Examen

(30 octobre 2017)

| Nom:      |  |
|-----------|--|
| Prénom :  |  |
| Section : |  |

Veuillez commencer par écrire *lisiblement* en lettres *majuscules* votre NOM, PRÉNOM et SECTION (MATH, PHYS, INFO, PINFO) sur *toutes* les feuilles. Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. Faites également attention à ne *pas* finir votre réponse sur la feuille d'une *autre question*! Les feuilles qui ne respectent pas ces consignes seront pénalisées.

#### Veuillez lire attentivement les conseils ci-dessous.

- Assurez-vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Quand il est nécessaire de justifier, votre argumentation doit *convaincre* le lecteur. En l'absence de justification dans un tel cas, le résultat final, même correct, n'a pas de valeur.
- Veillez à rédiger *soigneusement* vos réponses; en particulier structurez-les clairement. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- Il est interdit d'avoir son GSM sur soi. Il doit être en mode silencieux dans votre cartable.

Question 1. Calculez

$$|(1-i)^7| =$$

$$2^{1/4} \cdot 3^{1/4} =$$

$$(2^{1/4})^8 =$$

$$(1-2i)^{-1} =$$

$$|(\overline{1-i})^7| =$$

Question 2. Calculez

$$\sum_{i=2}^{n-2} 1 =$$

$$\sum_{j=1}^{n} j^2 - j =$$



Examen

(30 octobre 2017)

| Nom :     |  |
|-----------|--|
| Prénom :  |  |
| Section : |  |

Question 3. Donnez l'ensemble des solutions de l'inéquation (1) ci-dessous sous la forme d'une union disjointe d'intervalles (moins il y en a, mieux c'est).

$$\frac{1}{\sqrt{x+1}-2} \geqslant \frac{x}{3} - 1 \tag{1}$$

| Mathémati | que Élémentaire   | Nom:      |
|-----------|-------------------|-----------|
| Examen    | (30 octobre 2017) | Prénom :  |
|           |                   | Section : |

Question 3 (suite). Poursuivez votre réponse sur cette page.

Examen

(30 octobre 2017)

| Nom :    | _ | <br> |  |  |   |   |
|----------|---|------|--|--|---|---|
| Prénom : |   |      |  |  | _ | _ |
| Section: |   |      |  |  |   |   |

Question 4. Soient les nombres complexes  $z_1 = \frac{1}{2}(-1 + i\sqrt{3})$  et  $z_2 = \frac{1}{2}(-1 - i\sqrt{3})$ .

**/**5

- (a) Donnez la forme trigonométrique de  $z_1$  et  $z_2$ .
- (b) Soit la matrice  $M \in \mathbb{R}^{3 \times 3}$  définie par

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & z_1 & z_2 \\ 1 & z_2 & z_1 \end{pmatrix}$$

Calculez  $M \cdot M$  et déduisez-en la matrice  $M^{-1}$ . Expliquez votre démarche.

Examen

(30 octobre 2017)

| Nom :     |  |  |  |   |  |
|-----------|--|--|--|---|--|
| Prénom :  |  |  |  | ı |  |
| Section : |  |  |  |   |  |

Question 5. Soient les ensembles

$$A = \left\{ (\alpha, \beta) \in \mathbb{R}^2 \,\middle|\, (\alpha, \beta) \text{ est une solution du système } \left\{ \begin{aligned} 2x + 3y &= 0 \\ 2x - 7y &= 0 \end{aligned} \right. \right\}$$
 et  $B = \left\{ (u, v) \in \mathbb{R}^2 \,\middle|\, (u, v) \text{ est orthogonal à } \left(1, \frac{3}{2}\right) \right\}.$ 

Les affirmations suivantes sont-elles vraies ou fausses? Justifiez vos réponses.

- (a) Vrai :  $\square$  Faux :  $\square$  Si  $(x,y) \in A$ , alors  $(x,y) \in B$ .
- (b) Vrai :  $\square$  Faux :  $\square$  Si  $(x,y) \in B$ , alors  $(x,y) \in A$ .

Examen (30 octobre 2017)

Nom: \_\_\_\_\_\_
Prénom: \_\_\_\_\_\_
Section: \_\_\_\_\_

Question 6. On considère la fonction  $f: \mathbb{R} \to \mathbb{R}: x \mapsto \mathrm{e}^{\alpha \arcsin(\beta \, \mathrm{sh} x)}$  où  $\mathrm{sh} x := \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}$  est le sinus hyperbolique et  $\alpha$ ,  $\beta$  sont des paramètres. Donnez tous les couples  $(\alpha, \beta) \in \mathbb{R}^2$  pour lesquels  $\alpha x - \beta y = 1$  est l'équation d'une droite parallèle à la tangente au graphe de f en x = 0.

**/**5

Examen

(30 octobre 2017)

| Nom :    |  |  |  |  |  |
|----------|--|--|--|--|--|
| Prénom : |  |  |  |  |  |
| Section: |  |  |  |  |  |

Question 7. Soit  $A=(A_{ij})\in\mathbb{R}^{n\times n}$  la matrice définie par

$$A_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

- (a) La matrice A est-elle symétrique?
- (b) La matrice A est-elle antisymétrique?
- (c) Calculez  $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$ . Expliquez votre démarche.

7/12

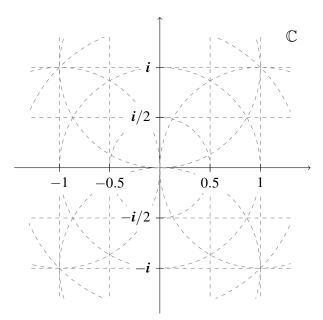
Examen

(30 octobre 2017)

| Nom :    | <br> |   |  |  |  |  |
|----------|------|---|--|--|--|--|
| Prénom : | <br> | _ |  |  |  |  |
| Section: |      |   |  |  |  |  |

#### Question 8.

- (a) Vérifiez que cis  $\frac{7\pi}{4}$  est solution de l'équation  $Z^6 = i$ .
- (b) Donnez sous forme trigonométrique toutes les solutions dans  $\mathbb{C}$  de l'équation  $Z^6 = i$ .
- (c) Placez les solutions de  $Z^6 = i$  dans le plan ci-dessous. Expliquez votre construction.
- (d) En utilisant éventuellement ce qui précède, donnez sous forme algébrique cis  $\frac{\pi}{12}$ .



Examen

(30 octobre 2017)

| Nom :     |  |  |  |  |  |
|-----------|--|--|--|--|--|
| Prénom :  |  |  |  |  |  |
| Section : |  |  |  |  |  |

Question 9. Soit la matrice  $A = \begin{pmatrix} 1 & \lambda + 1 & 1 \\ 1 & \lambda & \lambda \\ \lambda & \lambda & 1 \end{pmatrix}$  où  $\lambda$  est un paramètre réel.



- (a) Calculez le déterminant de A.
- (b) Soit le système

$$\begin{pmatrix} 1 & \lambda + 1 & 1 \\ 1 & \lambda & \lambda \\ \lambda & \lambda & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ \lambda \\ 2\lambda \end{pmatrix}$$

où  $\lambda \in \mathbb{R}$ . Résolvez ce système uniquement dans le cas où le déterminant de la matrice A est nul. Expliquez la méthode que vous utilisez et détaillez vos calculs.

| Mathématic | que Élémentaire   | Nom:      |
|------------|-------------------|-----------|
| Examen     | (30 octobre 2017) | Prénom :  |
|            |                   | Section : |

Question 9 (suite). Poursuivez votre réponse sur cette page.

# Mathématique Élémentaire Examen (30 octobre 2017) Prénom: Section:

/4

Question 10. Montrez qu'il existe un unique polynôme de degré au plus 3,  $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$  tel que p(1) = 1, p(2) = 15, p(3) = 51 et  $\partial_x p(-1) = 11$ .

| _ |   |    |   |    |
|---|---|----|---|----|
| F | Y | ar | n | ar |

(30 octobre 2017)

| Nom :    | <br> |  | <br> |
|----------|------|--|------|
| Prénom : | <br> |  |      |
| Section: |      |  |      |

#### Question 11.

**/**5

- (a) Prouvez que  $A \Rightarrow B$  a même table de vérité que  $\neg A \lor (A \land B)$ .
- (b) Donnez sous la forme d'une union d'intervalles (moins il y en a, mieux c'est) l'ensemble  $\{x \in \mathbb{R} \mid (x \ge 1) \Rightarrow (3x^3 + 2 \ge 5)\}$ .
- (c) Donnez la négation de « si j'ai faim, alors je vais dîner au restaurant ».