Test nº 4

(9 octobre 2006)

Nom :	
Prénom :	
Section :	

Veuillez commencer par écrire en lettres *majuscules* votre NOM, PRÉNOM et SECTION (math, phys, ou info) sur *toutes* les feuilles. Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. Les feuilles qui ne respectent pas ces consignes ne seront pas corrigées.

Veuillez lire attentivement les conseils ci-dessous.

- Assurez vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit *convaincre* le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à rédiger *soigneusement* vos réponses ; en particulier structurez les clairement. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- N'employez pas le dos de la feuille d'une autre question pour finir votre réponse!

Question 1. À partir des règles de base sur les inégalités, pour rappel :

pour tout
$$x, y \in \mathbb{R}$$
, $x \ge 0$ et $y \ge 0 \Rightarrow x + y \ge 0$ (1)

pour tout
$$x, y \in \mathbb{R}$$
, $x \ge 0$ et $y \ge 0 \Rightarrow x \cdot y \ge 0$ (2)

et de la définition « $x \le y$ si et seulement si $y - x \geqslant 0$ », montrez que, pour tout $x, y \in \mathbb{R}$:

- (a) pour tout $z \ge 0$, $x \le y \Rightarrow xz \le yz$.
- (b) $0 \leqslant x \leqslant y \Rightarrow x^2 \leqslant y^2$.

Test n° 4

(9 octobre 2006)

Nom:
Prénom :
Section:

Question 2. Soit le système

$$\begin{cases} x\sin\theta + y\cos\theta = \frac{1}{2}\pi \\ -x\cos\theta + y\sin\theta = \pi^{-1} \end{cases}$$

où les inconnues sont x, y et θ est un paramètre réel. Déterminez pour quelle(s) valeur(s) de θ le système possède une unique solution. Expliquez votre démarche et détaillez vos calculs.

Question 3. Calculez $\sum_{i=-1}^{n} i =$

$$\sum_{i=-1}^{n} i =$$

$$\sum_{t=3}^{\ell} (\ell + t^2 - 2t) =$$

Test n° 4

(9 octobre 2006)

Nom :
Prénom :
Section:

Question 4. Pour chacune des relations ci-dessous, dites s'il s'agit ou non d'une fonction. Justifiez votre réponse par une argumentation concise mais précise.

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto y \text{ tel que } y \geqslant 0 \text{ et } y^3 = x$$

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto y \text{ tel que tg } y = x$$

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto y \text{ tel que } xy = 0$$

•
$$f: \mathbb{R} \to \mathbb{R}: x \mapsto y \text{ tel que } y \geqslant 0 \text{ et } \sqrt{y} = x$$

$$f: \mathbb{C} \to \mathbb{C}: z \mapsto w \text{ tel que } w^3 = z$$

Test n° 4

(9 octobre 2006)

Nom :			 	
Prénom : _				_
Section :				

Question 5. Soient les deux ensembles suivants :

$$A = \left\{ (\alpha, \beta) \in \mathbb{R}^2 : (\alpha, \beta) \text{ est une solution du système } \begin{cases} 2x + 3y = 0 \\ 5x - 7y = 0 \end{cases} \right\}$$
$$B = \left\{ (u, v) \in \mathbb{R}^2 : (u, v) \text{ est orthogonal à } \left(1, \frac{3}{2} \right) \right\}$$

- (a) Montrez que A est contenu dans B.
- (b) A-t-on A = B? Expliquez votre démarche et détaillez vos calculs.

Mathématique Élémentaire Test n° 4 (9 octobre 2006) Nom : ______ Prénom : ______ Section : _____

Question 6. Calculez $\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^n$, $n \in \mathbb{Z}$. Exprimez le résultat en utilisant la notion de modulo.

Test n° 4 (9 octobre 2006)

Nom :
Prénom :
Section :

Question 7.

- (a) Donnez un système d'équations cartésiennes de la ou les droites D_1 passant par (0,1,2) et parallèle au plan $\alpha \equiv z = x$. Expliquez votre démarche et détaillez vos calculs.
- (b) Pour quelle(s) valeur(s) du paramètre réel λ les plans $\alpha \equiv \lambda^2 + 3y 8z = 3$ et $\beta \equiv 2x \lambda y \lambda z = 2$ sont-ils perpendiculaires. Expliquez votre démarche et détaillez vos calculs.

/5

Test n° 4

(9 octobre 2006)

	Nom :
	Prénom :
4	Section :

Question 8. Soient $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et

$$aX + bY = 0 (3)$$

l'équation d'une droite passant par (0,0).

(a) Prouvez que si (x_1, y_1) et (x_2, y_2) sont solutions de (3), alors $(x_1, y_1) + (x_2, y_2)$ en est aussi solution.

(b) Soit $c \in \mathbb{R}$. Prouvez que si (x_1, y_1) est solution de (3) et si (u, v) est solution de l'équation

$$aX + bY = c (4)$$

alors $(x_1, y_1) + (u, v)$ est aussi solution de (4).

Test n° 4 (9 octobre 2006)

Nom :	 	
Prénom :	 	
Section :		

Question 8 (suite).

(c) Soit (u,v) une solution fixée de aX+bY=c. Prouvez que toute solution de aX+bY=c est de la forme

$$(x,y) + (u,v)$$
 où (x,y) est solution de (3).

Interprétez géométriquement ce résultat.