Positive radial solutions of a prescribed mean curvature equation in Lorentz-Minkowski space

Antonio Azzollini

Università degli Studi della Basilicata

Workshop in Nonlinear PDEs BRUXELLES 2015
Presentation plan

1. Introduction
2. Bonheure-De Coster-Derlet results
3. Problems left open by BDD
4. Supercritical case: multiplicity result
5. Subcritical case: nonexistence result
6. Open problems
The equation

We are interested in the following quasilinear equation

$$\nabla \cdot \left[\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right] + u^p = 0.$$ \hspace{1cm} (1)

It is known as

“prescribed mean curvature equation in Lorentz-Minkowski space”.

Antonio Azzollini
The equation

We are interested in the following quasilinear equation

\[\nabla \cdot \left[\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right] + u^p = 0. \]

(1)

It is known as

"prescribed mean curvature equation in Lorentz-Minkowski space".

Positive radial solutions of a prescribed mean curvature equation in Lorentz-Minkowski space

Antonio Azzollini (Università degli Studi della Basilicata)
The equation

We are interested in the following quasilinear equation

\[\nabla \cdot \left[\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right] + u^p = 0. \tag{1} \]

It is known as

"prescribed mean curvature equation in Lorentz-Minkowski space".

Introduction

Bonheure-De Coster-Derlet results

Problems left open by BDD

Supercritical case: multiplicity result
The equation

We are interested in the following quasilinear equation

\[\nabla \cdot \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) + u^p = 0. \] (1)

It is known as

"prescribed mean curvature equation in Lorentz-Minkowski space".
The M-C operator

The mean curvature operator $\nabla \cdot \left[\frac{\nabla(\cdot)}{\sqrt{1 - |\nabla(\cdot)|^2}} \right]$ appears in physical and geometrical contexts and precisely:

- Classical relativity
 Born-Infeld theory of electrodynamics
- Riemannian Geometry
 Maximal or constant mean curvature hypersurfaces

Antonio Azzollini (Università degli Studi della Basilicata)
The M-C operator

The mean curvature operator $\nabla \cdot \left[\frac{\nabla(\cdot)}{\sqrt{1-|\nabla(\cdot)|^2}} \right]$ appears in physical and geometrical contexts and precisely

- Classical relativity
 Born-Infeld theory of electrodynamics

- Riemannian Geometry
 Maximal or constant mean curvature hypersurfaces.
The M-C operator

The mean curvature operator $\nabla \cdot \left[\frac{\nabla(\cdot)}{\sqrt{1 - |\nabla(\cdot)|^2}} \right]$ appears in physical and geometrical contexts and precisely

- Classical relativity
 Born-Infeld theory of electrodynamics

- Riemannian Geometry
 Maximal or constant mean curvature hypersurfaces.
The problem: ground state solutions

Our object is to determine conditions for the existence of solutions to the problem

\[\begin{cases} \nabla \cdot \left[\frac{\nabla u}{\sqrt{1-|\nabla u|^2}} \right] + u^p = 0, \\ u(x) > 0, \quad \text{in } \mathbb{R}^N, \quad N \geq 3, \\ u(x) \to 0, \quad \text{as } |x| \to \infty. \end{cases} \tag{P_+} \]

A solution to \((P_+)\) is usually called ground state.
The problem: ground state solutions

Our object is to determine conditions for the existence of solutions to the problem

\[
\begin{align*}
\nabla \cdot \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) + u^p &= 0, \\
u(x) > 0, \quad \text{in } \mathbb{R}^N, \ N \geq 3, \\
u(x) \to 0, \quad \text{as } |x| \to \infty.
\end{align*}
\]

A solution to \((P_+)\) is usually called ground state.
Our object is to determine conditions for the existence of solutions to the problem

$$\begin{cases}
\nabla \cdot \left[\frac{\nabla u}{\sqrt{1-|\nabla u|^2}} \right] + u^p = 0, \\
u(x) > 0, \quad \text{in } \mathbb{R}^N, \quad N \geq 3, \\
u(x) \to 0, \quad \text{as } |x| \to \infty.
\end{cases}$$

(P_+)

A solution to (P_+) is usually called ground state.
The problem: ground state solutions

When we look for radial ground state solutions, the problem can be reformulated as follows:

is there any $\xi > 0$ such that the Cauchy problem

$$\begin{cases}
\left(\frac{u'}{\sqrt{1-(u')^2}} \right)' + \frac{N-1}{r} \frac{u'}{\sqrt{1-(u')^2}} + |u|^{p-1}u = 0 \\
u'(0) = 0, \\
u(0) = \xi
\end{cases}$$

has a (global in \mathbb{R}_+) positive solution (vanishing at infinity)?
The problem: ground state solutions

When we look for radial ground state solutions, the problem can be reformulated as follows:

is there any $\xi > 0$ such that the Cauchy problem

\[
\begin{cases}
\left(\frac{u'}{\sqrt{1-(u')^2}} \right)' + \frac{N-1}{r} \frac{u'}{\sqrt{1-(u')^2}} + |u|^{p-1}u = 0 \\
u'(0) = 0, \\
u(0) = \xi
\end{cases}
\]

has a (global in \mathbb{R}_+) positive solution (vanishing at infinity)?
The problem: ground state solutions

When we look for radial ground state solutions, the problem can be reformulated as follows:

is there any $\xi > 0$ such that the Cauchy problem

$$\begin{cases} \left(\frac{u'}{\sqrt{1-(u')^2}} \right)' + \frac{N-1}{r} \frac{u'}{\sqrt{1-(u')^2}} + |u|^{p-1}u = 0 \\ u'(0) = 0, \\ u(0) = \xi \end{cases}$$

has a (global in \mathbb{R}_+) positive solution (vanishing at infinity)?
The problem: ground state solutions

When we look for radial ground state solutions, the problem can be reformulated as follows:

is there any $\xi > 0$ such that the Cauchy problem

\[
\begin{cases}
\left(\frac{u'}{\sqrt{1-(u')^2}} \right)' + \frac{N-1}{r} \frac{u'}{\sqrt{1-(u')^2}} + |u|^{p-1} u = 0 \\
u'(0) = 0, \\
u(0) = \xi
\end{cases}
\] \hspace{1cm} (C)

has a (global in \mathbb{R}_+) positive solution (vanishing at infinity)?
What is already known

There is only one existence result on problem \((P_+)\)

Theorem (Bonheure-De Coster-Derlet, 2012)

If \(p > \frac{N+2}{N-2}\) then \((P_+)\) has a (radial) solution in \(D^{1,2}(\mathbb{R}^N)\).
What is already known

There is only one existence result on problem \((P_+)^\)

Theorem (Bonheure-De Coster-Derlet, 2012)

If \(p > \frac{N+2}{N-2}\) then \((P_+)\) has a (radial) solution in \(D^{1,2}(\mathbb{R}^N)\).
What is already known

Moreover they proved that

Theorem (Bonheure-De Coster-Derlet, 2012)

If \(p > \frac{N+2}{N-2} \), then the prescribed mean curvature equation (1) has infinitely many (radial) solutions in \(D^{1,2} (\mathbb{R}^N) \).
What is already known

Moreover they proved that

Theorem (Bonheure-De Coster-Derlet, 2012)

If \(p > \frac{N+2}{N-2} \), *then the prescribed mean curvature equation (1) has infinitely many (radial) solutions in* \(D^{1,2}(\mathbb{R}^N) \).*
Supercritical case and subcritical case

Then, when $p > \frac{N+2}{N-2}$,

- There exists a radial ground state for the prescribed mean curvature equation.
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign.

Nothing is known when $p \leq \frac{N+2}{N-2}$.

Antonio Azzollini

Introduction
Bonheure-De Coster-Derlet results
Problems left open by BDD
Supercritical case: multiplicity result
Subcritical case
Supercritical case and subcritical case

Then, when $p > \frac{N+2}{N-2}$,

- There exists a radial ground state for the prescribed mean curvature equation
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign

Nothing is known when $p \leq \frac{N+2}{N-2}$.
Supercritical case and subcritical case

Then, when $p > \frac{N+2}{N-2}$,

- There exists a radial ground state for the prescribed mean curvature equation
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign.

Nothing is known when $p \leq \frac{N+2}{N-2}$.
Supercritical case and subcritical case

Then, when \(p > \frac{N+2}{N-2} \),

- There exists a radial ground state for the prescribed mean curvature equation
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign

Nothing is known when \(p \leq \frac{N+2}{N-2} \).
Supercritical case and subcritical case

Then, when $p > \frac{N+2}{N-2}$,

- There exists a radial ground state for the prescribed mean curvature equation
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign

Nothing is known when $p \leq \frac{N+2}{N-2}$.
Supercritical case and subcritical case

Then, when $p > \frac{N+2}{N-2}$,

- There exists a radial ground state for the prescribed mean curvature equation
- There exist infinitely many solutions to the prescribed mean curvature equation, with no information on the sign

Nothing is known when $p \leq \frac{N+2}{N-2}$.
Existence and uniqueness

Questions

1. Is the ground state solution unique when \(p > \frac{N+2}{N-2} \)?
2. There exist ground state solutions when \(p \leq \frac{N+2}{N-2} \)?
Existence and uniqueness

Questions

1. Is the ground state solution unique when \(p > \frac{N+2}{N-2} \)?

2. There exist ground state solutions when \(p \leq \frac{N+2}{N-2} \)?
Existence and uniqueness

Questions

1. Is the ground state solution unique when \(p > \frac{N+2}{N-2} \)?

2. There exist ground state solutions when \(p \leq \frac{N+2}{N-2} \)?
Positive radial solutions of a prescribed mean curvature equation in Lorentz-Minkowski space

Antonio Azzollini

Introduction
Bonheure-De Coster-Derlet results
Problems left open by BDD
Supercritical case: multiplicity result

Multpicity result and decaying properties

Theorem (A., 2015)

If $p > \frac{N+2}{N-2}$, then there exist infinitely many radial solutions to (\mathcal{P}_+) not belonging to $\mathcal{D}^{1,2}(\mathbb{R}^N)$.
Multiplicity result and decaying properties

Theorem (A., 2015)

If \(p > \frac{N+2}{N-2} \), then there exist infinitely many radial solutions to \((\mathcal{P}_+)\) not belonging to \(\mathcal{D}^{1,2}(\mathbb{R}^N) \).
Multiplicity result and decaying properties

Theorem

If $p > \frac{N+2}{N-2}$, we have the following decaying estimates for the radial ground states:

- $u \in D^{1,2}(\mathbb{R}^N)$ iff $u(x) = O(1/|x|^{N-2})$ for $|x| \to +\infty$;
- $u \notin D^{1,2}(\mathbb{R}^N)$ iff there exist $c_1, c_2 > 0$ such that
 $$
 \frac{c_1}{|x|^{\frac{2N}{N-1}(p+1)-2N}} \leq u(x) \leq \frac{c_2}{|x|^{p-1}} \text{ definitely for } |x| \to +\infty.
 $$

Moreover, in the second case, there exists no $\alpha > \frac{2}{p-1}$ such that, definitely, $u(r) \leq c/r^\alpha$ for some $c > 0$.
Positive radial solutions of a prescribed mean curvature equation in Lorentz-Minkowski space

Antonio Azzollini

Introduction

Bonheure-De Coster-Derlet results

Problems left open by BDD

Supercritical case: multiplicity result

Open problems

Multiplicity result and decaying properties

Theorem

If \(p > \frac{N+2}{N-2} \), we have the following decaying estimates for the radial ground states:

1. \(u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \) iff \(u(x) = \mathcal{O}(1/|x|^{N-2}) \) for \(|x| \to +\infty \);

2. \(u \notin \mathcal{D}^{1,2}(\mathbb{R}^N) \) iff there exist \(c_1, c_2 > 0 \) such that

\[
\frac{c_1}{|x|^{(N-1)(p+1)-2N}} \leq u(x) \leq \frac{c_2}{|x|^{p-1}}
\]

definitely for \(|x| \to +\infty \).

Moreover, in the second case, there exists no \(\alpha > 2/(p-1) \) such that, definitely, \(u(r) \leq c/r^\alpha \) for some \(c > 0 \).
Multiplicty result and decaying properties

Theorem

If \(p > \frac{N+2}{N-2} \), we have the following decaying estimates for the radial ground states:

1. \(u \in D^{1,2}(\mathbb{R}^N) \) iff \(u(x) = O(1/|x|^{N-2}) \) for \(|x| \rightarrow +\infty \);

2. \(u \notin D^{1,2}(\mathbb{R}^N) \) iff there exist \(c_1, c_2 > 0 \) such that
 \[
 c_1/|x|^{(N-1)(p+1)-2N} \leq u(x) \leq c_2/|x|^{p-1} \text{ definitely for } |x| \rightarrow +\infty.
 \]

Moreover, in the second case, there exists no \(\alpha > 2/(p-1) \) such that, definitely, \(u(r) \leq c/r^\alpha \) for some \(c > 0 \).
Multiplicty result and decaying properties

Theorem

If \(p > \frac{N+2}{N-2} \), we have the following decaying estimates for the radial ground states:

1. \(u \in D^{1,2}(\mathbb{R}^N) \) iff \(u(x) = O(1/|x|^{N-2}) \) for \(|x| \to +\infty \);

2. \(u / \in D^{1,2}(\mathbb{R}^N) \) iff there exist \(c_1, c_2 > 0 \) such that
 \[
 \frac{c_1}{|x|^{(N-1)(p+1)-2N}} \leq u(x) \leq \frac{c_2}{|x|^{p-1}} \text{ definitely for } |x| \to +\infty.
 \]

Moreover, in the second case, there exists no \(\alpha > 2/(p-1) \) such that, definitely, \(u(r) \leq c/r^\alpha \) for some \(c > 0 \).
Multiplicty result and decaying properties

Theorem

If \(p > \frac{N+2}{N-2} \), we have the following decaying estimates for the radial ground states:

1. \(u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \) iff \(u(x) = O(1/|x|^{N-2}) \) for \(|x| \to +\infty \);

2. \(u \notin \mathcal{D}^{1,2}(\mathbb{R}^N) \) iff there exist \(c_1, c_2 > 0 \) such that

\[
\frac{c_1}{|x|^{(N-1)(p+1)-2N}} \leq u(x) \leq \frac{c_2}{|x|^{p-1}} \quad \text{definitely for} \quad |x| \to +\infty.
\]

Moreover, in the second case, there exists no \(\alpha > 2/(p-1) \) such that, definitely, \(u(r) \leq c/r^\alpha \) for some \(c > 0 \).
Proof of multiplicity result

Proof

It is easy to see that any solution of (C) is global and either it is sign-changing or it is a ground state.

Steps:

- We take any initial datum \(\xi > 0 \) sufficiently small (smaller than a suitable \(\bar{\xi} > 0 \)).
- We assume (by contradiction) that there exists a point where the solution vanishes.
- We show a Pucci-Serrin identity is violated.
Proof of multiplicity result

Proof

It is easy to see that any solution of (C) is global and either it is sign-changing or it is a ground state.

Steps:

- we take any initial datum $\xi > 0$ sufficiently small (smaller than a suitable $\bar{\xi} > 0$),
- we assume (by contradiction) that there exists a point where the solution vanishes,
- we show a Pucci-Serrin identity is violated.
Proof of multiplicity result

Proof

It is easy to see that any solution of \((C)\) is global and either it is sign-changing or it is a ground state.

Steps:

- we take any initial datum \(\xi > 0\) sufficiently small (smaller than a suitable \(\bar{\xi} > 0\)),
- we assume (by contradiction) that there exists a point where the solution vanishes,
- we show a Pucci-Serrin identity is violated.
Proof of multiplicity result

Proof

It is easy to see that any solution of \((C)\) is global and either it is sign-changing or it is a ground state.

Steps:

- we take any initial datum \(\xi > 0\) sufficiently small (smaller than a suitable \(\bar{\xi} > 0\)),
- we assume (by contradiction) that there exists a point where the solution vanishes,
- we show a Pucci-Serrin identity is violated.
Nonexistence result

Theorem

If $1 < p < \frac{N+2}{N-2}$, *then there exists no radial solution to* (\mathcal{P}_+).

Proof

Steps:

- We assume by contradiction the existence of a radial ground state solving (C) for a certain $\bar{\xi} > 0$.
- We prove that all solutions of (C) corresponding to $\xi \in [0, \bar{\xi})$ are ground states.
- We prove the existence of $\tilde{\xi} > 0$ such that all solutions of (C) corresponding to $\xi \in [0, \tilde{\xi})$ are sign changing.
- We conclude.
Nonexistence result

Theorem

If \(1 < p < \frac{N+2}{N-2} \), then there exists no radial solution to \((P_+)\).

Proof

Steps:

- we assume by contradiction the existence of a radial ground state solving \((C)\) for a certain \(\tilde{\xi} > 0\),
- we prove that all solutions of \((C)\) corresponding to \(\xi \in]0, \tilde{\xi}\) are ground states,
- we prove the existence of \(\tilde{\xi} > 0\) such that all solutions of \((C)\) corresponding to \(\xi \in]0, \tilde{\xi}\) are sign changing,
- we conclude.
Nonexistence result

Theorem

If $1 < p < \frac{N+2}{N-2}$, then there exists no radial solution to (\mathcal{P}_+).

Proof

Steps:

- We assume by contradiction the existence of a radial ground state solving (C) for a certain $\bar{\xi} > 0$,
- We prove that all solutions of (C) corresponding to $\xi \in]0, \bar{\xi}]$ are ground states,
- We prove the existence of $\tilde{\xi} > 0$ such that all solutions of (C) corresponding to $\xi \in]0, \tilde{\xi}]$ are sign changing,
- We conclude.
Nonexistence result

Theorem

If \(1 < p < \frac{N+2}{N-2} \), then there exists no radial solution to \((\mathcal{P}_+)\).

Proof

Steps:

- we assume by contradiction the existence of a radial ground state solving \((C)\) for a certain \(\tilde{\xi} > 0\),
- we prove that all solutions of \((C)\) corresponding to \(\xi \in]0, \tilde{\xi}\) are ground states,
- we prove the existence of \(\tilde{\tilde{\xi}} > 0\) such that all solutions of \((C)\) corresponding to \(\xi \in]0, \tilde{\tilde{\xi}}\) are sign changing,
- we conclude.
Positive radial solutions of a prescribed mean curvature equation in Lorentz-Minkowski space

Antonio Azzollini

Introduction

Bonheure-De Coster-Derlet results

Problems left open by BDD

Supercritical case: multiplicity result

Nonexistence result

Theorem

If $1 < p < \frac{N+2}{N-2}$, then there exists no radial solution to (\mathcal{P}_+).

Proof

Steps:

• we assume by contradiction the existence of a radial ground state solving (\mathcal{C}) for a certain $\tilde{\xi} > 0$,
• we prove that all solutions of (\mathcal{C}) corresponding to $\xi \in]0, \tilde{\xi}]$ are ground states,
• we prove the existence of $\tilde{\xi} > 0$ such that all solutions of (\mathcal{C}) corresponding to $\xi \in]0, \tilde{\xi}]$ are sign changing,
• we conclude.
Open problems

1. Is the [BDD] solution the unique ground state with finite energy (namely in $D^{1,2}$) for $p > \frac{N+2}{N-2}$?

2. Do infinite energy radial ground states decay exactly as $1/r^{p-1}$?

3. What happens if $p = \frac{N+2}{N-2}$?

4. Are there non radial ground state solutions for our equation?
Open problems

1. Is the [BDD] solution the unique ground state with finite energy (namely in $D^{1,2}$) for $p > \frac{N+2}{N-2}$?

2. Do infinite energy radial ground states decay exactly as $1/r^{p-1}$?

3. What happens if $p = \frac{N+2}{N-2}$?

4. Are there non radial ground state solutions for our equation?
Open problems

1. Is the [BDD] solution the unique ground state with finite energy (namely in $\mathcal{D}^{1,2}$) for $p > \frac{N+2}{N-2}$?
2. Do infinite energy radial ground states decay exactly as $1/r^{\frac{2}{p-1}}$?
3. What happens if $p = \frac{N+2}{N-2}$?
4. Are there non radial ground state solutions for our equation?
Open problems

1. Is the [BDD] solution the unique ground state with finite energy (namely in $D^{1,2}$) for $p > \frac{N+2}{N-2}$?

2. Do infinite energy radial ground states decay exactly as $1/r^{\frac{2}{p-1}}$?

3. What happens if $p = \frac{N+2}{N-2}$?

4. Are there non radial ground state solutions for our equation?