Test n° 3

(29 septembre 2008)

Nom :
Prénom :
Section :

Veuillez commencer par écrire en lettres *majuscules* votre NOM, PRÉNOM et SECTION (MATH, PHYS, INFO, ou PINFO) sur *toutes* les feuilles. Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. Les feuilles qui ne respectent pas ces consignes ne seront pas corrigées.

Veuillez lire attentivement les conseils ci-dessous.

- Assurez vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit *convaincre* le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à rédiger *soigneusement* vos réponses ; en particulier structurez les clairement. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse!

Question 1. Résoudre $X^2 = -i$ dans \mathbb{C} .

Question 2. Écrire les nombres complexes suivants sous forme trigonométrique :

$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

 $= \sin 45^{\circ} + i \cos 45^{\circ}$

$$\operatorname{cis}\!\left(\frac{23\pi}{7}\right)$$

 $/_3$

Test n° 3

(29 septembre 2008)

Nom :
Prénom :
Section :

Question 3. Résolvez algébriquement l'inéquation suivante :

$$\frac{(1-|x|)^2}{x} \leqslant x \tag{1}$$

L'ensemble des x vérifiant (1) doit être exprimé sous la forme d'une union d'intervalles disjoints (moins il y a d'intervalles, mieux c'est). Veillez à justifier toutes les étapes de vos calculs.

Mathémat	ique Élémentaire	Nom :
Test n° 3	(29 septembre 2008)	Prénom :
		Section :
$x_1 \neq x_2$ (il n'	est par contre pas exclu que $y_1 = y_2$).	points (x_1, y_1) et (x_2, y_2) où $x_1, y_1, x_2, y_2 \in \mathbb{R}$ et on cartésienne de D . Expliquez votre démarche
■ Donnez, e y. Expliqu		nées du point d'intersection entre D et l'axe de
		nées du point d'intersection entre D et l'axe de
		nées du point d'intersection entre D et l'axe de
		nées du point d'intersection entre D et l'axe de
		nées du point d'intersection entre D et l'axe de

Question 5. Donnez, en bon français, la contraposée de « Si je rate ce test alors je rate les examens de janvier ».

/-

Test n° 3

(29 septembre 2008)

Nom :	 		 	 	_
Prénom :			 		_
٠٠.					

Question 6. Soit le système

$$\begin{cases} x\cos\theta - y\sin\theta = \pi^2 \\ x\sin\theta + y\cos\theta = \sqrt{\pi} \end{cases}$$

où les inconnues sont x, y et θ est un paramètre réel. Déterminez pour quelle(s) valeur(s) de θ ce système possède une unique solution. Expliquez votre démarche et détaillez vos calculs.

Question 7. Donnez la table de vérité de $p := (A \lor B) \land C \Rightarrow \neg (A \land B)$. Est-ce une tautologie ?

Test n° 3

(29 septembre 2008)

Nom :
Prénom :
Section :

Question 8. Dans chacune des situations suivantes, donnez l'ensemble S qui décrit l'intersection des droites D_1 et D_2 :

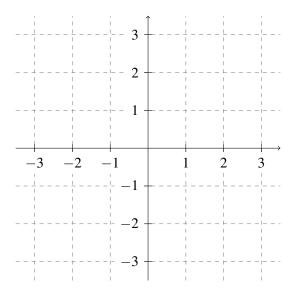
(a)
$$D_1 \equiv 2x + y = 5$$
 et $D_2 \equiv (x, y) = (-3, -1) + \lambda(1, 1), \lambda \in \mathbb{R}$;

(b)
$$D_1 \equiv -2x + 3y = 1$$
 et $D_2 \equiv 0.2x - 0.3y = 0.1$;

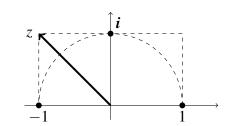
(c)
$$D_1 \equiv (x, y) = (-1, 3) + \lambda(2, 1), \lambda \in \mathbb{R} \text{ et } D_2 \equiv (x, y) = (-7, 0) + \mu(-4, -2), \mu \in \mathbb{R}.$$

Test n° 3

(29 septembre 2008)


Nom : _____ Prénom : _____ Section : _____

Question 9. Soit $S = \{(\lambda, 3\lambda - 2) \mid \lambda \in \mathbb{R}\}$ l'ensemble des solutions d'un système de deux équations à deux inconnues.


(a) Les couples (1,1) et (5,4) sont-ils solutions de ce système? Détaillez votre raisonnement.

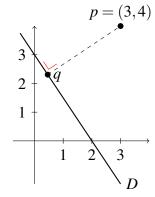
(b) Que vaut le déterminant de ce système ? Justifiez votre réponse.

(c) Représentez l'ensemble S sur le dessin ci-dessous. Expliquez votre construction.

Question 10. Donnez la forme trigonométrique du complexe *z* représenté ci-contre.

 $/_2$

Test n° 3


(29 septembre 2008)

Nom : _____

Section :

Question 11. Considérons la droite D ainsi que les points p et q représentés sur le dessin ci-contre.

- (a) Recherchez les coordonnées de q. Expliquez votre raisonnement.
- (b) Calculez la distance entre p et q.

