

Comment calculer les puissances d'un nombre?

Christophe.Troestler@umh.ac.be http://www.umh.ac.be/math/an/

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi$$

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi$$

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\underbrace{x \cdot x}_{R} \cdot x \cdot x \cdot x$$

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\underbrace{x \cdot x \cdot x}_{R} \cdot x \cdot x$$

\blacktriangleleft \blacktriangleright \bigstar

1. Première idée

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\underbrace{x \cdot x \cdot x \cdot x}_{\mathbb{R}} \cdot x$$

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

$$\underbrace{x \cdot x \cdot x \cdot x \cdot x}_{R}$$

$$x^{0} = 1$$

$$x^{1} = x$$

$$x^{2} = x \cdot x$$

$$x^{3} = x^{2} \cdot x = x \cdot x \cdot x$$

$$x^{4} = x^{3} \cdot x = x \cdot x \cdot x \cdot x$$

$$\vdots$$

$$x^{n} = x^{n-1} \cdot x = \underbrace{x \cdot x \cdot x \cdot x}_{n \text{ fois}}$$

Donc, pour calculer, disons, x^5 , on va « accumuler » des produits de x en nombre suffisant :

$$\underbrace{x \cdot x \cdot x \cdot x \cdot x}_{R}$$

Écrivez un programme qui utilise cette idée pour calculer

$$(x, n) \mapsto x^n$$
.

Prouvez que votre programme est correct.

《 ◆ ▶ ≫ ★

Le programme a comme données $x \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$\mathsf{puiss}_1(x,n) : \left\{ \begin{array}{l} \mathsf{R} \leftarrow 1 \\ \langle \mathsf{R} = 1 = x^0 \rangle \\ \mathsf{Pour} \ \mathsf{i} = 1, \dots, \mathsf{n} \ \mathsf{faire} \\ \mathsf{R} \leftarrow \mathsf{R} \cdot \mathsf{x} \\ \langle \mathsf{R} = x^{\mathsf{i}} \rangle \\ \langle \mathsf{R} = x^n \rangle \end{array} \right.$$

Remarquez que ce programme marche si n = 0.

2. Deuxième idée

Plutôt que de multiplier x trois fois pour avoir x^4 , on peut aller plus vite en remarquant que $x^4 = (x^2)^2$ ce qui donne deux multiplications (une pour $x^2 = x \cdot x$, une pour $(x^2)^2 = x^2 \cdot x^2$). Essayons d'exploiter cette idée de manière générale :

$$x^{9} = x^{8} \cdot x$$
 $x^{2} = x \cdot x$
 $x^{10} = x^{8} \cdot x^{2}$
 $x^{3} = x^{2} \cdot x$
 $x^{11} = x^{8} \cdot x^{2} \cdot x$
 $x^{4} = (x^{2})^{2}$
 $x^{5} = x^{4} \cdot x$
 $x^{6} = x^{4} \cdot x^{2}$
 $x^{7} = x^{4} \cdot x^{2} \cdot x$
 $x^{14} = x^{8} \cdot x^{4} \cdot x^{2}$
 $x^{15} = x^{8} \cdot x^{4} \cdot x^{2}$
 $x^{16} = (x^{8})^{2}$

Quelle est la relation : exposant ↔ décomposition ?

≪ ∢ ⊳ >> ★

n	$((x^2)^2)^2$	$(x^2)^2$	χ^2	χ^1	23	2 ²	2	1
3			1	1	J.		2+	1
4		1				22		
5		1		1		2^2		
6		1	1			$2^2 +$	- 2	
7		-1	1	1		$2^2 +$	-2+	1
8	1				2^3			
9	1			1	2^3		+	1

n	$\left ((\mathbf{x}^2)^2)^2 \right $	$(x^2)^2$	χ^2	χ^1	2^3	22	2	1
3			1	1			2+	1
4		1	0	0		$2^{2} +$	0 +	0
5		1	0	1		$2^{2} +$	0+	0
6		1	1	0		$2^{2} +$	2+	0
7	× * * * * * * * * * * * * * * * * * * *	1	1	1		$2^{2} +$	2+	1
8	1	0	0	0	$2^{3} +$	0 +	0 +	0
9	1	0	0	1	$2^{3} +$	0 +	0+	1

Cette table résulte du fait général :

$$x^{n} = x^{a_3 2^3 + a_2 2^2 + a_1 2 + a_0} = ((x^4)^2)^{a_3} \cdot ((x^2)^2)^{a_2} \cdot (x^2)^{a_1} \cdot x^{a_0}$$

Voyez-vous pourquoi ? Comment trouver les a_i à partir de n ?

《 《 ▶ 》 ★

2.1. Écriture binaire des nombres

Réponse à la question précédente :

$$n = a_p 2^p + a_{p-1} 2^{p-1} + \cdots + a_2 2^2 + a_2 2 + a_0$$

où $a_i \in \{0,1\}$ pour tout $i=0,1,\ldots,p$. Le terme x^{2^i} apparaît dans x^n si et seulement si $a_i=1$. Une telle décomposition existe-t-elle toujours? Est-elle unique?

Regardons a_0 . Essayez pour n = 4, n = 5, n = 6 et n = 7...

2.1. Écriture binaire des nombres

Réponse à la question précédente :

$$n = a_p 2^p + a_{p-1} 2^{p-1} + \cdots + a_2 2^2 + a_2 2 + a_0$$

où $a_i \in \{0,1\}$ pour tout $i=0,1,\ldots,p$. Le terme x^{2^i} apparaît dans x^n si et seulement si $a_i=1$. Une telle décomposition existe-t-elle toujours? Est-elle unique? Regardons a_0 . Puisque

$$n = (a_p 2^{p-1} + \cdots + a_2 2 + a_1) 2 + a_0,$$

on a : $a_0 = 0$ si n est pair et $a_0 = 1$ si n est impair. Autrement dit :

$$\mathbf{a_0} = \mathbf{n} \mod \mathbf{2}$$
.

Qu'en est-il pour a_1 ?

2.1. Écriture binaire des nombres

Réponse à la question précédente :

$$n = a_p 2^p + a_{p-1} 2^{p-1} + \cdots + a_2 2^2 + a_2 2 + a_0$$

où $a_i \in \{0,1\}$ pour tout $i=0,1,\ldots,p$. Le terme x^{2^i} apparaît dans x^n si et seulement si $a_i=1$. Une telle décomposition existe-t-elle toujours? Est-elle unique? Regardons a_0 . Puisque

$$n = (a_p 2^{p-1} + \cdots + a_2 2 + a_1) 2 + a_0,$$

on a : $a_0 = 0$ si n est pair et $a_0 = 1$ si n est impair. Autrement dit :

$$\mathbf{a_0} = \mathbf{n} \mod \mathbf{2}$$
.

Comme
$$a_p 2^{p-1} + \cdots + a_2 2 + a_1 = n \text{ div } 2$$
, on a

$$a_1 = (n \operatorname{div} 2) \operatorname{mod} 2.$$

EXEMPLE : $11 = n = \cdots + a_3 2^3 + a_2 2^2 + a_1 2 + a_0$ pour quels a_i ?.

$$a_0 = n \mod 2 = 11 \mod 2 = 1$$
 $\Rightarrow a_0 = 1$ $n_0 := \dots + a_3 2^2 + a_2 2^2 + a_1 = n \operatorname{div} 2 = 11 \operatorname{div} 2 = 5$

EXEMPLE: $11 = n = \cdots + a_3 2^3 + a_2 2^2 + a_1 2 + a_0$ pour quels a_i ?.

$$a_0 = n \mod 2 = 11 \mod 2 = 1$$
 $\Rightarrow a_0 = 1$ $n_0 := \dots + a_3 2^2 + a_2 2^2 + a_1 = n \operatorname{div} 2 = 11 \operatorname{div} 2 = 5$ $a_1 = n_0 \mod 2 = 5 \mod 2 = 1$ $\Rightarrow a_1 = 1$ $n_1 := \dots + a_3 2 + a_2 2 = n_0 \operatorname{div} 2 = 5 \operatorname{div} 2 = 2$

EXEMPLE: $11 = n = \cdots + a_3 2^3 + a_2 2^2 + a_1 2 + a_0$ pour quels a_i ?.

$$a_0 = n \mod 2 = 11 \mod 2 = 1$$
 $\Rightarrow a_0 = 1$ $n_0 := \dots + a_3 2^2 + a_2 2^2 + a_1 = n \operatorname{div} 2 = 11 \operatorname{div} 2 = 5$ $a_1 = n_0 \mod 2 = 5 \mod 2 = 1$ $\Rightarrow a_1 = 1$ $n_1 := \dots + a_3 2 + a_2 2 = n_0 \operatorname{div} 2 = 5 \operatorname{div} 2 = 2$ $a_2 = n_1 \mod 2 = 2 \operatorname{mod} 2 = 0$ $\Rightarrow a_2 = 0$ $n_2 := \dots + a_3 2 + a_2 = n_1 \operatorname{div} 2 = 2 \operatorname{div} 2 = 1$

EXEMPLE: $11 = n = \cdots + a_3 2^3 + a_2 2^2 + a_1 2 + a_0$ pour guels a_i ?.

$$\begin{array}{l} a_0 = n \, \text{mod} \, 2 = 11 \, \text{mod} \, 2 = 1 \\ n_0 := \dots + a_3 2^2 + a_2 2^2 + a_1 = n \, \text{div} \, 2 = 11 \, \text{div} \, 2 = 5 \\ a_1 = n_0 \, \text{mod} \, 2 = 5 \, \text{mod} \, 2 = 1 \\ n_1 := \dots + a_3 2 + a_2 2 = n_0 \, \text{div} \, 2 = 5 \, \text{div} \, 2 = 2 \\ a_2 = n_1 \, \text{mod} \, 2 = 2 \, \text{mod} \, 2 = 0 \\ n_2 := \dots + a_3 2 + a_2 = n_1 \, \text{div} \, 2 = 2 \, \text{div} \, 2 = 1 \\ a_3 = n_2 \, \text{mod} \, 2 = 1 \, \text{mod} \, 2 = 1 \\ n_3 := \dots + a_3 = n_2 \, \text{div} \, 2 = 2 \, \text{div} \, 2 = 0 \end{array}$$

En conclusion $11 = \mathbf{1} \cdot 2^3 + \mathbf{0} \cdot 2^4 + \mathbf{1} \cdot 2^1 + \mathbf{1} \cdot 2^0$. On appelle **1011** l'écriture binaire de 11.

EXEMPLE : $11 = n = \cdots + a_3 2^3 + a_2 2^2 + a_1 2 + a_0$ pour quels a_i ?.

$$\begin{array}{l} a_0 = n \, \text{mod} \, 2 = 11 \, \text{mod} \, 2 = 1 \\ n_0 := \dots + a_3 2^2 + a_2 2^2 + a_1 = n \, \text{div} \, 2 = 11 \, \text{div} \, 2 = 5 \\ a_1 = n_0 \, \text{mod} \, 2 = 5 \, \text{mod} \, 2 = 1 \\ n_1 := \dots + a_3 2 + a_2 2 = n_0 \, \text{div} \, 2 = 5 \, \text{div} \, 2 = 2 \\ a_2 = n_1 \, \text{mod} \, 2 = 2 \, \text{mod} \, 2 = 0 \\ n_2 := \dots + a_3 2 + a_2 = n_1 \, \text{div} \, 2 = 2 \, \text{div} \, 2 = 1 \\ a_3 = n_2 \, \text{mod} \, 2 = 1 \, \text{mod} \, 2 = 1 \\ n_3 := \dots + a_3 = n_2 \, \text{div} \, 2 = 2 \, \text{div} \, 2 = 0 \end{array}$$

En conclusion $11 = \mathbf{1} \cdot 2^3 + \mathbf{0} \cdot 2^4 + \mathbf{1} \cdot 2^1 + \mathbf{1} \cdot 2^0$. On appelle **1011** l'écriture binaire de 11.

Pouvez-vous généraliser ce procédé en écrivant un algorithme de calcul des α_i ?

 $\label{eq:soit} \begin{array}{c} \text{Soit } n = \alpha_p 2^p + \alpha_{p-1} 2^{p-1} + \dots + \alpha_2 2^2 + \alpha_2 2 + \alpha_0. \\ & \underline{ \text{Math\'ematique} & \text{Algorithmique} \\ & \underline{ \text{N} \leftarrow n} \end{array}$

$$N = \begin{bmatrix} n \\ a_0 = \\ a_1 = \\ a_2 = \\ \vdots$$

Mathématique	Algorithmique
	$N \leftarrow n$
$a_0 = n mod 2$	$a_0 \leftarrow N \mod 2$

$$N = \begin{bmatrix} 1 & 2 \\ n \end{bmatrix}$$
 $a_0 = \begin{bmatrix} n \mod 2 \\ a_1 = \\ a_2 = \end{bmatrix}$

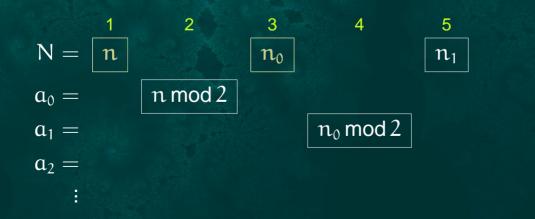
Mathématique	Algorithmique		
	$N \leftarrow n$		
$a_0 = n \mod 2$	$a_0 \leftarrow N \mod 2$		
$n_0 = n \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$		

$$N = \begin{bmatrix} 1 & 2 & 3 \\ n & n_0 \end{bmatrix}$$

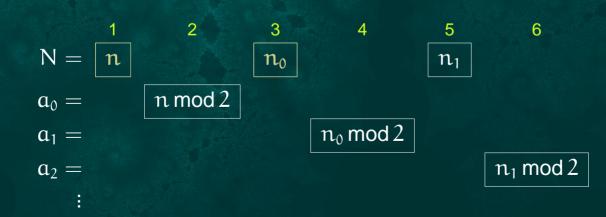
$$a_0 = \begin{bmatrix} n \mod 2 \\ a_1 = \\ a_2 = \\ \vdots$$

Mathématique	Algorithmique		
	$N \leftarrow n$		
$a_0 = n \mod 2$	$a_0 \leftarrow N \mod 2$		
$n_0 = n \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$		
$a_1 = n_0 \operatorname{mod} 2$	$a_1 \leftarrow N \mod 2$		

Mathématique	Algorithmique
	$N \leftarrow n$
$a_0 = n \mod 2$	$a_0 \leftarrow N \mod 2$
$n_0 = n \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$
$a_1 = n_0 \operatorname{mod} 2$	$a_1 \leftarrow N \mod 2$
$n_1 = n_0 \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$



Mathématique	Algorithmique			
	$N \leftarrow n$			
$a_0 = n \mod 2$	$a_0 \leftarrow N \mod 2$			
$n_0 = n \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$			
$a_1 = n_0 \operatorname{mod} 2$	$a_1 \leftarrow N \text{ mod } 2$			
$n_1 = n_0 \operatorname{div} 2$	$N \leftarrow N \text{ div } 2$			
$a_2 = n_1 \operatorname{mod} 2$	$a_2 \leftarrow N \mod 2$			



Soit $n = a_p 2^p + a_{p-1} 2^{p-1} + \cdots + a_2 2^2 + a_2 2 + a_0$. Mathématique Algorithmique $N \leftarrow n$ $a_0 \leftarrow N \mod 2$ $a_0 = n \mod 2$ $N \leftarrow N \text{ div } 2$ $n_0 = n \operatorname{div} 2$ $a_1 = n_0 \mod 2$ $a_1 \leftarrow N \mod 2$ $N \leftarrow N \text{ div } 2$ $n_1 = n_0 \operatorname{div} 2$ $a_2 = n_1 \mod 2$ $a_2 \leftarrow N \mod 2$ $N \leftarrow N \text{ div } 2$ $n_2 = n_1 \operatorname{div} 2$ 3 6 N = n_0 n_1 n_2 $n \mod 2$ $a_0 =$ $n_0 \mod 2$ $a_1 =$ $n_1 \mod 2$ $a_2 =$

Réécrivez le tableau précédent à l'aide d'une boucle. Quel est le test qui décide de l'arrêt de la boucle?

≪ ∢ ▶ >> ★

Réécrivez le tableau précédent à l'aide d'une boucle. Quel est le test qui décide de l'arrêt de la boucle ? Un programme de calcul des digits binaires α_i d'un entier $n\in\mathbb{N}$ est :

$$\label{eq:digits} \text{digits}(n): \begin{cases} N \leftarrow n; \ i \leftarrow 0 \\ \text{Tant que } N > 0 \ \text{faire} \\ \left\{ \begin{aligned} \alpha_i \leftarrow N \ \text{mod} \ 2 \\ N \leftarrow N \ \text{div} \ 2 \\ i \leftarrow i + 1 \end{aligned} \right. \\ \left\langle \text{si} \ i = 0, \ \text{c'est que} \ n = 0 \ ; \ \text{sinon}, \ n = \sum_{0 \leqslant j < i} \alpha_j 2^j \right\rangle \end{cases}$$

Réécrivez le tableau précédent à l'aide d'une boucle. Quel est le test qui décide de l'arrêt de la boucle? Un programme de calcul des digits binaires a_i d'un entier $n \in \mathbb{N}$ est :

$$\begin{aligned} \text{digits}(n): \begin{cases} N \leftarrow n; \ i \leftarrow 0 \\ \text{Tant que } N > 0 \text{ faire} \\ \left\{ \begin{aligned} \alpha_i \leftarrow N & \text{mod } 2 \\ N \leftarrow N & \text{div } 2 \\ i \leftarrow i + 1 \end{aligned} \right. \\ \left\langle \text{si } i = 0, \text{ c'est que } n = 0; \text{ sinon, } n = \sum_{0 \leqslant j < i} \alpha_j 2^j \right\rangle \end{aligned}$$

Remarque : L'algorithme ci-dessus montre que les a_i existent toujours. La manière dont on a déduit l'algorithme montre que les a_i sont uniques. On appelle $a_p a_{p-1} \dots a_2 a_1 a_0$ l'écriture binaire de n.

《 《 ▶ ≫ ★

2.2. Revenons au calcul de x^n ...

Repartons de:

$$x^{n} = x^{a_3 2^3 + a_2 2^2 + a_1 2 + a_0} = ((x^4)^2)^{a_3} \cdot ((x^2)^2)^{a_2} \cdot (x^2)^{a_1} \cdot x^{a_0}$$

Il y a deux ingrédients :

- les puissances de x : x, x^2 , $x^4 = (x^2)^2$, $x^8 = (x^4)^2$,...;
- le terme x^{2^i} est présent dans le produit de x^n ssi $a_i = 1$.

Comment construire x^n à partir des remarques ci-dessus en « accumulant » le nécessaire dans une variable R initialisée à 1?

2.2. Revenons au calcul de x^n ...

Repartons de:

$$x^{n} = x^{a_{3}2^{3} + a_{2}2^{2} + a_{1}2 + a_{0}} = ((x^{4})^{2})^{a_{3}} \cdot ((x^{2})^{2})^{a_{2}} \cdot (x^{2})^{a_{1}} \cdot x^{a_{0}}$$

Il y a deux ingrédients :

- |- les puissances de x : x, x^2 , $x^4 = (x^2)^2$, $x^8 = (x^4)^2$,...;
- le terme x^{2^i} est présent dans le produit de x^n ssi $a_i = 1$. On peut voir le calcul de x^n comme suit :

$$\begin{array}{lll} R \leftarrow 1 \\ \text{Si } \alpha_0 = 1 \text{ alors } R \leftarrow R \cdot x \\ \text{Si } \alpha_1 = 1 \text{ alors } R \leftarrow R \cdot x^2 \\ \text{Si } \alpha_2 = 1 \text{ alors } R \leftarrow R \cdot x^4 \\ \vdots \\ \end{array} \qquad \begin{array}{ll} R = x^{\alpha_0} \\ R = (x^2)^{\alpha_1} x^{\alpha_0} = x^{\alpha_1 2 + \alpha_0} \\ R = (x^4)^{\alpha_2} (x^2)^{\alpha_1} x^{\alpha_0} = x^{\alpha_2 2^2 + \alpha_1 2 + \alpha_0} \\ \vdots \\ \vdots \end{array}$$

Comment calculer x^2 , x^4 ,...?

Al	gorithme
, v	9011411110

Contenu des variables

$$R \leftarrow \mathbf{1}$$

$$X =$$

$$X = R = 1$$

≪ ▼ ▶ ★

Algorithme	Contenu des variables
$R \leftarrow 1$	
$X \leftarrow x$	X = x

$$X = \begin{bmatrix} 1 & 2 \\ X & X \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

≪ ◄ ▶ ★

Algorithme	Contenu des variables
$R \leftarrow 1$	
$X \leftarrow x$	X = x
Si $a_0 = 1$ alors $R \leftarrow R \cdot X$	$R = \chi^{a_0}$

$$X = \begin{bmatrix} 1 & 2 & 3 \\ X & x \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & x^{\alpha_0} \end{bmatrix}$$

≪ ∢ ⊳ >> ★

Λ Ι				4 1		
Λ	$\boldsymbol{\alpha}$	\cap	rı	th	m	
Αl	u	U	ш	LI I		ᆫ
	\mathbf{J}	_				

Contenu des variables

$$\begin{split} R &\leftarrow 1 \\ X \leftarrow x \\ \text{Si } \alpha_0 &= 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \end{split}$$

$$X = x$$

$$R = x^{a_0}$$

$$X = x^2$$

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ x & x & x^2 \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & x^{a_0} \end{bmatrix}$$

≪ ∢ ⊳ >> ★

ΑI	gorithme
, vi	9011411110

Contenu des variables

$$\begin{array}{l} R \leftarrow 1 \\ X \leftarrow x \\ \text{Si } \alpha_0 = 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \text{Si } \alpha_1 = 1 \text{ alors } R \leftarrow R \cdot X \end{array}$$

$$X = x$$
 $R = x^{a_0}$
 $X = x^2$
 $R = (x^2)^{a_1}x^{a_0} = x^{a_12+a_0}$

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ X & & x^2 & & \\ R = \begin{bmatrix} 1 & x^{\alpha_0} & x^{\alpha_1 2 + \alpha_0} \end{bmatrix}$$

≪ ∢ ⊳ >> ★

ΛΙ	۵.	٠.	.:41	
Αl	a	OI	111	ne
-	\sim	_		

Contenu des variables

$$\begin{split} R \leftarrow 1 \\ X \leftarrow x \\ \text{Si } \alpha_0 &= 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \text{Si } \alpha_1 &= 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \end{split}$$

$$X = x$$
 $R = x^{a_0}$
 $X = x^2$
 $R = (x^2)^{a_1}x^{a_0} = x^{a_12+a_0}$
 $X = x^4$

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ x & x & x^2 & x^4 \end{bmatrix}$$
 $X = \begin{bmatrix} x^{a_0} & x^{a_12+a_0} \end{bmatrix}$

Λ Ι	1.1
Al	lgorithme
, vi	gonunio

Contenu des variables

$$\begin{split} R \leftarrow 1 \\ X \leftarrow x \\ \text{Si } \alpha_0 &= 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \text{Si } \alpha_1 &= 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \text{Si } \alpha_2 &= 1 \text{ alors } R \leftarrow R \cdot X \\ \vdots \end{split}$$

$$X = x$$
 $R = x^{a_0}$
 $X = x^2$
 $R = (x^2)^{a_1}x^{a_0} = x^{a_12+a_0}$
 $X = x^4$
 $R = (x^4)^{a_2}(x^2)^{a_1}x^{a_0} = x^{a_22^2+a_12+a_0}$
 \vdots

$$X = \begin{bmatrix} 1 & 2 & 3 \\ X & x \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & \chi^{\alpha_0} \end{bmatrix}$$

$$x^{a_12+a_0}$$

$$x^4$$

$$x^{a_2 2^2 + a_1 2 + a_0}$$

Écrivez cet algorithme à l'aide d'une boucle.

En conclusion, en supposant qu'on ai calculé l'expansion binaire $a_p \dots a_1 a_0$ de n, on trouve le programme :

$$\text{puiss}_{3}(x,n): \begin{cases} R \leftarrow 1; \ X \leftarrow x \\ \text{Pour tout } i = 0, \dots, p \text{ faire} \\ \begin{cases} \text{Si } \alpha_{i} = 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \langle \text{On pense que } R = x^{n} \rangle \end{cases}$$

Comment éviter de calculer *préalablement* l'expansion binaire $a_p \dots a_1 a_0$ de n?

 $\mathsf{N} \blacktriangleleft \mathsf{P} \ggg \bigstar$

En conclusion, en supposant qu'on ai calculé l'expansion binaire $a_p \dots a_1 a_0$ de n, on trouve le programme :

$$\text{puiss}_{3}(x,n): \begin{cases} R \leftarrow 1; \ X \leftarrow x \\ \text{Pour tout } i = 0, \dots, p \text{ faire} \\ \begin{cases} \text{Si } \alpha_{i} = 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \\ \langle \text{On pense que } R = x^{n} \rangle \end{cases}$$

Comment éviter de calculer *préalablement* l'expansion binaire $a_p \dots a_1 a_0$ de n? Notons qu'à une étape donnée, on n'a besoin que d'un a_i ... Comparons le programme de calcul de de x^n et celui de calcul des a_i .

Calcul des ai

$$\begin{aligned} R \leftarrow 1; \ X \leftarrow x \\ \text{Pour tout } i = 0, \dots, p \text{ faire} \\ \begin{cases} \text{Si } \alpha_i = 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \end{cases} \end{aligned}$$

 $\begin{array}{l} N \leftarrow n; \ i \leftarrow 0 \\ \text{Tant que } N > 0 \ \text{faire} \\ \begin{cases} \alpha_i \leftarrow N \ \text{mod} \ 2 \\ N \leftarrow N \ \text{div} \ 2 \\ i \leftarrow i + 1 \end{array} \end{array}$

De ceci, quelles remarques peut-on faire, en particulier au sujet

- des a_i , et en particulier de l'indice i?
- du critère de terminaison de la boucle?

 $| \blacktriangleleft \triangleright | \Rightarrow | \Rightarrow |$

Calcul de x ⁿ	Calcul des a _i	
$R \leftarrow 1; X \leftarrow x$	$N \leftarrow n; i \leftarrow 0$	
Pour tout $i = 0,, p$ faire	Tant que $N > 0$ faire	
$\begin{cases} \text{Si } \alpha_i = 1 \text{ alors } R \leftarrow R \cdot X \\ X \leftarrow X \cdot X \end{cases}$	$\begin{cases} a_i \leftarrow N \mod 2 \\ N \leftarrow N \operatorname{div} 2 \\ i \leftarrow i + 1 \end{cases}$	

De ceci, on peut conclure que :

- Le α_i du programme de droite est celui nécessaire dans le programme de gauche. Il faut donc « synchroniser » les deux boucles;
- On n'a besoin que d'un a_i à la fois (donc on peut utiliser une variable non indicée, disons A) et on n'a pas besoin de l'indice i;
- Si les boucles sont synchronisées, i variera de 0 à p tant que N > 0, p étant atteint lorsque N = 0. Comme on n'a pas besoin de i, le critère qui nous intéresse est « N > 0 ».
- Écrivez un algorithme qui « fond » ces deux programmes en un seul. Simplifiez le autant que possible.

 $\mathsf{puiss}_4(\mathsf{x},\mathsf{n}) : \begin{cases} \mathsf{R} \leftarrow \mathsf{1}; \ \mathsf{X} \leftarrow \mathsf{x}; \ \mathsf{N} \leftarrow \mathsf{n} \\ \mathsf{Tant} \ \mathsf{que} \ \mathsf{N} > \mathsf{0} \ \mathsf{faire} \\ \mathsf{Si} \ \mathsf{N} \ \mathsf{impair}, \ \mathsf{R} \leftarrow \mathsf{R} \cdot \mathsf{X} \\ \mathsf{N} \leftarrow \mathsf{N} \ \mathsf{div} \ \mathsf{2} \\ \mathsf{X} \leftarrow \mathsf{X} \cdot \mathsf{X} \\ \langle \mathsf{A-t-on} \ \mathsf{bien} \ \mathsf{R} = \mathsf{x}^\mathsf{n} \ ? \rangle \end{cases}$

Les questions suivantes sont cruciales :

- Cet algorithme se termine-t-il pour n'importe quelles données $x \in \mathbb{R}$ et $n \in \mathbb{N}$?
- Ce programme est-il correct?
- puiss₄ est-il vraiment plus rapide que le procédé « naïf » ? Si oui,
 dans quelle mesure peut-on le quantifier ?

2.3. Terminaison

puiss₄(x,n):

À chaque tour de boucle, la valeur de N est divisée par 2. Les valeurs de N forment donc une suite strictement décroissante de naturels. Forcément, il arrivera un moment où N=0 et la boucle s'arrêtera.

2.4. Invariant de boucle

 $\begin{cases}
R \leftarrow 1; X \leftarrow x; N \leftarrow n \\
\left\langle \mathbf{x^n} = \mathbf{X^N R} \right\rangle
\end{cases}$ Tant que N > 0 faire $\begin{cases} \text{Si N impair, } R \leftarrow R \cdot X \\ N \leftarrow N \text{ div } 2 \\ X \leftarrow X \cdot X \\ \left\langle \mathbf{x^n} = \mathbf{X^NR} \right\rangle \end{cases}$ $puiss_4(x,n): \langle$ N=0 (fin de boucle), n = 0

2.5. Complexité

En comparant puiss₄ avec puiss₃, on voit que, si $n = (a_p \dots a_1 a_0)_2$, on a

$$\begin{aligned} & \text{puiss}_4(x,n) : \begin{cases} R \leftarrow 1; \ X \leftarrow x; \ N \leftarrow n; \ \textbf{i} \leftarrow \textbf{0} \\ & \text{Tant que } N > 0 \Leftrightarrow \textbf{i} = \textbf{0}, \dots, \textbf{p} \text{ faire} \\ & \begin{cases} \text{Si } N \text{ impair} \Leftrightarrow \textbf{a_i} = \textbf{1}, \ R \leftarrow R \cdot X \\ N \leftarrow N \text{ div } 2 \\ X \leftarrow X \cdot X \\ \textbf{i} \leftarrow \textbf{i} + \textbf{1} \\ & \langle \text{Le résultat est dans } R \rangle \end{aligned}$$

Que peut-on en déduire sur le nombre d'opérations effectuées par puiss₄ ?

2.5. Complexité

En comparant puiss₄ avec puiss₃, on voit que, si $n = (a_p \dots a_1 a_0)_2$, on a

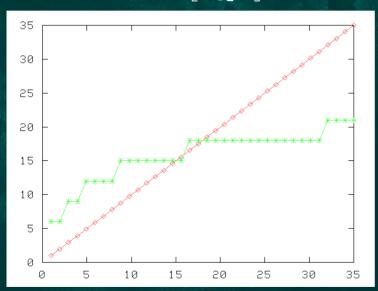
$$\begin{aligned} & \text{puiss}_4(x,n) : \begin{cases} R \leftarrow 1; \ X \leftarrow x; \ N \leftarrow n; \ \textbf{i} \leftarrow \textbf{0} \\ & \text{Tant que } N > 0 \Leftrightarrow \textbf{i} = \textbf{0}, \dots, \textbf{p} \text{ faire} \\ & \begin{cases} \text{Si N impair} \Leftrightarrow \textbf{a}_{\textbf{i}} = \textbf{1}, \ R \leftarrow R \cdot X \\ N \leftarrow N \text{ div } 2 \\ X \leftarrow X \cdot X \\ \textbf{i} \leftarrow \textbf{i} + \textbf{1} \\ & \langle \text{Le résultat est dans } R \rangle \end{aligned}$$

– On fait p+1 tours de boucle et, à chaque tour, toujours 2 opérations, plus une troisième si $\alpha_i=1$. Le nombre total d'opérations est donc

$$3 + (p+1)2 + \sum_{i=0}^{p} a_i = 5 + 2p + \sum_{i=0}^{p} a_i \le 6 + 3p$$

$$-2^{\mathfrak{p}}\leqslant \mathfrak{n}<2^{\mathfrak{p}+1}\Rightarrow \mathfrak{p}\leqslant \log_2\mathfrak{n}<\mathfrak{p}+1\Rightarrow \mathfrak{p}=\lfloor \log_2\mathfrak{n}\rfloor$$

En rouge, $n \mapsto n$ En vert, $n \mapsto 6 + 3\lfloor \log_2 n \rfloor$.



n	puiss ₁	$\begin{array}{c c} puiss_4 \\ 6 + 3 \lfloor log_2 \mathfrak{n} \rfloor \end{array}$
2	2	9
3	3	9
4	4	12
10	10	15
15	15	15
16	16	18
17	17	18
18	18	18
19	19	18
20	20	18
100	100	24
1000	1000	33
2 ^k	2 ^k	k