Positive solutions of a singular Minkowski-curvature equation

Isabel Coelho

Instituto Superior de Engenharia de Lisboa

Workshop in Nonlinear PDEs

7 September 2015
We discuss the existence of radially symmetric positive solutions for the quasilinear equation

\[-\text{div}\left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}}\right) + a(|x|)u = b(|x|)g(u) \quad \text{in } B,\]

where B is the open ball of radius R centered at 0 in \mathbb{R}^N, and the functions $a(r)$, $b(r)$ and $g(s)$ are smooth.

Boundary conditions:

- **Dirichlet** $u = 0$ on ∂B
- **Neumann** $\partial u = 0$ on ∂B

- Bonheure, Coelho, De Coster, in preparation.
Minkowski curvature operator

Newton’s Second Law of Motion:

\[F = ma = (mv)' = (mu')' \]

Special Theory of Relativity: the mass of a body increases with velocity

\[m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]

where \(m_0 = \) rest mass and \(c = 3 \times 10^8 \text{m/s} = \) the speed of light.

With the normalization \(m_0 = c = 1 \), we recover the equation

\[F = \left(\frac{u'}{\sqrt{1 - |u'|^2}} \right)' \]

[The Feynman Lectures on Physics 1964]

Riemannian Geometry: Represents the local mean curvature of hypersurfaces in the Lorentz-Minkowski space \(\mathbb{L}^{N+1} \) with coordinates \((x_1, \ldots, x_N, t)\) and the metric \(\sum_{j=1}^{N} (dx_j)^2 - (dt)^2 \).

[Bartnik Simon 1982]
Positive solutions of the Dirichlet problem

We discuss existence and multiplicity of positive radial solutions of

\[
\begin{aligned}
-\text{div}\left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}}\right) &= f(|x|, u) \quad \text{in } B, \\
u &= 0 \quad \text{on } \partial B,
\end{aligned}
\]

where we may assume that

\[
f(r, s) = \lambda m(r)s^p + \mu n(r)s^q,
\]

with \(0 < p < 1 \leq q\), parameters \(\lambda, \mu \geq 0\) and \(m, n: [0, R] \rightarrow \mathbb{R}\) continuous and positive somewhere, in particular they may change sign.

The radially symmetric solutions of this problem satisfy

\[
\begin{aligned}
-\left(\frac{r^{N-1}u'}{\sqrt{1 - |u'|^2}}\right)' &= r^{N-1}\left(\lambda m(r)s^p + \mu n(r)s^q\right) \quad \text{in }]0, R[, \\
u'(0) &= 0, \quad u(R) = 0.
\end{aligned}
\]
Main result for the Dirichlet problem

Theorem (existence and multiplicity of positive radial solutions)

Under our assumptions, consider problem (D).

Then we have

(sublinear problem) if \(\mu = 0 \) and \(0 < p < 1 \), then for all \(\lambda > 0 \) problem (D) has at least one positive solution.

(linear problem) if \(\lambda = 0 \) and \(q = 1 \), there exists \(\mu^* > 0 \) such that for all \(\mu > \mu^* \) problem (D) has at least one positive solution.

(superlinear problem) if \(\lambda = 0 \) and \(q > 1 \), there exists \(\mu^* > 0 \) such that for all \(\mu > \mu^* \) problem (D) has at least two positive solutions.

(sub-superlinear problem) there exist \(\mu^* > 0 \) and a function

\[
\lambda:]\mu^*, +\infty[\rightarrow]0, +\infty[\]

such that, for all \(\mu > \mu^* \) and all \(\lambda \in]0, \lambda(\mu)[\), then (D) has at least three positive solutions.
Idea of the proof

Step 1: Global a priori estimates

Any solution of the Dirichlet problem (D) satisfies

\[\|u\|_\infty < R \quad \text{and} \quad \|u'\|_\infty \leq 1 - \varepsilon. \]
Idea of the proof (cont.)

Step 2: An equivalent problem

- We replace s^p and s^q with $	ilde{p}(s)$ and $	ilde{q}(s)$: continuous potentials with compact support

$$
\tilde{p}(s) = \begin{cases}
 s^p & \text{if } 0 \leq s \leq R, \\
 \text{linear} & \text{if } |s| \geq R + 1,
\end{cases}
\tilde{q}(s) = \begin{cases}
 s^q & \text{if } 0 \leq s \leq R, \\
 \text{linear} & \text{if } |s| \geq R + 1,
\end{cases}
$$

- We replace the operator with $\tilde{\psi}$: odd, increasing, asymptotically linear diffeomorphism of \mathbb{R} into \mathbb{R}

$$
\tilde{\psi}(y) = \begin{cases}
 \frac{y}{\sqrt{1 - y^2}} & \text{if } |y| \leq 1 - \varepsilon, \\
 \text{linear} & \text{if } |y| > 1 - \varepsilon.
\end{cases}
$$
Idea of the proof (cont.)

Proposition

A positive function $u \in C^1([0, R])$ is a solution of problem

\[
\begin{align*}
- \left(\frac{r^{N-1}u'}{\sqrt{1 - |u'|^2}} \right)' &= r^{N-1} \left(\lambda m(r)s^p + \mu n(r)s^q \right) \quad \text{in }]0, R[, \\
\left(\begin{array}{c}
u'(0) = 0, \\
u(R) = 0,
\end{array} \right)
\end{align*}
\]

if and only if it is a solution of the modified problem

\[
\begin{align*}
- \left(r^{N-1}\tilde{\psi}(u') \right)' &= r^{N-1} \left(\lambda m(r)\tilde{p}(u) + \mu n(r)\tilde{q}(u) \right) \quad \text{in }]0, R[, \\
\left(\begin{array}{c}
u'(0) = 0, \\
u(R) = 0.
\end{array} \right)
\end{align*}
\]

(D)

Goal: Find positive solutions of (D_{mod}).

Isabel Coelho (ISEL)
Idea of the proof (conclusion)

Step 3: Variational setting

We look for critical points of the action functional associated with the modified problem \((D_{mod})\)

\[\tilde{I}(u) = \int_0^R r^{N-1} \tilde{\Psi}(u') \, dr - \lambda \int_0^R r^{N-1} m(r) \tilde{P}(u) \, dr - \mu \int_0^R r^{N-1} m(r) \tilde{Q}(u) \, dr,\]

in the functional space

\[\mathcal{H}_{N-1}(0, R) = \left\{ w \in W^{1,1}_{loc}([0, R]) : \int_0^R r^{N-1} |w'|^2 \, dr < +\infty \right\},\]

where

\[\tilde{\Psi}(y) = \int_0^y \psi(\xi) \, d\xi, \quad \tilde{P}(s) = \int_0^s \tilde{p}(\xi) \, d\xi \quad \text{and} \quad \tilde{Q}(s) = \int_0^s \tilde{q}(\xi) \, d\xi.\]

(see [Bonheure, Gomes, Sanchez 2005])
Bifurcation diagrams

$p < 1$

$p = 1$

$p > 1$

for the Minkowski-curvature equation

$p < 1$

$p = 1$

$p > 1$

for the classical semi-linear equation
Positive decreasing solutions of the Neumann problem

We discuss existence of radial positive decreasing solutions of

\[
\begin{cases}
- \text{div} \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) + a(|x|)u = b(|x|)u^q & \text{in } B, \\
\partial_{\nu} u = 0 & \text{on } \partial B,
\end{cases}
\]

(N)

where the functions \(a(r)\) and \(b(r)\) are continuous and positive, \(a\) is increasing and \(b\) is decreasing and \(q > 1\).

Our main result:

Theorem (existence of positive decreasing radial solutions)

Under our assumptions, problem (N) has at least one positive radially decreasing solution.
Idea of the proof

Step 1: Global a priori estimates
Any solution of the Neumann problem (N) satisfies

\[\|u\|_{\infty} < c_{\infty} \quad \text{and} \quad \|u'\|_{\infty} \leq 1 - \varepsilon. \]

Step 2: An equivalent problem
We replace the operator with \(\psi_{\beta} : \) odd, increasing diffeomorphism of \(\mathbb{R} \) into \(\mathbb{R} \) with superlinear growth at infinity

\[
\psi_{\beta}(y) = \begin{cases}
\frac{y}{\sqrt{1 - y^2}} & \text{if } |y| \leq 1 - \varepsilon, \\
\alpha_{\beta} y^{p-1} + b_{\beta} y & \text{if } |y| > 1 - \varepsilon,
\end{cases}
\]

with \(p > N \geq 2 \).
Idea of the proof (cont.)

Proposition

A positive function $u \in C^1([0, R])$ is a solution of problem

\[
\begin{cases}
-\text{div} \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) + a(|x|)u = b(|x|)u^q & \text{in } B, \\
\partial \nu u = 0 & \text{on } \partial B,
\end{cases}
\]

if and only if it is a solution of the modified problem

\[
\begin{cases}
-\text{div} (\psi_\beta(\nabla u)) + a(|x|)u = b(|x|)u^q & \text{in } B, \\
\partial \nu u = 0 & \text{on } \partial B.
\end{cases}
\]

The statement is a consequence of our choice of $p > N$ and the Sobolev Embedding Theorem

\[W^{1,p}(B) \subset L^\infty(B).\]
Idea of the proof (cont.)

Step 3: A completely continuous map in a cone

We will look for a solution of the Neumann problem in the cone of positive, nonincreasing, radial continuous functions:

\[C_- = \{ u \in C(\overline{B}) : u \text{ is radial, } u \geq 0 \text{ and } u(r) \geq u(s) \text{ for every } 0 \leq r \leq s \leq R \}. \]

To prove our existence result, we will apply a suitable fixed point theorem to the operator \(T : C_- \to C^1(\overline{B}) \) defined as

\[T(u) = v \]

with

\[
\begin{cases}
 -\text{div} (\psi_\beta(\nabla v)) + a(|x|)v = b(|x|)u^q & \text{in } B, \\
 \partial_\nu v = 0 & \text{on } \partial B.
\end{cases}
\]
Idea of the proof (cont.)

Lemma (Auxiliary)

Let $w \in C_-$. Then problem

\[
\begin{cases}
-\text{div}(\psi_\beta(\nabla u)) + a(|x|)u = w(|x|) & \text{in } B, \\
\partial_\nu u = 0 & \text{on } \partial B,
\end{cases}
\]

has a unique solution u_β that belongs to C_-. Moreover, the map $K : C_- \to C_- \text{ defined by}$

\[K(w) = u_\beta\quad \text{where } u_\beta \text{ is the solution of } (N_{aux})\]

is completely continuous.

Corollary

The operator T is completely continuous and satisfies $T(C_-) \subseteq C_-$.
Idea of the proof (conclusion)

Step 4: A fixed point theorem in a cone

Theorem (expansive form [Benjamin 1971])

Let \mathcal{C}_- be a cone in X and $T: \mathcal{C}_- \rightarrow \mathcal{C}_-$ a completely continuous operator. If there exist positive constants $a < b$ such that

- $Tu \neq \lambda u$ for any $\lambda > 1$ for all $u \in \mathcal{C}_-$ with $\|u\| = a$
- $\exists p \in \mathcal{C}_- \setminus \{0\}$ such that $u - Tu \neq \lambda p$ for any $\lambda \geq 0$ for all $u \in \mathcal{C}_-$ with $\|u\| = b$

then T has a **fixed point** u in \mathcal{C}_- satisfying $a \leq \|u\| \leq b$.

![Diagram of cones and operators](image)
We proved the existence of multiple radial positive solutions of the Dirichlet problem

\[
\begin{cases}
-\text{div} \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) = \mu f(|x|, u) & \text{in } B, \\
u = 0 & \text{on } \partial B,
\end{cases}
\]

(D)

according to the value of the parameter \(\mu \) and the behaviour of \(f(r, s) \) near \(s = 0 \).

We proved the existence of a positive radial decreasing solution of the Neumann problem

\[
\begin{cases}
-\text{div} \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) + a(|x|)u = b(|x|)u^q & \text{in } B, \\
\partial_{\nu} u = 0 & \text{on } \partial B,
\end{cases}
\]

(N)

for \(a(r) \) is increasing, \(b(r) \) is decreasing and \(q > 1 \).
For here to the whole space...

We could use our results to study the existence of entire solutions of

\[
\begin{aligned}
&\left\{\begin{array}{l}
-\text{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) + a(|x|)u = b(|x|)u^q \\
u(x) \rightarrow 0 \quad \text{as} \quad |x| \rightarrow +\infty.
\end{array}\right. \\
\end{aligned}
\]

\quad \text{in } \mathbb{R}^N,

(E)

What can happen:

Theorem

Problem (E) has at least one positive radially decreasing solution.
THANK YOU FOR YOUR ATTENTION!

