Mathématique Élémentaire

Test n° 6

(23 octobre 2017)

Question 1. Soient les vecteurs $v_1 = (-2,9,6)$, $v_2 = (-3,2,1)$ et $v_3 = (1,7,5)$. Existe-t-il des réels $\alpha_1, \alpha_2, \alpha_3$ tels que

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0$$
?

Si oui, donnez les tous. Expliquez votre démarche et détaillez vos calculs.

Voir correction du test 6, 23 octobre 2006, question 2.

Question 2. Calculez les sommes suivantes :

$$\sum_{i=2}^{n} 1 = n - 1.$$

$$\sum_{t=0}^{n} (3t^2 - 2t + 1) = 3\sum_{t=0}^{n} t^2 - 2\sum_{t=0}^{n} t + \sum_{t=0}^{n} 1 = 3\frac{n(n+1)(2n+1)}{6} - 2\frac{n(n+1)}{2} + (n+1)$$

$$= (n+1)\left(n^2 - \frac{n}{2} + 1\right)$$

Question 3. Donnez une formule en terme de \land , \lor , \neg pour la table suivante :

\boldsymbol{A}	В	\boldsymbol{C}	F(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$F(A,B,C) \equiv (\neg A \land B \land C) \lor (A \land B \land \neg C)$$

En effet, F est vraie si et seulement si on est sur la première ligne grisée ou (\vee) sur la seconde ligne grisée. Être sur la première ligne signifie que A est faux, B vrai et C vrai. Ceci correspond à la véracité de la formule $\neg A \land B \land C$. L'analyse est similaire pour la seconde ligne.

Question 4. Calculez la dérivée de la fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto \mathrm{e}^{\sqrt{x^2+p}} + \mathrm{arctg}(q/x)$ où p et q sont des paramètres réels.

Voir test 6, 18 octobre 2010, question 2.

(23 octobre 2017)

Correction

Question 5. Soit $f_{\alpha}: \mathbb{R} \to \mathbb{R}: x \mapsto 2^{x+x^2} - \alpha \sin x$. Pour quelle(s) valeur(s) de α la tangente au graphe de f au point d'abscisse $x = \pi$ est-elle horizontale?

Voir examen du 30 octobre 2010, question 13

Question 6.

- (a) Soit $x \in \mathbb{R}$. Donnez la contraposée de la phrase suivante : « Si la valeur absolue de x est plus petite que tous les réels de la forme $1/2^n$, $n \in \mathbb{N}$, alors x est nul ».
- (b) Prouvez que $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ est une tautologie.

Voir question 2, test du 26 octobre 2009

Question 7.

- Soit $A \in \mathbb{R}^{n \times n}$. Définissez, « A est antisymétrique ».
- Soit $M \in \mathbb{R}^{n \times n}$ la matrice définie par $M_{ij} = i^{42} j^{42}$. Montrez que M est une matrice antisymétrique.
- Utilisez le point précédent pour calculer $\sum_{i=1}^{n} \sum_{j=1}^{n} (i^{42} j^{42})$. Expliquez votre démarche.

Voir correction du test 7, 25 octobre 2010, question 2.

Question 8. Résoudre, dans \mathbb{C} , l'équation $X^3 = -8$. Donnez les solutions sous les formes a + bi et trigonométrique. Représentez ces solutions dans le plan complexe.

Voir correction de la question 3, test du 26 octobre 2009.

