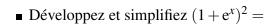
Test n° 1

(19 septembre 2011)


Nom:	
Prénom :	_
Section :	

Veuillez lire attentivement ces quelques consignes et conseils.

- Les calculatrices ne sont *pas* autorisées.
- Il est nécessaire de justifier vos réponses de manière à ce que votre argumentation convainque le lecteur. En l'absence de justification, le résultat final, même correct, n'a pas de valeur.
- L'espace laissé après chaque question vous donne une *indication* sur la longueur de la réponse attendue.
- N'employez *pas* le dos de la feuille d'une *autre question* pour finir votre réponse! En effet, les questions sont corrigées par différentes personnes.

Question 1.

■ Mettez sous forme d'une unique fraction $\frac{\frac{A}{B}}{C}$ =

- Développez et simplifiez $(a_1 + a_2 + a_3)^2 =$
- Convertissez 100 m/s en km/h.

Test n° 1

(19 septembre 2011)

Nom : _____

Section :

Question 2. Cochez la case adéquate selon que vous pensez que l'affirmation est vraie ou fausse. Justifiez brièvement votre réponse.

- Vrai: ☐ Faux : ☐ Les solutions de $x^3 = a$ sont $x = \pm \sqrt[3]{a}$.
- Vrai: \square Faux : \square Pour tout $x \in \mathbb{R}, x^2 \geqslant x$.
- Vrai: ☐ Faux : ☐ Soient a_1 , a_2 , a_3 , b_1 , b_2 et b_3 des nombres réels strictement positifs. On a que $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$ implique $\ln a_1 + \ln a_2 + \ln a_3 = \ln b_1 + \ln b_2 + \ln b_3$.
- Vrai: \square Faux : \square $(2^{\sqrt{2}})^2 = 2^2$.
- Vrai: ☐ Faux : ☐ Soient a_1 , a_2 et a_3 des nombres réels. Peut-on dire que $a_1 + a_2 + a_3 = 0$ est équivalent à $a_1 = a_2 = a_3 = 0$?
- Vrai: ☐ Faux : ☐ Soient a_1 , a_2 et a_3 des nombres réels. Peut-on dire que $a_1^2 + a_2^2 + a_3^2 = 0$ est équivalent à $a_1 = a_2 = a_3 = 0$?

Test n° 1

(19 septembre 2011)

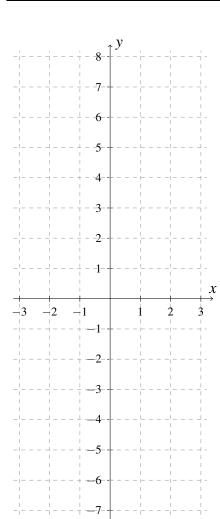
Nom :		 	 	 	
Prénom	 		 	 	

Question 3. Trouvez tous les $x \in \mathbb{R}$ tels que $x^2(1-x^2) = 0$.

/3

Question 4. En simplifiant un facteur x commun entre le numérateur et le dénominateur, un étudiant obtient :

$$\frac{x}{\sqrt{x^2 + x^4}} = \frac{1}{\sqrt{1 + x^2}}.$$


Il s'inquiète cependant car il remarque que la fraction de gauche semble pouvoir être négative contrairement à celle de droite. Quelle erreur a-t-il commise ? Expliquez.

Test n° 1

(19 septembre 2011)

Nom :	 	 	 	
Prénom ·				

Section:

Question 5. Tracez sur le graphique ci-contre les graphes des trois fonctions suivantes:

$$f(x) = |x|$$

$$g(x) = x^2$$

$$h(x) = x^3$$

Veillez à ce que la position des graphes les uns par rapport aux autres soit correcte.

Question 6. Résolvez, dans \mathbb{R} , l'inéquation $x \leq \frac{1}{x}$.

Test n° 1

(19 septembre 2011)

Nom :	 	 		 _
Prénom :				
 Section :				

Calculez

■ la distance entre le point de coordonnées (4,5) et (0,0).

$$\frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}}{\sqrt{2} - \sqrt{3}} =$$

$$e^{x^2+3x+1}$$
)' =

$$(\sqrt[3]{x^4})' =$$

Question 8. Un objet est lâché d'une hauteur h au dessus du sol. La physique nous dit que la hauteur de cet objet au temps t est donnée par $y(t) = h - gt^2/2$ où g est la constante de gravitation terrestre. Écrivez une formule qui donne le temps t^* en lequel cet objet touchera le sol. Expliquez votre démarche.

