Mathématique Élémentaire

Test n° 3

(28 septembre 2015)

Question 1. Calculez dans \mathbb{C} ,

- (a) l'inverse de $1 \mathbf{i}$ et l'inverse de $7\mathbf{i} 3$,
- (b) le conjugué de 7i 3,
- (c) le module de $\sqrt{4} + \sqrt{4}$.
- (a) J'applique la formule (rappelée en Question 3, (b)) qui nous dit que

$$z^{-1} = \frac{\overline{z}}{|z|^2}.$$

Donc
$$(1 - \mathbf{i})^{-1} = \frac{1+\mathbf{i}}{2} = \frac{1}{2} + \frac{\mathbf{i}}{2} \operatorname{car} |1 - \mathbf{i}|^2 = (\sqrt{2})^2 = 2$$

et $(7\mathbf{i} - 3)^{-1} = (-3 + 7\mathbf{i})^{-1} = \frac{-3 - 7\mathbf{i}}{|-3 + 7\mathbf{i}|^2} = \frac{-3}{58} - \frac{7}{58}\mathbf{i}$;

- (b) $\overline{7i-3} = -3-7i$;
- (c) $|\sqrt{4} + \sqrt{4}| = |2\sqrt{4}| = 2\sqrt{4} \operatorname{car} 2\sqrt{4} \in \mathbb{R}$.

Question 2. Soient $a, b \in \mathbb{R} \setminus \{0\}$. Considérons la droite D d'équation $\frac{x}{a} + \frac{y}{b} = 1$.

- (a) Donnez la pente de D.
- (b) Donnez une équation paramétrique de D.
- (c) Donnez une équation cartésienne de la droite D' perpendiculaire à la droite D et passant par l'origine du repère.
- (a) L'équation de D peut s'écrire $\frac{y}{b} = \frac{-x}{a} + 1$ ou encore $y = \frac{-b}{a}x + b$. La pente de D vaut donc $\frac{-b}{a}$ puisque nous avons vu que lorsqu'une équation peut se mettre sous la forme y = mx + p, ce qui est le cas ici, la pente vaut m.
- (b) On a vu au cours que le vecteur (1,m), où m est la pente de la droite, est un vecteur directeur. Donc, par (a), $\left(1, \frac{-b}{a}\right)$ est un vecteur directeur de D. Pour trouver un point de D, remplaçons par exemple x par a dans l'équation. On trouve $1 + \frac{y}{b} = 1$. Donc y = 0. Un point de D est donc (a,0). Donc $D \equiv (x,y) = (a,0) + \lambda \left(1, \frac{-b}{a}\right)$, où $\lambda \in \mathbb{R}$.

(28 septembre 2015)

(c) On a vu que le produit des pentes de deux droites perpendiculaires vaut -1. Par (a), la pente de D vaut $\frac{-b}{a}$. La pente de D' vaut donc $\frac{a}{b}$ car $\frac{-b}{a} \cdot \frac{a}{b} = -1$. Donc $D' \equiv y = \frac{a}{b}x + p$. Comme D' passe par (0,0), on trouve p en remplaçant dans l'équation x et y par 0. On a p=0. Donc $D' \equiv y = \frac{a}{b}x$.

Question 3.

- (a) Soit $z = a + bi \in \mathbb{C}$. Prouvez que z = 0 si et seulement si |z| = 0. Justifiez toutes les étapes de votre preuve.
- (b) Prouvez que si $z \neq 0$, alors $z^{-1} = \frac{\overline{z}}{|z|^2}$.
- (a) $z = a + b\mathbf{i} = 0$ $\operatorname{ssi} a + b\mathbf{i} = 0 + 0\mathbf{i}$ $\operatorname{ssi} a = 0$ et b = 0 (par définition de l'égalité de 2 complexes) $\operatorname{ssi} a^2 = 0$ et $b^2 = 0$ $\operatorname{ssi} a^2 + b^2 = 0$ (une somme de deux nombres $\geqslant 0$ est nulle ssi les deux nombres sont nuls) $\operatorname{ssi} \sqrt{a^2 + b^2} = 0$ (car la racine carrée d'un nombre réel positif est nulle ssi ce nombre est nul).
- (b) Si $z \neq 0$, on a que $|z| \neq 0$ (voir le (a)). Donc $\frac{\overline{z}}{|z|^2}$ existe et est un complexe car un complexe multiplié par l'inverse d'un réel est un complexe.

Donc pour prouver que $\frac{\overline{z}}{|z|^2}$ est l'inverse de z, il suffit, par définition de la notion d'inverse de z, de vérifier que

$$\frac{\overline{z}}{|z|^2} \cdot z = 1. \tag{1}$$

Notez que $z \cdot \frac{\overline{z}}{|z|^2}$ donnera le même résultat vu que la multiplication complexe est commutative. Le premier membre de (1) est $\frac{z \cdot \overline{z}}{|z|^2} = \frac{|z|^2}{|z|^2} = 1$ car on a vu que $z \cdot \overline{z} = |z|^2$.

(28 septembre 2015)

Correction

Question 4. Résolvez l'inéquation $\sqrt{x+1} \ge x$. Exprimez l'ensemble de ses solutions sous la forme d'une union d'intervalles disjoints (moins il y en a, mieux c'est).

Commençons par regarder les conditions d'existence des deux membres de l'inégalité. Le seul problème est la racine. Elle existe si et seulement si $x + 1 \ge 0$, c'est-à-dire si et seulement si

$$x \in [-1, +\infty[$$
.

Pour enlever la racine, nous devons distinguer deux cas.

- Si x < 0, l'inégalité est forcément vérifiée puisque le radical d'un nombre est ≥ 0 . En tenant compte des conditions d'existence, les solutions de $\sqrt{x+1} \ge x$ pour ce premier cas sont les $x \in [-1,0[$.
- Si $x \ge 0$, on peut élever les deux membres au carré et conserver une inégalité équivalente : $x+1 \ge x^2$. Celle-ci peut se réécrire $x^2-x-1 \le 0$. Le tableau de signe du polynôme du second degré est

En se rappelant qu'on ne travaille qu'avec les $x \ge 0$, on déduit que les solutions pour ce cas sont les $x \in \left[0, \frac{1+\sqrt{5}}{2}\right]$.

En conclusion, l'ensemble des solutions de $\sqrt{x+1} \ge x$ est $\left[-1,0\right] \cup \left[0,\frac{1+\sqrt{5}}{2}\right] = \left[-1,\frac{1+\sqrt{5}}{2}\right]$.

Question 5. Donnez une forme alternative « plus simple » ainsi que les conditions d'existence.

- $\sqrt{x^2} = |x| = \begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$; existe $si \ x \in \mathbb{R}$ (pas de restriction sur x).
- $(\sqrt{x})^2 = x$; existe si $x \ge 0$ (ceci afin que \sqrt{x} ait un sens).

Question 6.

- (a) Donnez une équation cartésienne de la droite D_1 passant par le point (-2,-1) et perpendiculaire à la droite D dont une équation paramétrique est $(x,y)=(2-3\lambda,\lambda-4)$, où $\lambda \in \mathbb{R}$.
- (b) Donnez une équation paramétrique de la droite D_2 parallèle à la droite D' d'équation -5x + y = 3x + 2 2y et dont l'ordonnée à l'origine vaut -3.
- (a) On a $D \equiv (x,y) = (2,-4) + \lambda(-3,1)$, où $\lambda \in \mathbb{R}$. Le vecteur (-3,1) est donc un vecteur directeur de D. Comme D et D_1 sont perpendiculaires, (-3,1) est un vecteur normal de D_1 . Donc, $D_1 \equiv -3x + y = c$. Comme $(-2,-1) \in D_1$, on trouve c en remplaçant dans l'équation c par -2 et c par -1. On a $-3 \cdot (-2) 1 = c$, donc c = 5. En conclusion, $D_1 \equiv -3x + y = 5$.

Mathématique Élémentaire

Test n° 3

(28 septembre 2015)

Correction

(b) On a $D' \equiv -5x - 3x + y + 2y = 2$ c'est-à-dire $D' \equiv -8x + 3y = 2$. Le vecteur (-8,3) est un vecteur normal de D'. Donc (3,8) est un vecteur directeur de D' car il est orthogonal à (-8,3). En effet, $((-8,3) \mid (3,8)) = -24 + 24 = 0$. Comme D_2 est parallèle à D', (3,8) est donc aussi un vecteur directeur de D_2 . D'autre part, dire que l'ordonnée à l'origine vaut -3 revient à dire que $(0,-3) \in D_2$. En conclusion, $D_2 \equiv (x,y) = (0,-3) + \lambda(3,8)$, où $\lambda \in \mathbb{R}$.

Question 7. On a vu que $(1-i)^2 = -2i$. Résoudre dans \mathbb{C} l'équation $Y^2 = -2i$.

Par définition de solution, on a que 1 - i est une solution de $Y^2 = -2i$. L'autre solution est donc -(1-i) car

$$(-(1-\mathbf{i}))^2 = ((-1)\cdot(1-\mathbf{i}))^2$$

$$= (-1)^2(1-\mathbf{i})^2$$
 (car la multiplication complexe est commutative)
$$= 1(-2\mathbf{i})$$

$$= -2\mathbf{i}$$

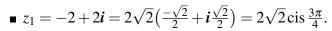
et donc on a que les solutions de l'équation du second degré $Y^2 = -2i$ sont 1 - i et -1 + i.

Question 8. Donnez les formules suivantes :

$$\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$$

$$\sin(\theta_1 + \theta_2) = \sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2$$

Question 9. Placez les nombres complexes suivants dans le plan complexe et donnez leur forme trigonométrique : $z_1 := -2 + 2\mathbf{i}$, $z_2 := 3\mathbf{i}$, $z_3 := -3\operatorname{cis}\frac{\pi}{3}$, $z_4 := 2\operatorname{cis}\frac{19\pi}{6}$.



$$z_2 = 3i = 3\operatorname{cis}\frac{\pi}{2}.$$

$$z_3 = -3\operatorname{cis}\frac{\pi}{3} = 3\left(-\operatorname{cis}\frac{\pi}{3}\right) = 3\operatorname{cis}\left(\pi + \frac{\pi}{3}\right).$$
$$= 3\operatorname{cis}\frac{4\pi}{3}$$

$$z_4 = 2\operatorname{cis}\frac{19\pi}{6} = 2\operatorname{cis}\left(\left(\frac{12}{6} + \frac{7}{6}\right)\pi\right)$$
$$= 2\operatorname{cis}\left(2\pi + \frac{7}{6}\pi\right) = 2\operatorname{cis}\frac{7\pi}{6}$$

 $\cos(2\pi + \frac{7}{6}\pi) = \cos\frac{7\pi}{6}$ et $\sin(2\pi + \frac{7}{6}\pi) = \sin\frac{7\pi}{6}$. En effet, sin et cos sont des fonctions périodiques de période 2π .

