étapes de vos calculs ci-dessous.

Distinguons trois cas:

- si x = 0, l'inéquation devient $0 \le 0$ et elle est donc satisfaite.
- si x > 0, on peut multiplier les deux membres par 1/x sans changer le sens de l'inégalité. (1) est donc équivalente à $|x| \le 2$. Par l'équivalence vue au cours, on sait que ceci a pour solution $x \in [-2,2]$. Comme on ne s'intéresse qu'aux x > 0, ceux qui satisfont (1) sont $x \in [0,2]$.
- si x < 0, la multiplication de (1) par 1/x change le signe de l'inégalité : (1) est équivalente à $|x| \ge 2$ qui a pour solutions les $x \in]-\infty, -2] \cup [2, +\infty[$. Comme on ne s'intéresse qu'aux x < 0, l'ensemble des solutions pour ce cas est $]-\infty, -2]$.

Pour avoir l'ensemble des solutions de (1), on fait l'union des trois ensembles précédents : $\{0\} \cup [0,2] \cup]-\infty, -2] =]-\infty, -2] \cup [0,2].$

(2 octobre 2006)

Question 6. *Soit* $n \in \mathbb{N} \setminus \{0\}$ *. Soient* α *et* β *deux solutions de l'équation* $X^n = 1$.

- (a) Prouvez que, pour tout $k \in \mathbb{N}$, α^k est solution de l'équation.
- (b) Prouvez que α^{-1} existe et est solution de l'équation.
- (c) Prouvez que, pour tout $k \in \mathbb{Z}$, α^k est solution de l'équation.
- (d) Prouvez que $\alpha \cdot \beta$ est aussi solution de l'équation.

 α est solution de $X^n = 1$ signifie que

$$\alpha^n = 1. (2)$$

- (a) $(\alpha^k)^n = (\alpha^n)^k = 1^k = 1$ vu (2). Donc $(\alpha^k)^n = 1$, ce qui prouve que α^k est solution de l'équation $X^n = 1$.
- (b) Puisque $\alpha^n = 1$ ou $|\alpha^n| = |1| = 1$, ou encore (par la propriété $|z^n| = |z|^n$) $|\alpha|^n = 1$ c'est-àdire $|\alpha| = 1$ puisque $|\alpha| \in \mathbb{R}^+$. Donc par la question $\alpha^{-1} = \overline{\alpha}$, $(\alpha^{-1})^n = (\alpha^n)^{-1} = 1^{-1} = 1$ vu (2). Donc α^{-1} est solution de l'équation $X^n = 1$.
- (c) Il reste, au vu de (a), à prouver le cas où k < 0. On a que $\alpha^k = (\alpha^{-1})^{|k|}$ et puisque α^{-1} est solution par (b), on est dans les hypothèses pour appliquer (a) à α^{-1} vu que $|k| \ge 0$.
- (d) $(\alpha\beta)^n = \alpha^n\beta^n$ car · commutative. Donc $(\alpha\beta)^n = 1 \cdot 1 = 1$, ce qui prouve l'assertion.

Question 7. Soient les vecteurs $x, y \in \mathbb{R}^N$ définis par

$$x = (1, 1, ..., 1)$$
 et $y = (1^3, 2^3, ..., N^3)$

Montrez par récurrence que, pour tout $N \ge 2$, on a

$$(x|y) = \frac{N^2(N+1)^2}{4}$$

Cas initial : N=2. Dans ce cas, on a x=(1,1) et $y=(1^3,2^3)$. Le premier membre vaut donc $((1,1) \mid (1^3,2^3))=1^3+2^3=9$ et le deuxième membre vaut $\frac{2^2\cdot(2+1)^2}{4}=4\cdot\frac{3^2}{4}=9$. Les deux membres sont bien égaux.

Supposons que pour tout $N \le K$ (avec $K \ge 2$), on a $(x|y) = \frac{1}{4}N^2(N+1)^2$ (hypothèse de récurrence). Montrons que l'égalité est vérifiée pour N = K+1, c'est-à-dire $(x|y) = \frac{1}{4}(K+1)^2(K+2)^2$.

Lorsque
$$N = K + 1$$
, on a $x = \underbrace{(1, 1, 1, ..., 1)}_{(K+1) \text{ fois}}$ et $y = (1^3, 2^3, ..., K^3, (K+1)^3)$. Alors,

$$(x|y) = 1^3 + 2^3 + \dots + K^3 + (K+1)^3$$
 par définition du produit scalaire
$$= \frac{K^2(K+1)^2}{4} + (K+1)^3$$
 par hypothèse de récurrence
$$= \frac{(K+1)^2}{4} \cdot \left(K^2 + 4(K+1)\right)$$

Test n° 3

(2 octobre 2006)

Correction

$$= \frac{(K+1)^2}{4} \cdot (K^2 + 4K + 4)$$
$$= \frac{(K+1)^2 \cdot (K+2)^2}{4}$$

On a donc bien prouvé l'égalité pour tout $N \ge 2$.

Question 8. Donnez l'ensemble des solutions de $Z^6 - 1 = 0$.

Cette équation peut s'écrire $Z^6=1$. On a vu que les solutions de cette équation sont cis $\frac{2k\pi}{6}$, avec k=0,1,2,3,4,5. L'ensemble des solutions de cette équation est donc $\{\operatorname{cis} 0=1,\ \operatorname{cis} \frac{\pi}{3},\ \operatorname{cis} \frac{2\pi}{3},\ \operatorname{cis} \frac{2\pi}{3},\ \operatorname{cis} \frac{\pi}{3},\ \operatorname{cis} \frac{5\pi}{3}\}$

Question 9. Donnez la forme trigonométrique de

- $\frac{1}{2} + i\frac{\sqrt{3}}{2} = \operatorname{cis} \frac{\pi}{3}$ (voir question 1 où on a calculé le module et l'argument de ce complexe)
- $-\frac{1}{2} + i\frac{\sqrt{3}}{2} = \operatorname{cis}\frac{2\pi}{3}$
- $\frac{\sqrt{3}}{2} \frac{1}{2}\mathbf{i} = \frac{\sqrt{3}}{2} + \frac{1}{2}\mathbf{i} = \overline{\operatorname{cis}}\frac{\pi}{6} = \operatorname{cis}\left(2\pi \frac{\pi}{6}\right) = \operatorname{cis}\frac{11\pi}{6}$

Question 10. Écrivez l'ensemble $A \subseteq \mathbb{R}$ défini par

$$A = \left\{ x \in \mathbb{R} : \frac{1}{\sqrt{x^2 + 1} - 2x} \geqslant \frac{1}{x - 3} \right\}$$

sous la forme d'une union d'intervalles (moins il y en a, mieux c'est).

Commençons par examiner le signe des deux dénominateurs. Pour x - 3, c'est facile :

Pour $\sqrt{x^2+1}-2x$, on va résoudre $\sqrt{x^2+1}-2x\geqslant 0$, l'ensemble sur lequel l'expression est <0 étant le complémentaire de l'ensemble des solutions. On va aussi veiller à discuter le cas =0 tout au long des calculs. Pour pouvoir élever au carré les deux membres de $\sqrt{x^2+1}\geqslant 2x$ en conservant l'inégalité, on doit distinguer deux cas :

■ si 2x < 0, alors l'inégalité est toujours vérifiée (et on a pas l'égalité car $2x < 0 \le \sqrt{x^2 + 1}$).

■ si $x \ge 0$, on peut élever au carré les deux membres en gardant une inéquation équivalente, ce qui donne $x^2 + 1 \ge 4x^2$ ou encore $x^2 \le \frac{1}{3}$. Comme les deux membres sont ≥ 0 , on peut prendre la racine carrée (qui est croissante, donc concerve l'inégalité) et on obtient $|x| \le \frac{\sqrt{3}}{3}$. Cette équation a pour solutions $x \in [-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}]$. Comme on ne s'intéresse qu'aux $x \ge 0$, l'ensemble des solutions pour ce cas est $[0, \frac{\sqrt{3}}{3}]$. Remarquons que si on part de l'équation $\sqrt{x^2 + 1} = 2x$, l'égalité se propage dans les calculs précédents, ce qui implique que la seule solution de cette équation est $x = \frac{\sqrt{3}}{3}$.

On obtient donc le tableau de signes suivant :

Dressons un tableau résumant ce qu'on a trouvé jusqu'à présent :

Venons-en à l'inéquation de départ :

$$\frac{1}{\sqrt{x^2 + 1} - 2x} \geqslant \frac{1}{x - 3} \tag{3}$$

(a) Pour $x = \sqrt{3}/3$ ou x = 3, un des dénominateurs s'annule; on doit donc les exclure.

(b) Lorsque $x \in]-\infty, \frac{\sqrt{3}}{3}[$, le membre de gauche est > 0 tandis que celui de droite est < 0; l'inégalité (3) est donc vérifiée. Pour $x \in]3, +\infty[$, le membre de gauche est < 0 et celui de droite est > 0; (3) n'est donc *pas* vérifiée.

(c) Finalement, pour $x \in \left[\frac{\sqrt{3}}{3}, 3\right]$, on multiplie par les deux dénominateurs < 0, ce qui inverse deux fois l'inégalité (donc en conserve la position initiale), ce qui donne

$$x - 3 \geqslant \sqrt{x^2 + 1} - 2x \tag{4}$$

ou encore $3x - 3 \ge \sqrt{x^2 + 1}$. Distinguons deux cas :

■ Si 3x - 3 < 0, l'inégalité (4) n'est jamais vérifiée.

■ Si $x \ge 1$, les deux membres sont ≥ 0 , on peut donc les élever au carré en conservant l'inégalité, ce qui donne après simplification :

$$4x^2 - 9x + 4 \ge 0$$

En appliquant les règles vues pour déterminer le signe d'un polynôme du second degré, on trouve :

Comme, en évaluant le polynôme en x=1, on trouve une valeur <0, le nombre 1 se situe entre les deux racines. Les solutions pour ce cas ci sont donc $x\in \left[\frac{9+\sqrt{17}}{8},+\infty\right[$.

(2 octobre 2006)

Correction

En rassemblant les deux cas, on trouve que

$$(4) \quad \Leftrightarrow \quad x \in \left\lceil \frac{9 + \sqrt{17}}{8}, +\infty \right\rceil$$

Cependant (4) n'est équivalent à (3) que sur $\left]\frac{\sqrt{3}}{3},3\right[$, donc les solutions de (3) dans cet intervalle sont dans l'ensemble

$$\left] \frac{\sqrt{3}}{3}, 3 \right[\cap \left[\frac{9 + \sqrt{17}}{8}, +\infty \right] = \left[\frac{9 + \sqrt{17}}{8}, 3 \right]$$

où l'égalité résulte de $\frac{\sqrt{3}}{3} < 1 < \frac{9+\sqrt{17}}{8} < 3$.

(d) On peut résumer ce qu'on vient de faire par le tableau :

On trouve donc finalement que

(3)
$$\Leftrightarrow$$
 $x < \frac{\sqrt{3}}{3}$ ou $x \in \left[\frac{9 + \sqrt{17}}{8}, 3\right]$

ou encore, en termes d'ensembles,

$$A = \left] -\infty, \frac{\sqrt{3}}{3} \right[\cup \left[\frac{9 + \sqrt{17}}{8}, 3 \right[.$$