Test n° 3

(3 octobre 2011)

Nom:	
Prénom :	_
Section :	

Veuillez commencer par écrire en lettres *majuscules* votre NOM, PRÉNOM et SECTION (MATH, PHYS, INFO, ou PINFO) sur *toutes* les feuilles. Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. Les feuilles qui ne respectent pas ces consignes seront pénalisées.

Veuillez lire attentivement les conseils ci-dessous.

- Assurez-vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit *convaincre* le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à rédiger *soigneusement* vos réponses ; en particulier structurez-les clairement. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- N'employez pas le dos de la feuille d'une autre question pour finir votre réponse!

Question 1. Calculez

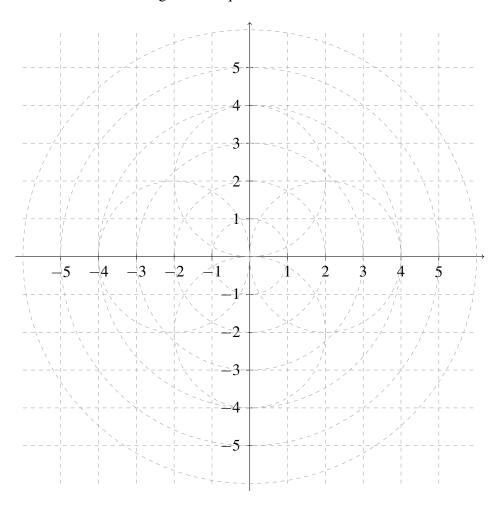
$$\overline{(3-7i)}(2+5i) =$$

$$\left(\frac{\sqrt{3}}{3} - i \right)^{-1} =$$

$$|-3\sqrt{3}+3i|=$$

$$|(-3\sqrt{3}+3i)(4-i)^2| =$$

Test n° 3


(3 octobre 2011)

N	om :
P	rénom:
1s	ection :

Question 2.

- (a) Calculez l'argument des complexes suivants :
 - 2-2i,

 - $1 + \operatorname{tg} \theta \cdot \boldsymbol{i}$ avec $\theta \in [0, 2\pi[$.
- (b) Représentez ces complexes dans le plan (pour le quatrième, faites un choix qui ne soit pas trop particulier) et donnez en la forme trigonométrique.

Mathématique Élémentaire		Nom:
Test n° 3	(3 octobre 2011)	Prénom :
		Section :

Question 2 (suite). Continuez votre réponse sur cette page.

Question 3. Soit z un complexe d'argument θ et de module ρ . Donnez l'argument et le module de \bar{z} .

Test n° 3

(3 octobre 2011)

Nom : _____

Section :

Question 4. Donnez toutes les solutions $x \in \mathbb{R}$ de $\sin(1/x) = 1$.

/2

Question 5. Sur le graphique ci-contre, esquissez le graphe de la fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^4 - 6x^2$. Expliquez votre démarche. La qualité de celle-ci est importante.

Test	n°	3

(3 octobre 2011)

	Nom:
	Prénom :
_	Section:

Question 6.

- /4
- (a) Soient a,b deux réels non nuls. Montrez qu'une équation cartésienne de la droite D passant par les points (a,0) et (0,b) est

$$\frac{x}{a} + \frac{y}{b} = 1.$$

(b) Donnez une équation cartésienne de la droite D' perpendiculaire à la droite D et passant par l'origine du repère.

Test n° 3

(3	octobre	201	1
(-	00.00.0		٠.

Nom :
Prénom :
Section:

Question 7.

- 6
- (a) Donnez la fonction du premier degré dont le graphe est la droite D passant par le point (5,-4) et parallèle à la droite D' dont une équation paramétrique est

$$(x,y) = (\lambda, 3\lambda), \quad \text{où } \lambda \in \mathbb{R}.$$

(b) Soit la droite D passant par le point (3,4) et par le milieu du segment joignant les points (-1,1) et (3,9). Montrez que la droite D est perpendiculaire au segment.

Test n° 3

(3 octobre 2011)

Nom : _____ Prénom : _____ Section : _____

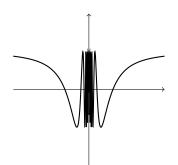
Question 8. Résoudre $X^2 - 3X + 1 = 0$ dans \mathbb{C} .

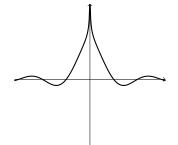
Question 9.

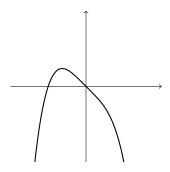
- (a) Définissez a est un minimum de l'ensemble A.
- (b) Prouvez que si a_1 et a_2 sont des minimums de A, alors $a_1 = a_2$.

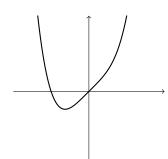
Test n° 3

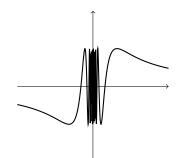
(3 octobre 2011)


Nom: _____


Section :


Question 10. Repérez le graphe de chacune des fonctions suivantes sur les graphes ci-dessous. Justifiez vos choix.




- $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^4 x$
- $g: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{\sin x}{x}$
- $\bullet h: \mathbb{R} \to \mathbb{R}: x \mapsto \cos(1/x)$

